• University of Glasgow Featured Masters Courses
  • University of Derby Featured Masters Courses
  • Durham University Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
London School of Hygiene & Tropical Medicine Featured Masters Courses
Imperial College London Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
Cardiff University Featured Masters Courses
Coventry University Featured Masters Courses
Germany ×
0 miles
Physics×

Full Time Masters Degrees in Physics, Germany

  • Physics×
  • Germany ×
  • Full Time×
  • clear all
Showing 1 to 7 of 7
Order by 
Material science in a scientific point of view wants to connect the characteristics on the microscopic scale to the effect (expected or undesirable) on a macroscopic scale. Read more

The Program

Material science in a scientific point of view wants to connect the characteristics on the microscopic scale to the effect (expected or undesirable) on a macroscopic scale. The international “Master of Science in Chemistry and Physics of Functional Materials” therefore integrates concepts of Chemistry and Physics as well as neighboring sciences, math and computer science. Due to its interdisciplinary and applied approach, the program enables its graduates to synthesize and characterize functional materials. An international direction of the study program is realized by our international research staff, regular talks of guest lecturers from abroad and internships which can be undertaken all over the world. All mandatory courses are taught in English. The program could be completed entirely in English. Only for internships (not required) or later work in regional industry German language skills are necessary.

In general, our program aims at people with a bachelor’s degree in physics, chemistry or material science.

Job Outlook

Our graduates are duly qualified for jobs in scientific facilities, research institutes, authorities or industry. In addition, the master’s program prepares for further research and a PhD in this field.

Study Contents

• Synthesis and Characterization of functional materials
• Electives allow for setting an individual focus (mathematics, biology, geo science, economics and computer science)
• Lectures will be held in English (choices in elective are therefore restricted)
• Possibility of studying a term abroad

The Master's program comprises three semesters of full-time study with a total amount of 90 ECTS. For students with a bachelor with 180 ECTS additional 30 LP (one semester) is offered, finally 300 LP have to be earned.
The program consists of a compulsory part on solid state physics, the synthesis and characterization of functional materials. This gives a broad knowledge in the field of functional materials (15 LP). Furthermore, three optional modules (18 LP) out of six in specific application fields of chemistry and physics in materials science have to be chosen. Electives (12 LP) and a research project (15 LP) prepare the students for their final master thesis with a final oral exam (30 LP).

Study abroad unit(s)

Not necessary, but optional for internship or Master's thesis

Forms of assessment

Written and oral exams, project work, lab report, presentations, Master's thesis

Additional information

The Modules which make it possible to complete the entire program in English are only a selection of the modules of the Master “Chemie und Physik funktionaler Materialien” which contains also modules in German Language.

Application

International applicants with bachelor's degrees from outside Germany need to apply through uni-assist. For more information about the application process, please check:
http://www.uni-koblenz-landau.de/en/international-en/support-contact/welcome-center/application-procedures

Our Welcome Center supports international applicants with all organisational matters. Information and contact details you can find under:
http://www.uni-koblenz-landau.de/en/welcome

Read less
The MSc program in Integrated climate system Sciences (ICSS) offers courses in all fields of climate system sciences. At present, the program allows the specialization in one of following three tracks. Read more

Why study Integrated Climate System Sciences in Hamburg?

The MSc program in Integrated climate system Sciences (ICSS) offers courses in all fields of climate system sciences. At present, the program allows the specialization in one of following three tracks:

• physics of the climate system;
• biogeochemistry of the climate system;
• climate related economics and social sciences.

All courses are held in English. Class size is limited to 20 students. Our research oriented study program has been accredited by ASIIN in 2010.

Six good reasons to apply at SICSS

• Be part of the Cluster of Excellence CliSAP at KlimaCampus Hamburg and study all aspects of the climate system.
• Benefit from a structured study program.
• Take the advantage of having the choice to give your study program either an "in-depth" or an "interdisciplinary" focus.
• Have access to an exciting environment conducive to science and education, and use the extraordinary resources at the KlimaCampus.
• Make use of our support program and prepare yourself for your chosen career field.
• Feel at home in an international atmosphere and enjoy living in Hamburg.

Curriculum for Integrated Climate System Sciences

Your curriculum for the two-year ICSS master`s program is subdivided into four semesters with mandatory courses, elective courses for specialization and the preparation of your master’s thesis. The curriculum starts from a firm basis in climate physics (and in particular climate modeling) but adds the equally important aspects of global and regional biogeochemical cycling and puts all this into a broader context, including economic as well as societal implications. SICSS courses comprise a wide range of atmospheric, hydrospheric, cryospheric, pedospheric and biospheric sciences, as well as introductions and specializations into economics, social geography, media sciences and conflict research to shed light on climate system science from different perspectives.

You will start your studies with mandatory courses in research skills, as well as natural and social science foundation courses in climate system sciences.
The main goal of the second semester is to broaden your knowledge across the climate science disciplines. You will choose courses from at least two of the three possible program tracks.
The third semester features the Climate Study Project, which includes an integrated seminar and a scientific writing course to prepare you for the master thesis. You will find your personal supervisor and work closely together with a CliSAP research group.
The fourth and final semester is reserved for the master’s thesis.

Please find more information on the curriculum on our website: http://www.clisap.de/grad-school/msc-program/your-curriculum/.

Your future career

Become a climate expert! Depending on your personal interests, you will be well prepared and equipped for an international career in both applied and fundamental research, as well as for positions in government or business.

After graduation our students successfully work as:
• researchers in the fields of natural, social and economic sciences, while maintaining a strong focus on the climate system and its past, present and future changes.
• consultants in the public service and private business sectors, and in non-governmental organizations.
• experts in national and international organizations working in the field of development cooperation.

Start your studies

The SICSS Office is your main contact for information and will support you with a comprehensive and practical “welcome service” by assisting with enrollment, visa application, health insurance, registration with local authorities, opening of a bank account and support in finding accommodations.

As an incoming master’s student you will receive support from a personal buddy. This personal buddy is one of the MSc ICSS students and will accompany you from the start of your travel and study planning to your arrival and during your first days in Hamburg. SICSS also offers an Orientation Week for all new first semester students, including information on your study program and excursions to climate-related institutions and sites.

Tuition fees and other costs

There are no tuition fees at the Universität Hamburg and foreign students who are enrolled do not pay tuition. However, there are other fees. The semester fee at the Universität Hamburg is currently 305 Euros. Upon receipt of the semester fee the university will issue your semester documents, including a pass for the public transport system in Hamburg. Upon your request, the SICSS Office will provide information about living expenses in Hamburg and Germany.

Read less
In recent years, biological research has become increasingly interdisciplinary, focusing heavily on mathematical modeling and on the analysis of system-wide quantitative information. Read more

Computational Life Science

In recent years, biological research has become increasingly interdisciplinary, focusing heavily on mathematical modeling and on the analysis of system-wide quantitative information. Sophisticated high-throughput techniques pose new challenges for data integration and data interpretation. The Computational Life Science (CompLife) MSc program at Jacobs University meets these challenges by covering computational, theoretical and mathematical approaches in biology and the life sciences. It is geared towards students of bioinformatics, computer science, physics, mathematics and related areas.

Program Features

The CompLife program is located at Jacobs University, a private and international English-language academic institution in Bremen, Germany. CompLife students at Jacobs University take a tailor-made curriculum comprising lectures, seminars and laboratory trainings. Courses cover foundational as well as advanced topics and methods. Core components of the program and areas of specialization include:

- Computational Systems Biology
- Computational Physics and Biophysics
- Bioinformatics
- RNA Biology
- Imaging and Modeling in Medicine
- Ecological Modeling
- Theoretical Biology
- Applied Mathematics
- Numerical Methods

For more details on the CompLife curriculum, please visit the program website at http://www.jacobs-university.de/complife.

Career Options

Graduates of the CompLife program are prepared for a career in biotechnology and biomedicine. Likewise, graduates of the program are qualified to move on to a PhD.

Application and Admission

The CompLife program starts in the first week of September every year. Please visit http://www.jacobs-university.de/graduate-admission or use the contact form to request details on how to apply. We are looking forward to receiving your inquiry.

Scholarships and Funding Options

All applicants are automatically considered for merit-based scholarships of up to € 12,000 per year. Depending on availability, additional scholarships sponsored by external partners are offered to highly gifted students. Moreover, each admitted candidate may request an individual financial package offer with attractive funding options. Please visit http://www.jacobs-university.de/study/graduate/fees-finances to learn more.

Campus Life and Accommodation

Jacobs University’s green and tree-shaded campus provides much more than buildings for teaching and research. It is home to an intercultural community which is unprecedented in Europe. A Student Activities Center, various sports facilities, a music studio, a student-run café/bar, concert venues and our Interfaith House ensure that you will always have something interesting to do.

For graduate students who would like to live on campus, Jacobs University offers accommodation in four residential colleges. Each college has its own dining room, recreational lounge, study areas, and common and group meeting rooms. Please visit http://www.jacobs-university.de/study/graduate/campus-life for more information.

Read less
An increasing number of chemicals is used by society today, which are also released into the environment. Ecotoxicology is concerned with their potential impacts on the ecosystem. Read more

About the Program

An increasing number of chemicals is used by society today, which are also released into the environment. Ecotoxicology is concerned with their potential impacts on the ecosystem. It aims to investigate and discover effects of chemicals on biological systems in order to develop methods for risk management, as well as to predict ecological consequences.

The international "Master of Science program in Ecotoxicology" integrates concepts of Environmental Chemistry, Toxicology and Ecology and includes Social Sciences and Economics as well. Due to its interdisciplinary and applied approach, the Program enables its graduates to analyze complex problems and to develop practical solutions.

As environmental problems reach far beyond national borders, an international approach is necessary and the situation in developing countries needs special solutions.

The Master in Ecotoxicology is carried out under the Institute for Environmental Sciences.

For the latest news about our Institute of Ecotoxicology you can also check our Ecotox-Blog under:
http://www.master-ecotoxicology.de/ecotox-blog

Program Structure

All students take the 9 required modules, as well as a 10-week Research Project Course and an Applied Module at External Organisations of 8 weeks to obtain a deep knowledge in the field of Ecotoxicology. Afterwards, studentes personalize the Program by choosing 2 Modules of the 5 Specialty Areas. The Master Thesis with colloquium round out the 4-semester Program.

Specialty Areas:

Applied Environmental Chemistry & Environmental Physics,
Chemistry,
Applied Ecology,
Geoecology and
Socioeconomics & Environmental Management

Applied Module at External Organizations (AMEO)

The module AMEO is an 8-week internship, which can be performed at an external university or a governmental or industrial research institute in Germany or abroad. Students become familiar with working practice, requirements of the job market and career opportunities and can establish business contacts. They apply, confirm and expand knowledge and competences achieved during their study.

Following an introductory discussion with the supervisors, the students perform the (research) work on their own and discuss the obtained results regularly with their supervisors. The content depends on the actual research questions in the selected research organizations. Topics or possible positions will be suggested by the staff of the Institute for Environmental Sciences or maybe suggested by the students. The topics should be directly related to applied problems relevant in these external organisations and should ideally offer the students opportunities to apply their knowledge and skills in areas, which are not the particular research areas at the Institute for Environmental Sciences in Landau. They include, but are not restricted to the following areas:

Engineering aspects (e.g. hydrology, mitigation techniques)
Multimedia modelling
Food web modelling
Fish, bird or mammal ecotoxicology and risk assessment
Agricultural sciences
Socioeconomics
Specific aspects in regulatory ecotoxicology
Risk communication, economic or societal aspects

Research Project Course (RPC)

The students work independently on a research topic of the university for a total time of about 10 weeks. The topics depend on the actual research conducted in the various research groups. However, all topics do have an interdisciplinary character covering at least two different disciplines (e.g. chemistry and ecology, or physics and risk assessment). The students submit proposals for topics selected from a list provided by the teaching staff including a time and resource planning as well as an independently conducted literature search. Following an introductory discussion with the supervisor, the students perform the research work on their own and discuss the obtained results regularly with their supervisor. Following the practical work, the students write a report including the theoretical background, the methods used, the results obtained and a discussion of the results based on the relevant scientific literature. The students present and defend the outcome of their work at an oral presentation. Following successful completion the students are able to plan a scientific work package, conduct the work, evaluate the results based on the relevant literature and present the outcomes.

The content depends on the actual research questions in the research groups associated with the Institute for Environmental Sciences. They include, but are not restricted to the following areas:

Chemical experiments in the lab
Environmental colloid chemistry
Environmental organic chemistry
Physical transport or transfer processes of environmental chemicals
Ecotoxicological lab tests
Ecotoxicological field studies
In situ or monitoring work in the field
Molecular genetics
GIS data analysis
Literature reviews
Exposure, effect or landscape modelling
Assessment or management of risks

More information on the program structure and contents can also be found under:
https://www.uni-koblenz-landau.de/en/campus-landau/faculty7/info-prospective-students/master-of-science-ecotoxicology/aims-and-contents

Employment outlook

The Program enables the graduates to conduct independent scientific work and prepares in particular for independent and leading positions in the numerous emerging fields of Ecotoxicology. The graduates are able to take responsibility in a professional manner in: Scientific facilities and research institutes, Authorities, public offices and ministries with a regulatory role, Non-governmental organizations, Industry and consulting enterprises. The international orientation of the program qualifies graduates for a global job market. In addition, the Master program prepares for a PhD study.

“I value very much the excellent education and the close individual support from the teaching staff during my studies that allowed me to pursue own research ideas and to find my field of interest. A cooperation of the university with the German Federal Environment Agency enabled me to gain experience in the environmental risk assessment of pesticides. I qualified for a traineeship in the European Food Safety Authority (EFSA) and am now working in the field of pesticide risk assessment.” Klaus Swarowsky (Master Ecotoxicology, EFSA)

Internationally Networked

The Institute for Environmental Sciences is globally connected through international research projects and student exchange programs. The international nature of the Program is achieved through numerous international research and teaching staff, regular seminars from guest lecturers from abroad, and possible internships all over the world.
You will find a map which displays the locations our cooperation partners under:

https://www.uni-koblenz-landau.de/en/campus-landau/faculty7/info-prospective-students/master-of-science-ecotoxicology/aims-and-contents#network

Read less
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. Read more
Microsystems Engineering is one of the most dynamic and interdisciplinary engineering fields. The Master of Science program in Microsystems Engineering (MSE) provides the educational basis for your success in this field. The MSE program is designed for highly qualified graduate students holding a Bachelor degree in engineering or science.

In the first year 12 mandatory courses provide the fundamental theoretical framework for a future career in Microsystems. These courses are designed to provide students with a broad knowledge base in the most important aspects of the field:

• MSE technologies and processes
• Microelectronics
• Micro-mechanics
• MSE design laboratory I
• Optical Microsystems
• Sensors
• Probability and statistics
• Assembly and packaging technology
• Dynamics of MEMS
• Micro-actuators
• Biomedical Microsystems
• Micro-fluidics
• MSE design laboratory II
• Signal processing

As part of the mandatory courses, the Microsystems design laboratory is a two-semester course in which small teams of students undertake a comprehensive, hands-on design project in Microsystems engineering. Requiring students to address all aspects of the generation of a microsystem, from conceptualization, through project planning to fabrication and testing, this course provides an essential glimpse into the workings of engineering projects.

In the second year, MSE students can specialise in two of the following seven concentration areas (elective courses), allowing each student to realize individual interests and to obtain an in-depth look at two sub-disciplines of this very broad, interdisciplinary field:

• Circuits and systems
• Design and simulation
• Life sciences: Biomedical engineering
• Life sciences: Lab-on-a-chip
• Materials
• Process engineering
• Sensors and actuators

Below are some examples of subjects offered in the concentration areas. These subjects do not only include theoretical lectures, but also hands-on courses such as labs, projects and seminars.

Circuits and Systems
• Analog CMOS Circuit Design
• Mixed-Signal CMOS Circuit Design
• VLSI – System Design
• RF- und Microwave Devices and Circuits
• Micro-acoustics
• Radio sensor systems
• Optoelectronic devices
• Reliability Engineering
• Lasers
• Micro-optics
• Advanced topics in Macro-, Micro- and Nano-optics


Design and Simulation
• Topology optimization
• Compact Modelling of large Scale Systems
• Lattice Gas Methods
• Particle Simulation Methods
• VLSI – System Design
• Hardware Development using the finite element method
• Computer-Aided Design

Life Sciences: Biomedical Engineering
• Signal processing and analysis of brain signals
• Neurophysiology I: Measurement and Analysis of Neuronal Activity
• Neurophysiology II: Electrophysiology in Living Brain
• DNA Analytics
• Basics of Electrostimulation
• Implant Manufacturing Techologies
• Biomedical Instrumentation I
• Biomedical Instrumentation II

Life Sciences: Lab-on-a-chip
• DNA Analytics
• Biochip Technologies
• Bio fuel cell
• Micro-fluidics 2: Platforms for Lab-on-a-Chip Applications

Materials
• Microstructured polymer components
• Test structures and methods for integrated circuits and microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• Microsystems Analytics
• From Microsystems to the nano world
• Techniques for surface modification
• Nanomaterials
• Nanotechnology
• Semiconductor Technology and Devices

MEMS Processing
• Advanced silicon technologies
• Piezoelectric and dielectric transducers
• Nanotechnology

Sensors and Actuators
• Nonlinear optic materials
• CMOS Microsystems
• Quantum mechanics for Micro- and Macrosystems Engineering
• BioMEMS
• Bionic Sensors
• Micro-actuators
• Energy harvesting
• Electronic signal processing for sensors and actuators


Essential for the successful completion of the Master’s degree is submission of a Master’s thesis, which is based on a project performed during the third and fourth semesters of the program. Each student works as a member of one of the 18 research groups of the department, with full access to laboratory and cleanroom infrastructure.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X