• University of Glasgow Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of York Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Regent’s University London Featured Masters Courses
De Montfort University Featured Masters Courses
Cass Business School Featured Masters Courses
University of Greenwich Featured Masters Courses
Coventry University Featured Masters Courses
University of Leeds Featured Masters Courses
0 miles
Biological Sciences×

Masters Degrees in Human Genetics

Masters degrees in Human Genetics provide advanced training in the study of the human species, including origin, inheritance, and genetic variation. Specialisations include Clinical Genetics, Cancer Genetics, Neurological Science, and Healthcare Biotechnology.

Taught MSc courses are typical for the field, though research oriented MRes and MPhil programmes are available at some institutions. Entry requirements normally include an undergraduate degree in one of the biological sciences.

Why study a Masters in Human Genetics?

Read more...

  • Biological Sciences×
  • Human Genetics×
  • clear all
Showing 1 to 15 of 66
Order by 
The Genetics of Human Disease MSc aims to provide students with an in-depth knowledge of molecular genetics, quantitative and statistical genetics and human disease and how this can be applied to improve healthcare through the development and application of diagnostic tests and therapeutic agents. Read more
The Genetics of Human Disease MSc aims to provide students with an in-depth knowledge of molecular genetics, quantitative and statistical genetics and human disease and how this can be applied to improve healthcare through the development and application of diagnostic tests and therapeutic agents.

Degree Information

The programme provides a thorough grounding in modern approaches to the understanding of the genetics of disease alongside the cutting-edge research methods and techniques used to advance our understanding of development of disease. Core modules provide a broad coverage of the genetics of disease, research skills and social aspects, whilst specialised streams in Inherited Diseases, Pharmacogenetics and Computational Genomics, in which students can qualify, and the research project allow more in-depth analysis in areas of genetics.

Students undertake modules to the value of 180 credits.

The programme consists of four core modules (60 credits) and two specialist modules (30 credits) and a research project culminating in a dissertation (90 credits).

A Postgraduate Diploma consisting of six modules (four core modules in term one and two modules within the selected stream in term two) is offered, full-time nine months.

A Postgraduate Certificate consisting of four core modules in term one (60 credits) is offered, full-time three months.

Core Modules
- Advanced Human Genetics: Research Principles
- Human Genetics in Context
- Core Skills
- Basic Statistics for Medical Sciences

Specialist modules
In term two you will take specialist modules depending on the specialist stream you select: Inherited Disease (A); Pharmacogenetics (B); Computational Genomics (C).
- Applications in Human Genetics (A)
- Either Genetics of Cardiovascular Disease or Genetics of Neurological Disease (A)
- Clinical Applications of Pharmacogenetic Tests (B)
- Anti-Cancer Personalised Medicine or Pharmacogenomics, Adverse Drug Reactions and Biomarkers (B)
- Applications in Human Genetics (C)
- Statistics for Interpreting Genetic Data (C)

Dissertation/report
Students undertake an original research project investigating topical questions in genetics and genetics of human disease which culminates in a dissertation of 12,000 to 14,000 words and an oral presentation.

Teaching and learning
Students develop their knowledge and understanding of genetics of human diseases through a combination of lectures, seminars, tutorials, presentations and journal clubs. Taught modules are assessed by unseen written examination and/or, written reports, oral presentations and coursework. The research project is assessed by the dissertation and oral presentation.

Careers

Advanced training in genetic techniques including bioinformatic and statistical approaches positions graduates well for PhD studentships in laboratories using genetic techniques to examine diseases such as heart disease, cancer and neurological disorders. Another large group will seek research jobs in the pharmaceutical industry, or jobs related to genetics in healthcare organisations.

Employability
The MSc in Genetics of Human Disease facilitates acquisition of knowledge and skills relevant to a career in research in many different biomedical disciplines. About half of our graduates enter a research career by undertaking and completing PhDs and working as research associates/scientists in academia. Some of our graduates go on to jobs in the pharmaceutical industry, while others enter careers with clinical genetic diagnosis services, particularly in molecular genetics, in healthcare organisations and hospitals around the world. Those graduates with a prior medical training often utilise their new skills as clinical geneticists.

Why study this degree at UCL?

UCL is in a unique position to offer both the basic science and application of modern genetics to improve human health. The programme is a cross-faculty initiative with teaching from across the School of Life and Medical Sciences (SLMS) at UCL.

Students will be based at the UCL Genetics Institute (UGI), a world-leading centre which develops and applies biostatistical and bioinformatic approaches to human and population genetics. Opportunities to conduct laboratory or computational-based research projects are available in the laboratories of world-leading geneticists affiliated to the UGI.

Read less
The science of human genetics has been transformed in the past decade. Following the sequencing of the entire human genome, a wealth of resources is now available to researchers aiming to identify the genetic variants that influence human health. Read more
The science of human genetics has been transformed in the past decade. Following the sequencing of the entire human genome, a wealth of resources is now available to researchers aiming to identify the genetic variants that influence human health. These findings will shed light on the underlying molecular pathology of many diseases that are poorly understood at present, eventually paving the way for novel treatment and prevention strategies. The speed at which these discoveries are being made is accelerating, and it is likely that molecular genetics will soon underpin much of modern medicine.

Career Pathways:
The MSc in Human Molecular Genetics programme is designed to prepare you for a genetics research career, either in human gene function and genetic disease, or molecular approaches to diagnosis and health care biotechnology. It provides a broad grounding in Human Genetics, with emphasis on molecular aspects, to give a solid basis for subsequent academic or industrial research, or for entry to NHS Genetics training. Approximately 40% of our students go on to do a PhD, 40% become research assistants/associates, while others go on to jobs in industry or further studies (bioinformatics/computing medicine). One or two students every year enter the NHS in clinical genetics training posts.

Programme Structure:
You will study the fundamentals of human and molecular genetics, models of inheritance for rare and common/ complex polygenic diseases, cytogenetics, analytical methods in human genetics and genomics, animal models and transgenesis, gene therapy, epigenetics, cancer genetics and an introduction to clinical genetics and genetic counselling services.

There are four weeks of intensive laboratory practical sessions, as well as computer science practicals applied to problems in genetics, genomics and bioinformatics, regular research seminars on site, student seminar and journal presentations, study group activities and a six-month full-time research project in the summer.

The programme is based on an average 20 hours contact time per week. This will vary between 15 hours in most weeks and approximately 40 hours during intensive practicals and projects. Private study time is included within the schedule: you are expected to contribute an additional 10-15 hours private study per week to the course. We do not recommend you try to support yourself by taking a part-time employment whilst studying as your work may suffer.

Assessment:
There are 3 x 3-hour written papers in late February, coursework assessments (poster presentation, analytical methods in genetics, oral presentation), a project report and a viva examination in September.

Programme Location:
The programme is primarily based at Hammersmith Campus in West London although some teaching modules are held at St Mary's Campus and the Northwick Park Campus.

Read less
The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology. Read more

Programme description

The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology.

Based in the internationally renowned Institute of Evolutionary Biology, this MSc draws from the wealth of expertise available there, as well as the teaching, research expertise and facilities of Scotland’s Rural College, the University’s Centre for Molecular Medicine, the Medical Research Council’s Human Genetics Unit and the Roslin Institute (birthplace of Dolly the sheep).

Each year the syllabus is fine-tuned to suit current issues in evolutionary, plant, human and animal genetics.

This programme forms part of the quantitative genetics and genome analysis suite of programmes offering specialist routes, which include Animal Breeding & Genetics and Evolutionary Genetics.

Programme structure

This programme consists of two semesters of taught courses followed by a research project, leading to a dissertation.

Courses are taught via lectures, tutorials, seminars and computer practicals. Assessment is by written examinations, in-course assignments and project work.

Compulsory courses:

Population and Quantitative Genetics
Genetic Interpretation
Linkage and Association in Genome Analysis
Genetics of Human Complex Traits
Dissertation.

Option courses:

Statistics and Data Analysis
Molecular Phylogenetics
Bioinformatics
Molecular Evolution
Quantitative Genetic Models
Functional Genomic Technologies
Evolution and Climate Change
Animal Genetic Improvement
Evolutionary Quantitative Genetics

Learning outcomes

You will gain the knowledge and skills required to apply quantitative genetics theory to practical problems in the biomedical industry, and to undertake research in quantitative and population genetics and genome analysis.

A thorough understanding of general concepts in population and quantitative genetics and genomics
In-depth knowledge of complex trait genetics in humans
A solid grounding in the statistical methods required for quantitative biology
Development of independent research skills through individual mini- and maxi-research projects
Development of generic skills (IT skills, experience in writing scientific papers, the ability to work independently)
Presentation skills through student seminars, scientific presentation of project work and independent research projects.

Career opportunities

You will develop the in-depth knowledge and specialised skills required to apply quantitative genetics theory to practical problems, in both the biomedical and animal science industries, and to undertake research in evolutionary genetics, population genetics and genome analysis.

Read less
The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology. Read more

Programme description

The revolution in genetic mapping technology and the advent of whole genome sequences have turned quantitative genetics into one of the fastest growing areas of biology.

Based in the internationally renowned Institute of Evolutionary Biology, this MSc draws from the wealth of expertise available there, as well as the teaching, research expertise and facilities of Scotland’s Rural College, the University’s Centre for Molecular Medicine, the Medical Research Council’s Human Genetics Unit and the Roslin Institute (birthplace of Dolly the sheep).

Each year the syllabus is fine-tuned to suit current issues in evolutionary, plant, human and animal genetics.

This programme forms part of the quantitative genetics and genome analysis suite of programmes offering specialist routes, which also include Animal Breeding & Genetics and Human Complex Trait Genetics.

Programme structure

This programme consists of two semesters of taught courses followed by a research project, leading to a dissertation.

Courses are taught via lectures, tutorials, seminars and computer practicals. Assessment is by written examinations, in-course assignments and project work.

Compulsory courses:

Population and Quantitative Genetics
Genetic Interpretation
Linkage and Association in Genome Analysis
Research Proposal
Dissertation

Option courses:

Statistics and Data Analysis Molecular Phylogenetics Bioinformatics Molecular Evolution Genetics of Human Complex Traits Quantitative Genetic Models Functional Genomic Technologies Evolution and Climate Change Animal Genetic Improvement Evolutionary Quantitative Genetics

Learning outcomes

You will gain the knowledge and skills required to apply quantitative genetics theory to undertake research in evolutionary and quantitative genetics, population genetics and evolutionary genomics.

A thorough understanding of general concepts in population and quantitative genetics and genomics
In-depth knowledge of evolutionary genetics
A solid grounding in the statistical methods required for quantitative biology
Development of independent research skills through individual mini- and maxi-research projects
Development of generic skills (IT skills, experience in writing scientific papers, the ability to work independently)
Presentation skills through student seminars, scientific presentation of project work and independent research projects.

Career opportunities

You will develop the in-depth knowledge and specialised skills required to apply quantitative genetics theory to practical problems, in both the biomedical and animal science industries, and to undertake research in evolutionary genetics, population genetics and genome analysis.

Read less
The revolution in genetic mapping technology and the advent of whole genome sequences has turned quantitative genetics into one of the fastest growing areas of biology. Read more

Programme description

The revolution in genetic mapping technology and the advent of whole genome sequences has turned quantitative genetics into one of the fastest growing areas of biology.

Quantitative Genetics & Genome Analysis is part of a suite of programmes offering specialist routes in Animal Breeding & Genetics, Evolutionary Genetics, or Human Complex Trait Genetics.

Based in the internationally renowned Institute of Evolutionary Biology, this MSc draws from the wealth of expertise available there, as well as the teaching, research expertise and facilities of Scotland’s Rural College, the University’s Centre for Molecular Medicine, the Medical Research Council’s Human Genetics Unit and the Roslin Institute (birthplace of Dolly the sheep).

Each year the syllabus is fine-tuned to suit current issues in evolutionary, plant, human and animal genetics.

Applicants who wish to select their area of specialisation during the programme should apply for this umbrella programme. Applicants with a preferred programme option should apply via the following links:

Animal Breeding and Genetics
Evolutionary Genetics
Human Complex Trait Genetics

Programme structure

This programme consists of two semesters of taught courses followed by a research project, leading to a dissertation.

Compulsory courses:

Population and Quantitative Genetics
Genetic Interpretation
Statistics and Data Analysis
Linkage and Association in Genome Analysis
Research Proposal
Either Bioinformatics or Molecular Phylogenetics

Option courses (selected according to degree specialisation):

Quantitative Genetic Models
Molecular Evolution
Genetics of Human Complex Traits
Animal Genetic Improvement
Evolution and Climate Change
Functional Genomic Technologies

Career opportunities

You will develop the in-depth knowledge and specialised skills required to apply quantitative genetics theory to practical problems, in both the biomedical and animal science industries, and to undertake research in evolutionary genetics, population genetics and genome analysis.

Read less
The Institute of Genetic Medicine brings together a strong team with an interest in clinical and developmental genetics. Our research focuses on the causes of genetic disease at the molecular and cellular level and its treatment. Read more
The Institute of Genetic Medicine brings together a strong team with an interest in clinical and developmental genetics. Our research focuses on the causes of genetic disease at the molecular and cellular level and its treatment. Research areas include: genetic medicine, developmental genetics, neuromuscular and neurological genetics, mitochondrial genetics and cardiovascular genetics.

As a research postgraduate in the Institute of Genetic Medicine you will be a member of our thriving research community. The Institute is located in Newcastle’s Life Science Centre. You will work alongside a number of research, clinical and educational organisations, including the Northern Genetics Service.

We offer supervision for MPhil in the following research areas:

Cancer genetics and genome instability

Our research includes:
-A major clinical trial for chemoprevention of colon cancer
-Genetic analyses of neuroblastoma susceptibility
-Research into Wilms Tumour (a childhood kidney cancer)
-Studies on cell cycle regulation and genome instability

Cardiovascular genetics and development

We use techniques of high-throughput genetic analyses to identify mechanisms where genetic variability between individuals contributes to the risk of developing cardiovascular disease. We also use mouse, zebrafish and stem cell models to understand the ways in which particular gene families' genetic and environmental factors are involved in the normal and abnormal development of the heart and blood vessels.

Complex disease and quantitative genetics

We work on large-scale studies into the genetic basis of common diseases with complex genetic causes, for example autoimmune disease, complex cardiovascular traits and renal disorders. We are also developing novel statistical methods and tools for analysing this genetic data.

Developmental genetics

We study genes known (or suspected to be) involved in malformations found in newborn babies. These include genes involved in normal and abnormal development of the face, brain, heart, muscle and kidney system. Our research includes the use of knockout mice and zebrafish as laboratory models.

Gene expression and regulation in normal development and disease

We research how gene expression is controlled during development and misregulated in diseases, including the roles of transcription factors, RNA binding proteins and the signalling pathways that control these. We conduct studies of early human brain development, including gene expression analysis, primary cell culture models, and 3D visualisation and modelling.

Genetics of neurological disorders

Our research includes:
-The identification of genes that in isolation can cause neurological disorders
-Molecular mechanisms and treatment of neurometabolic disease
-Complex genetics of common neurological disorders including Parkinson's disease and Alzheimer's disease
-The genetics of epilepsy

Kidney genetics and development

Kidney research focuses on:
-Atypical haemolytic uraemic syndrome (aHUS)
-Vesicoureteric reflux (VUR)
-Cystic renal disease
-Nephrolithiasis to study renal genetics

The discovery that aHUS is a disease of complement dysregulation has led to a specific interest in complement genetics.

Mitochondrial disease

Our research includes:
-Investigation of the role of mitochondria in human disease
-Nuclear-mitochondrial interactions in disease
-The inheritance of mitochondrial DNA heteroplasmy
-Mitochondrial function in stem cells

Neuromuscular genetics

The Neuromuscular Research Group has a series of basic research programmes looking at the function of novel muscle proteins and their roles in pathogenesis. Recently developed translational research programmes are seeking therapeutic targets for various muscle diseases.

Stem cell biology

We research human embryonic stem (ES) cells, germline stem cells and somatic stem cells. ES cell research is aimed at understanding stem cell pluripotency, self-renewal, survival and epigenetic control of differentiation and development. This includes the functional analysis of genes involved in germline stem cell proliferation and differentiation. Somatic stem cell projects include programmes on umbilical cord blood stem cells, haematopoietic progenitors, and limbal stem cells.

Pharmacy

Our new School of Pharmacy has scientists and clinicians working together on all aspects of pharmaceutical sciences and clinical pharmacy.

Read less
The Institute of Genetics and Molecular Medicine (IGMM) forms part of the University of Edinburgh and is a large, integrated research institute composed of the Centre for Genomic and Experimental Medicine, the MRC Human Genetics Unit, and the Edinburgh Cancer Research Centre. Read more

Research profile

The Institute of Genetics and Molecular Medicine (IGMM) forms part of the University of Edinburgh and is a large, integrated research institute composed of the Centre for Genomic and Experimental Medicine, the MRC Human Genetics Unit, and the Edinburgh Cancer Research Centre. The IGMM’s priorities are basic biomedical research through to clinical research across a wide range of themes.

Programmes of work include the following list of themes: genetics of common and complex human diseases, epigenetics, developmental biology and pediatrics, brain biology and disease, cancer biology and biomedical systems analysis/computational biology. There are currently well over a hundred PhD students in training across the IGMM, with a thriving postgraduate society.

MSc by Research

Our MSc by Research enables students to work on a year-long research project. Applicants will need to have identified a supervisor willing to take them on before applying formally.

Training and support

Within the IGMM there are over a hundred PhD students, overseen by a well-established Graduate School structure, embedded within the College of Medicine and Veterinary Medicine.

There is a Postgraduate Studies Committee (PGSC) chaired by the Director of the Graduate School which is responsible for student training and assessment. The role of the PGSC is to develop and implement guidelines for optimal student training and to ensure best practice in monitoring and assessment. These assessments are carried out by student-specific, carefully selected, thesis committees who stay with the student throughout their PhD project. The committees are made up of the supervisors, an external member (often with particular expertise that relates to the student’s project) and an experienced Chair.

We run training sessions for new PhD students that cover issues such as student-supervisor working relationships, research ethics and assessment mechanisms.

We also have a strong four-year PhD programme within which we provide training workshops on technologies and issues such as tissue governance; all of these workshops are made available to three year students too, who have their own dedicated handbook.

The students also have a thriving postgrad society which runs career talks and social events and an annual scientific retreat.

Facilities

A principal aim of the IGMM is develop fully integrated, multi-disciplinary research programmes across the whole spectrum of basic, clinical and translational research. We have state of the art imaging, DNA sequencing and drug discovery units, a bioinformatics service and excellent lab facilities.

Read less
This MSc gives students excellent postgraduate training, and leads to exciting careers in research, industry, the NHS and other clinical institutions. Read more

About the course

This MSc gives students excellent postgraduate training, and leads to exciting careers in research, industry, the NHS and other clinical institutions. Many of our graduates have also gone on to study bioscience at PhD level.

You’ll develop an in-depth knowledge of medical and molecular genetics, and receive clinical genetics training to prepare you for a research project in a modern research facility. You’ll have the chance to collaborate with top genetics research laboratories and clinical partners.

This MSc was developed in partnership with the Sheffield Diagnostic Genetics Service (NHS), which is a world-renowned clinical genetics facility. This relationship is unique to this course and gives you the opportunity to be taught by the Director of the Sheffield Diagnostic Genetics Service, Sheffield Children’s Hospital NHS Foundation Trust, 
and their Head of Pharmacogenetics.

Where your masters can take you

Our graduates work in health care, pharmaceuticals, food safety and production, brewing and agrochemicals. Many of our masters students go on to do a PhD then pursue a career in research; others have gained entry to the prestigious NHS Scientist Training Programme (STP).

An international reputation

The 2014 Research Excellence Framework (REF) ranks Sheffield No 1 for biomedical research and in the UK top five for biological sciences generally. We have regular seminars from distinguished experts, and our motivated staff undertake collaborative research ranging from biotechnology to medicine.

Teaching and assessment

Our masters courses give you a solid grounding in experimental science, with personal supervision and tutorials by experienced scientists, based in modern and well-equipped labs, leading on to a research project in which you design and conduct your own research. You will learn cutting edge science from research leaders, and gain practice in reading the scientific literature and writing reports. Assessment is based on a combination of coursework, project work, formal examinations and a dissertation.

Modules

Genome Stability and Genetic Change; Human Genetics I; Human Genetics II; Advanced Research Topics; Laboratory Techniques in Molecular Bioscience; Literature Review; Research Project.

Read less
Within the Human Molecular Genetics area there is an emphasis on the role of repetitive DNA sequences in health and disease, and in chromosome stability. Read more
Within the Human Molecular Genetics area there is an emphasis on the role of repetitive DNA sequences in health and disease, and in chromosome stability. Research projects include: studies to understand the molecular basis of myotonic dystrophy, the identification of genes involved in human developmental heart disorders; cardiac stem cells; the role of apoptosis in brain tumour development and therapy; artificial chromosomes and chromosome segregation; human genetic diversity; copy number analysis; molecular genetics of muscle disease; mouse models of muscle disorders; and molecular genetic approaches to anthropology and human population genetics.

APPLICATION PROCEDURES

After identifying which Masters you wish to pursue please complete an on-line application form
https://pgapps.nottingham.ac.uk/
Mark clearly on this form your choice of course title, give a brief outline of your proposed research and follow the automated prompts to provide documentation. Once the School has your application and accompanying documents (eg referees reports, transcripts/certificates) your application will be matched to an appropriate academic supervisor and considered for an offer of admission.

COURSE STRUCTURE
The MRes degree course consists of two elements:
160 credits of assessed work. The assessed work will normally be based entirely on a research project and will be the equivalent of around 10 ½ months full-time research AND
20 credits of non-assessed generic training. Credits can be accumulated from any of the courses offered by the Graduate School. http://www.nottingham.ac.uk/gradschool/research-training/index.phtml The generic courses should be chosen by the student in consultation with the supervisor(s).

ASSESSMENT
The research project will normally be assessed by a dissertation of a maximum of 30,000 to 35,000 words, or equivalent as appropriate*. The examiners may if they so wish require the student to attend a viva.
*In consultation with the supervisor it maybe possible for students to elect to do a shorter research project and take a maximum of 40 credits of assessed modules.

The School of Life Sciences will provide each postgraduate research student with a laptop for their exclusive use for the duration of their studies in the School.

SCHOLARSHIPS FOR INTERNATIONAL STUDENTS
http://www.nottingham.ac.uk/studywithus/international-applicants/scholarships-fees-and-finance/scholarships/masters-scholarships.aspx

Read less
The MSc in Nutrition and Genetics aims to educate students in molecular biology principles that explain the interactions between human DNA and nutrition. Read more
The MSc in Nutrition and Genetics aims to educate students in molecular biology principles that explain the interactions between human DNA and nutrition.

Why study Nutrition and Genetics?

The degree provides students with the knowledge and understanding of the progress, advantages and limitations of personalised nutrition. Finally, the programme will provide students with the necessary practical skills associated with molecular nutrition techniques.

NHS England states that “the shift to personalised medicine is already underway” and the NHS National Genetics and Genomics Education Centre has developed specific learning outcomes that need to be achieved by currently practising and future dietitians.

Freelance dietitians and nutritionists already feel the need to include elements of genetics and personalised nutrition in their consultations. An extensive market analysis on consumer trends (DataMonitor) showed that one of the main food-consumer “mega” trends is that people of all ages are more proactively addressing their health in a more personalised manner. The UK is one of the leading countries in consumer rates who consider the idea of using genetics in nutritional advice.

Why St Mary's?

St Mary’s University, Twickenham is the first and only university in the UK that offers a degree in Nutrition and Genetics. Teaching staff at St Mary’s have great experience teaching Nutrition and they also conduct research in the field of Nutrition and Genetics. St Mary’s University has been ranked as the top London university for student experience and we are proud of the excellent tutoring support we offer. The specific programme offers the opportunity for students to carry out their Research Project at the University of Navarra (Pamplona, Spain) as part of the Erasmus exchange programme.

Course Content

What you will study
-Principles of molecular biology
-Genetics in health and disease
-Nutrient-gene interactions
-Genetics and personalised nutrition
-Applied personalised nutrition
-Genetic tests in nutrition
-Research Project

Please note: All information is correct at the time of publication. However, course content is regularly updated and this may result in some changes, which will be communicated to students before their programme begins.

Career Prospects

Graduates of the MSc in Nutrition and Genetics will have gained an expertise in incorporating elements of genetic profiling in nutritional and dietary assessments and regimes. Also, graduates of this programme will be in a unique position to work for (or with) companies that offer genotyping services; such companies are becoming increasingly popular, creating the need for such expertise.

Finally, the specific degree is the ideal platform for a career in research considering that graduates will be in the advantageous position to combine two distinct scientific disciplines (Nutrition and Genetics).

Read less
Molecular genetics is the study of genes at the molecular level. It focuses on the processes that underlie the expression of the genetic information from the DNA into the functional proteins that execute the genetic programme. Read more
Molecular genetics is the study of genes at the molecular level. It focuses on the processes that underlie the expression of the genetic information from the DNA into the functional proteins that execute the genetic programme. Within the School of Life Sciences research in molecular genetics is concentrated in the Human Genetics, Fungal Biology, and Developmental Genetics and Gene Control groups. In the Human Genetics group research in this area includes studies of the molecular basis of myotonic dystrophy and the identification of genes involved in cardiac development; the molecular genetics of muscle disease; mouse models of muscle disorders and molecular genetic approaches to anthropology and human population genetics. In the Fungal Biology group there are studies on the molecular events that determine stress responses during polarised growth, protein folding and secretion in yeasts and filamentous fungi; the molecular and cellular effects of stress on yeast cells and the genetic mechanisms that control sex in fungi. The Developmental Genetics and Gene Control group focuses on the mechanisms of eukaryotic gene expression and the genetics of vertebrate embryonic development. Developmental studies are focussed largely upon the mechanisms that control stem cell fate. Projects on the control of gene expression address the machinery used by cells to achieve appropriate levels of functional transcripts. These studies include control of transcription and the mechanisms of RNA maturation.

APPLICATION PROCEDURES
After identifying which Masters you wish to pursue please complete an on-line application form
https://pgapps.nottingham.ac.uk/
Mark clearly on this form your choice of course title, give a brief outline of your proposed research and follow the automated prompts to provide documentation. Once the School has your application and accompanying documents (eg referees reports, transcripts/certificates) your application will be matched to an appropriate academic supervisor and considered for an offer of admission.

COURSE STRUCTURE
The MRes degree course consists of two elements:
160 credits of assessed work. The assessed work will normally be based entirely on a research project and will be the equivalent of around 10 ½ months full-time research work. AND
20 credits of non-assessed generic training. Credits can be accumulated from any of the courses offered by the Graduate School. http://www.nottingham.ac.uk/gradschool/research-training/index.phtml The generic courses should be chosen by the student in consultation with the supervisor(s).

ASSESSMENT
The research project will normally be assessed by a dissertation of a maximum of 30,000 to 35,000 words, or equivalent as appropriate*. The examiners may if they so wish require the student to attend a viva.
*In consultation with the supervisor it maybe possible for students to elect to do a shorter research project and take a maximum of 40 credits of assessed modules.

The School of Life Sciences will provide each postgraduate research student with a laptop for their exclusive use for the duration of their studies in the School.

SCHOLARSHIPS FOR INTERNATIONAL STUDENTS
http://www.nottingham.ac.uk/studywithus/international-applicants/scholarships-fees-and-finance/scholarships/masters-scholarships.aspx

Read less
Applicants must hold a bachelor’s degree (BSc or equivalent) in Forensic Science or a related subject including Biosciences (Molecular Biology, Genetics, Human Genetics), Physical Anthropology, Archaeology and Criminalistics. Read more
Applicants must hold a bachelor’s degree (BSc or equivalent) in Forensic Science or a related subject including Biosciences (Molecular Biology, Genetics, Human Genetics), Physical Anthropology, Archaeology and Criminalistics.

Selection of Candidates

Applications are reviewed by an admissions committee of departmental staff. Candidates are selected based on their academic qualifications and referee evaluations.

International student language requirements and application guidance can be found at http://www.wlv.ac.uk/international/apply

Read less
The Master of Medicine (Reproductive Health Sciences and Human Genetics) and Master of Philosophy double degree is a coursework master’s degree combined with a master’s degree by research. Read more
The Master of Medicine (Reproductive Health Sciences and Human Genetics) and Master of Philosophy double degree is a coursework master’s degree combined with a master’s degree by research. You will enrol part-time in both coursework study and research study at the same time to complete this double degree as a full-time student over two years. The Master of Philosophy is completed under the guidance of a supervisor.

The double degree is available only to international students. Local students may enrol part-time in the two single degrees simultaneously, or they may enrol in the two degrees sequentially. In the latter instance, local students will complete both degrees part-time over four years.

To ask a question about this course, visit http://sydney.edu.au/internationaloffice/

Read less
The Faculty of Medicine of Memorial University of Newfoundland, one of 17 Canadian medical schools, was established in 1967. The Faculty is housed within the Health Sciences Centre in St. Read more
The Faculty of Medicine of Memorial University of Newfoundland, one of 17 Canadian medical schools, was established in 1967. The Faculty is housed within the Health Sciences Centre in St. John’s, a modern facility which also includes the adult and women’s hospital, the Janeway Children’s Hospital, the H. Bliss Murphy Cancer Centre, and the Schools of Nursing and Pharmacy, plus specialized units and support services. The graduate programs in the Faculty of Medicine are structured to create an academic environment conducive to research training excellence. The programs are designed to provide formal instruction as well as to promote informal exchange in areas of health and health research. There are nine areas of concentration in graduate studies in the Faculty of Medicine: Applied Health Services Research, Cancer Research, Cardiovascular and Renal Sciences, Clinical Epidemiology, Community Health, Human Genetics, Immunology and Infectious Diseases, Neuroscience, and Public Health.

These programs are based upon focal areas of health research within the Faculty and are dependent upon a critical mass of actively engaged faculty researchers in these areas. Each area of concentration has a program coordinator chair or director, and includes a core of graduate courses appropriate to the area of health research and mechanisms for formal and informal exchange of research ideas (journal clubs, seminar series, visiting speakers program). In addition to course work and thesis requirements, the broad education of graduate students includes the opportunity to attend and participate in a number of special events and lectureships. Although these opportunities are not formally required by the program of study, students are strongly encouraged to attend and participate in these events.

The MSc (Med) program involves courses and a thesis and can be completed in two years of full-time study.

Read less
The advent of affordable rapid genome sequencing will produce enormous amounts of genetic data on both individuals and populations, and the challenge for scientists is to unlock the potential of this ‘big data’. Read more
The advent of affordable rapid genome sequencing will produce enormous amounts of genetic data on both individuals and populations, and the challenge for scientists is to unlock the potential of this ‘big data’. Doing so requires a new generation of scientists who can combine genetics and bioinformatics to understand how genomic changes cause diseases such as cancer, thus enabling the development of novel treatments, through drugs and gene therapy, and prevention strategies. With the huge expansion in number of individual genomes being sequenced, this is one of the fastest growing areas of biomedical science as we embrace the era of personalised medicine.

See the website http://www.brookes.ac.uk/Courses/Postgraduate/Medical-Genetics-and-Genomics/

Why choose this course?

- This is a 12 month full-time course, with part-time places available.

- Aimed at graduates (UK/ EU, International) wishing to develop skills and knowledge in human genetics and genome analysis for employment in the medical biotechnology/pharma and genomics sector, and those wishing to go on to do research degrees.

- This course will prepare you for entry into a career in medical genetics and genomics.

- Our lecturers conduct first-class research, with over 95% of Biological Science research internationally recognised in the 2014 REF.

- You will be taught by Oxford Brookes staff, with specialist lectures provided by staff of other partners in the Oxford Academic Health Sciences Centre, and will have a range of project opportunities using human genome data.

- The Faculty will invest over £8M in Bioscience facilities from 2015, with funding from HEFCE.

- Projects may be linked to specific needs and interests in the work-place, at Brookes or within other genomic laboratories under Brookes supervision. We also have strong links with local industry.

- We develop your transferable skills, particularly communication, organisation and research planning, which will assist you when carrying out your research project and can provide a basis for application for a research degree or career in genomics research.

Teaching and learning

The taught programme will be available with options for full-time and part-time MSc (180 credits), as well as individual CPD modules. Postgraduate Certificate and Diploma qualifications are also possible, requiring 60 and 120 credits, respectively.

Approach to assessment

Assessment methods used within the course are varied and are designed to be stimulating as well as academically rigorous. They are based on your learning needs, individual aims and the academic standards expected for the course.

You will receive unparalleled support from tutors and have access to state-of-the-art learning technologies via our Moodle platform. Our tutors have reputations for excellence and have established links with colleagues, organisations and institutions at national and international levels.

Embedded throughout the curriculum are skills that are essential to achieve quality outcomes for genomic medicine in practice. This will develop skills culminating in the research project, which will enable students to undertake research and evaluate new findings to implement in patient diagnosis, treatment and care, problem-based learning, work-based learning and inter-professional learning to develop skills for working in specialist and interdisciplinary teams. The development of skills in bioinformatics and use of genomic data will be a key outcome so the programme has a large proportion of hands on experience.

How this course helps you develop

You will develop the in-depth knowledge and specialised skills required to apply genetics and genomics theory to practical problems in the biomedical and pharmaceutical industries, and to undertake research in genetics and genome analysis.

Students will acquire knowledge and skills for employment or PhD positions in the expanding fields of genomics, bioinformatics, or other medically-related research, and academia.

During the course of this programme you will develop a network of colleagues and experts from this field.

Careers

- Research Degree/ PhD
- Pharmaceutical Industry
- Biomedical Industry
- NHS Scientist
- Medical Research
- Academia

Free language courses for students - the Open Module

Free language courses are available to full-time undergraduate and postgraduate students on many of our courses, and can be taken as a credit on some courses.

Please note that the free language courses are not available if you are:
- studying at a Brookes partner college
- studying on any of our teacher education courses or postgraduate education courses.

Research highlights

RESEARCH EXCELLENCE FRAMEWORK (REF) 2014
- Top post '92 University Biological Sciences submission

- 95% of research internationally recognised

- Double the percentage 4* and treble the percentage 3* research compared to 2008, with 58% of research being world leading or internationally excellent

- 80% of impact rated 3* or 4*

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X