• Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Leeds Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Cranfield University Featured Masters Courses
King’s College London Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Imperial College London Featured Masters Courses
Swansea University Featured Masters Courses
Germany ×
0 miles
Mathematics×

Masters Degrees in Mathematical Modelling, Germany

We have 2 Masters Degrees in Mathematical Modelling, Germany

  • Mathematics×
  • Mathematical Modelling×
  • Germany ×
  • clear all
Showing 1 to 2 of 2
Order by 
About the programme. In addition to being a science in its own right, mathematics plays a fundamental role in the quantitative areas of practically all other academic disciplines, particularly in the natural sciences, engineering, business administration, economics, medicine and psychology. Read more

About the programme

In addition to being a science in its own right, mathematics plays a fundamental role in the quantitative areas of practically all other academic disciplines, particularly in the natural sciences, engineering, business administration, economics, medicine and psychology. Mathematical results permeate nearly all facets of life and are a necessary prerequisite for the vast majority of modern technologies – and as our IT systems become increasingly powerful, we are able to mathematically handle enormous amounts of data and solve ever more complex problems.

Special emphasis is placed on developing students' ability to formalise given problems in a way that facilitates algorithmic processing as well as enabling them to choose or develop, and subsequently apply, suitable algorithms to solve problems in an appropriate manner. The degree programme is theoretical in its orientation, with strongly application-oriented components. Studying this programme, you can gain advanced knowledge in the mathematical areas of Cryptography, Computer Algebra, Algorithmic Algebra and Geometry, Image and Signals Processing, Statistics and Stochastic Simulation, Dynamical Systems and Control Theory as well as expert knowledge in Computer Science fields such as Data Management, Machine Learning and Data Mining.

Furthermore, you will have the chance to learn how to apply your knowledge to tackle problems in areas as diverse as Marketing, Predictive Analytics, Computational Finance, Digital Humanities, IT Security and Robotics.

Programme syllabus

The core modules consist of two mathematics seminars and the presentation of your master's thesis.The compulsory elective modules are divided into eight module groups:

1)   Algebra, Geometry and Cryptography

This module group imparts advanced results in the areas of algebra and geometry, which constitute the fundament for algorithmic calculations, particularly in cryptography but also in many other mathematical areas.

2)   Mathematical Logic and Discrete Mathematics

The theoretical possibilities and limitations of algorithm-based solutions are treated in this module group.

3)   Analysis, Numerics and Approximation Theory

Methods from the fields of mathematical analysis, applied harmonic analysis and approximation theory for modelling and approximating continuous and discrete data and systems as well as efficient numerical implementation and evaluation of these methods are the scope of this module group.

4) Dynamical Systems and Optimisation

Dynamical systems theory deals with the description of change over time. This module group is concerned with methods used for the modelling, analysis, optimisation and design of dynamical systems, as well as the numerical implementation of such techniques.

5) Stochastics, Statistics

This module group deals with methods for modelling and analysing complex random phenomena as well as the construction, analysis and optimisation of stochastic algorithms and techniques used in statistical data analysis.

6) Data Analysis and Data Management and Programming

This module group examines the core methods used in computer science for the analysis of data of heterogeneous modalities (e.g. multimedia data, social networks and sensor data) and for the realisation of data analysis systems.

7) Applications

In this module group, you will practise applying the mathematical methods learned in module groups 1 to 6 to real-world applications such as Marketing, Predictive Analytics and Computational Finance.

8) Key Competencies and Language Training

In this module group, you will choose seminars that develop your non-subject-specific skills, such as public speaking and academic writing and other soft skills; you may also undertake internships. This serves to complement your technical expertise gained during your degree studies and helps to prepare you for your professional life after university.



Read less
Complex systems with a technological, biological or socio-economic background determine our everyday life. Read more

About the Program

Complex systems with a technological, biological or socio-economic background determine our everyday life. The challenge of modeling these complex systems mathematically demands the following prototypic profile of an "expert mastering a repertoire of modern mathematical and computer based methods for modeling, simulating and optimizing complex systems and knowing how to combine those methods for solving real-world problems".
The term expert is understood in the sense of generalist and not a specialist, since this program aims at teaching a broad spectrum of modern methods.

The two-years English-taught master program "Mathematical Modeling of Complex Systems" focuses on advanced techniques of modeling, simulation and optimization. A substantial set of elective courses allows concentration on areas of individual interest. A mobility window enables the students to study abroad and gain scientific and cultural experience at international partner universities. This program uses English as medium of instruction since its graduates will enter a highly globalized work and research community. Besides that, the participation and enrollment of international candidates is explicitly welcomed.

Application oriented, interdisciplinary seminars link the theoretical basics and concepts of modeling and simulation. Students work in small teams to solve real world problems. This teamwork reflects typical work in applied sciences and corresponds to our paradigm of an "expert mastering a repertoire of methods to solve problems".

Find out more about the program and our campus in Koblenz under:
https://www.uni-koblenz-landau.de/de/koblenz/fb3/mathe/studium/mmcs/

Aims/Career Perspectives

The Master degree in Mathematical Modeling of Complex Systems is to give those possessing extended skills in Mathematics, Physics and Computer Science in theory, experiment and practical application. These skills are complemented with further knowledge in additional topics, individually selected by each student. The degree entitles its holder to exercise professional work in the field of Applied Mathematics and/or Mathematical Modeling in science or industry or to pursue a PhD program in related fields.

Program Structure

The first three terms of the two-years master „Mathematical Modeling of Complex Systems“ consist of core courses in Applied Mathematics and Applied Physics. Elective courses in Applied Mathematics, Applied Physics and Computer Sciences allow each student to set its individual focus. Active use of the gained knowledge and its application to the solution of real-world problems is taught and practiced in a project seminar. This project seminar can be carried out in a three-month period at a research institution, enterprise or at university. The master thesis in the last term and dealing with modeling and simulating a real-world problem, shows the student’s ability to perform independent research work.
The core and elective courses typically include a written or oral exam, the project seminar is graded based an oral presentation and written report of the project results.

You can find an exemplary list of courses and can download a overview of the modules under:
https://www.uni-koblenz-landau.de/de/koblenz/fb3/mathe/studium/mmcs#curriculum

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X