• University of Edinburgh Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • University of York Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
King’s College London Featured Masters Courses
University of Kent Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Cardiff University Featured Masters Courses
University of London International Programmes Featured Masters Courses
0 miles
Geology×

Masters Degrees in Geology

Masters degrees in Geology study the physical structure of the Earth, both above and below its surface. This can involve exploring ancient rock formations, investigating valuable resources or understanding the causes of earthquakes or volcanic eruptions.

Geology is a far more diverse discipline than it might appear. You could investigate the remains of fossilised dinosaurs with a Palaeontology degree, or examine the natural disasters that (probably) caused their extinction with a course in Seismology or Vulcanology. Sadly, a Geology Masters won’t help you build your own Jurassic Park.

Programmes can be taught or research based, with MSc, MRes and MPhil courses available.

Why study a Masters degree in Geology?

Read more...

  • Geology×
  • clear all
Showing 1 to 15 of 214
Order by 
Sustaining a growing population on our dynamic planet requires deep understanding of geological and geophysical processes within the Earth, and of how they interact with the atmosphere, hydrosphere, and biota. Read more
Sustaining a growing population on our dynamic planet requires deep understanding of geological and geophysical processes within the Earth, and of how they interact with the atmosphere, hydrosphere, and biota. The Master's Programme in Geology and Geophysics trains you to address pressing questions concerning our home planet's evolution, its role as the source of raw materials needed by modern civilisation, and environmental issues. Key questions include:
-How can we decode Earth’s rock record to reveal the evolution of Earth’s crust and mantle over billions of years?
-How do we make natural resource exploration and extraction more sustainable and environmentally friendly?
-What can the Earth’s history tell us to help us forecast the impacts of climate change?
-Where can we safely construct power plants or store nuclear waste?

The programme includes four specialist options: Petrology and Economic Geology; Hydrogeology and Environmental Geology; Palaeontology and Global Change; and Solid Earth Geophysics.

Upon completion of the programme, you will have gained expertise in a number of scientific and professional skills, including, depending on your specialist option:
-Assessment of geological materials (minerals, rock types, bedrock, groundwater).
-Understanding the genesis and sustainable use of mineral commodities.
-Sustainable use of the environment from the Earth Science perspective.
-Palaeontology and modelling global change using the geological record.
-The physical evolution of the Earth (plate tectonics, interplay of the mantle and crust).
-Independent and team-driven project research.
-High-level scientific writing (M.Sc. thesis and related work).
-Presentation of scientific results to scientists, students, and the general public.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees: https://studyinfo.fi/wp2/en/higher-education/higher-education-institutions-will-introduce-tuition-fees-in-autumn-2017/am-i-required-to-pay-tuition-fees/

Programme Contents

At the beginning of the advanced studies, you will familiarise yourself with the central research methods in the field. The studies consist of intensive learning in small groups on practical work courses, guided laboratory work on specialised courses, and tailored short-term courses led by international and Finnish experts. In addition, you will be able to take part are a variety of field courses and excursions (in Finland and beyond) to familiarise yourself with research topics in their natural surroundings.

Selection of the Major

As a student in the Master’s Programme in Geology and Geophysics, you are free to choose among the four specialist options offered:
In Petrology and Economic Geology you will study solid rock, mineral material and associated fluid systems, with targets ranging from the microscopic (and submicroscopic) scale to continents. The focus is on study of magmatic systems (volcanic and plutonic); the composition, lithology and structure of bedrock; evolution of continental crust and mantle; and the origin and assessment of economically important commodities in rock systems.

Hydrogeology and Environmental Geology combines understanding of earth surface systems such as 3D sedimentary environments, groundwater and low temperature geochemistry. The specialist option is based on practical training using top-notch analytical facilities and survey methods in cooperation with industry and authorities. In addition to basic research, the line aims to build your expertise for future careers.

Palaeontology and Global Change deals with the changing conditions and evolution of life on Earth. Research topics include fossil mammals and their environments during the last 25 million years, the environmental and evolutionary context of early humans in Africa, and the history of climate change and ecosystems during the last 100,000 years. The effect of humankind on the biosphere is a multidisciplinary topic.

Solid Earth Geophysics combines geology with geophysics to study the structure of the Earth’s interior and the physical processes related to its evolution. These ideas are not only crucial for understanding phenomena such as earthquake and volcanic activity related to Plate Tectonics, but also important for exploration of natural resources, environmental studies and engineering, for example.

Programme Structure

A Master’s degree in Geology and Geophysics requires 120 credits (ECTS) and is designed to be completed in two years of full-time study. The study requirements are:
-Advanced studies in your specialist option (60-70 credits).
-Joint studies in topics related to your specialist option (25-30 credits).
-Master’s thesis (30 credits).

Career Prospects

Expert geoscientists are in demand and employed in a range of fields nationally and internationally. Recent graduates have gone on to pursue:
-Employment in the mining and mineral resource exploration industry.
-Work as environmental and groundwater scientists in private companies and in the public sector.
-Doctoral studies in geoscience or geophysics both in Finland and abroad.
-Research work on the geology of Finland at the Geological Survey of Finland (GTK).
-Work as experts in the field of engineering geology and applied mineralogy.

Research Focus

There are many ongoing interdisciplinary research projects in the Faculty of Science. These projects are conducted in active cooperation with research institutes on the Kumpula Science Campus, as well as with other faculties, universities, and private industry.

The field of Geosciences is broad, and our research focus covers multiple branches of it. Some of the main interests at the moment include environmental topics related to groundwater and contaminated soils, the genesis of plutonic and volcanic igneous rocks, evolutionary palaeontology of mammals based on fossil teeth, and the structure and evolution of the continental crust. We are focusing on scientific research that makes it possible to understand geological processes and the structure of the Earth using our modern and diverse laboratory infrastructure.

Read less
From the field to the lab, the knowledge you will gain in this course will help drive advancements in areas such as petroleum exploration, or mineral exploration. Read more
From the field to the lab, the knowledge you will gain in this course will help drive advancements in areas such as petroleum exploration, or mineral exploration.

This course provides advanced technical training for professionals intending to upgrade their geology qualifications or to enter a new branch of geoscience. This is achieved by attendance at lectures, seminars and group discussions, and the preparation and submission of a thesis-based research project.

Each major in this course comprises core units together with optional units in geology and related disciplines. Note that unit availability is often limited to specific semesters, which may affect the order in which you can take each unit. You will specialise in basin analysis and petroleum geology or mineral exploration and mining geology. You will complete a supervised project related to your stream, usually in collaboration with industry or government partners.

Basin Analysis and Petroleum Geology

Sedimentary basins contain a unique record of the tectonic, structural and sedimentological processes that created them. By understanding these processes, often using subsurface data sets, we can gain insights into the valuable energy resources that they contain. This stream will provide you with the technical and practical skills that you need to evaluate petroleum systems and to pursue a career in hydrocarbon exploration or production.

Mineral Exploration and Mining Geology

The mining industry is critical to our future. Without fossil fuels for power generation, silicon chips for computer chips, fertiliser for bumper harvests, metal for cars and buildings, and many raw materials for other growing industries, our current standard of living could not be maintained. This stream offers detailed knowledge of mining operations and mineral systems. You will learn about the principal types of ore deposits, the fundamentals of mineral exploration, collecting and displaying geophysical data, geochemical processes and magnetics theory, among other topics. This stream provides specialised technical and professional training for graduates in geology or closely related disciplines.

Career opportunities

This course can open up a wide range of geoscience career opportunities depending on your choice of units.

Credit for previous study

Applications for recognition of prior learning (RPL) are assessed on an individual basis.

Other notes

There is considerable flexibility in the course structure with some units available in a concentrated, short-course format. Part of the research project may be undertaken in a short, intensive period.

2016 Curtin International Scholarships: Merit Scholarship

Curtin University is an inspiring, vibrant, international organisation, committed to making tomorrow better. It is a beacon for innovation, driving advances in technology through high-impact research and offering more than 100 practical, industry-aligned courses connecting to workplaces of tomorrow.

Ranked in the top two per cent of universities worldwide in the Academic Ranking of World Universities 2015, the University is also ranked 25th in the world for universities under the age of 50 in the QS World University Rankings 2015 Curtin also received an overall five-star excellence rating in the QS stars rating.

Curtin University strives to give high achieving international students the opportunity to gain an internationally recognised education through offering the Merit Scholarship. The Merit Scholarship will give you up to 25 per cent of your first year tuition fees and if you enrol in an ELB program at Curtin English before studying at Curtin, you will also receive a 10 per cent discount on your Curtin English fees.

For full details and terms and conditions of this scholarship, please visit: curtin.edu/int-scholarships and click on Merit.

Read less
The MSc in Applied Environmental Geology CKR53 is a full- time multidisciplinary degree running for 12 months from the date of first registration for the programme. Read more
The MSc in Applied Environmental Geology CKR53 is a full- time multidisciplinary degree running for 12 months from the date of first registration for the programme. A 24 month part time option CKR54 is also available. The aim of the MSc programme is to train and educate graduates in multiple areas of Environmental Geology and to provide an understanding of the disciplines, which impinge upon these areas in order to meet the growing demand for such personnel at home and abroad. This M.Sc. in Environmental
Geology covers the areas of hydrogeology, contaminated land, engineering geology, applied geophysics, geoinformatics, environmental monitoring and assessment, environmental regulation, offshore environmental geology, field geology techniques and an industry-based
environmental geology research project. The courses have been designed with the current needs of industry taken on board. Emphasis on real world, industry-based examples is prevalent throughout.

The School of Biological, Earth and Environmental Sciences are responsible for the MSc programme. Various other UCC and industry partners also contribute to the programme.

Read less
The MSc in Applied Environmental Geology CKR53 is a full-time multidisciplinary degree running for 12 months from the date of first registration for the programme. Read more
The MSc in Applied Environmental Geology CKR53 is a full-time multidisciplinary degree running for 12 months from the date of first registration for the programme. A 24 month part time option CKR54 is also available. The aim of the MSc programme is to train and educate graduates in multiple areas of Environmental Geology and to provide an understanding of the disciplines, which impinge upon these areas in order to meet the growing demand for such personnel at home and abroad. This M.Sc. in Environmental Geology covers the areas of hydrogeology, contaminated land, engineering geology, applied geophysics, geoinformatics, environmental monitoring and assessment, environmental regulation, offshore environmental geology, field geology techniques and an industry-based environmental geology research project. The courses have been designed with the current needs of industry taken on board. Emphasis on real world, industry-based examples is prevalent throughout.

The School of Biological, Earth and Environmental Sciences are responsible for the MSc programme. Various other UCC and industry partners also contribute to the programme.

Read less
Northern England has an extraordinary diversity of landscapes and geological features, and as the largest county, Yorkshire preserves a large proportion of them. Read more
Northern England has an extraordinary diversity of landscapes and geological features, and as the largest county, Yorkshire preserves a large proportion of them. From the rugged North York Moors and the limestone pavements of the Yorkshire Dales to the coalfields of South Yorkshire and the shifting coastlines of Holderness, it is in many respects a microcosm of the region.

In The Geology of Yorkshire and Northern England, students will obtain a regional geological understanding with which to interpret larger-scale Earth processes and structures. The programme will provide students with training in advanced palaeoenvironmental analysis and science communication skills. Students will also assess Yorkshire and Northern England's importance to current controversies in Earth sciences, from fracking to climate change, and acquire an understanding of the region's vital role in the history of geology.

This is a part-time Postgraduate Diploma delivered wholly online in a fully supported learning environment. The programme starts in late September/early October each academic year, and places are limited to ensure a constructive atmosphere for discussions. Students can exit with a Postgraduate Certificate after successful completion of the first year if their circumstances change.

Overview

The programme will aim to:
-Introduce the key tenets and sub-disciplines of geology, focussing particularly on the geological evolution of northern England
-Provide students with a holistic understanding of the geological origins and history of Yorkshire and northern England
-Introduce students to field and laboratory geological analysis, and the skills and techniques required to interpret geological features accurately
-Describe the main geological units present in Yorkshire, their composition, distribution and formation
-Explore the geological history of Yorkshire and its global significance in the development of Earth Sciences
-Examine and interpret the Palaeozoic and Mesozoic geology of Yorkshire
-Explain the scientific importance of Yorkshire's rocks, and the role they have played in our understanding of the evolution of the Earth.
-Further develop students' palaeoecological and palaeoenvironmental interpretation skills
-Examine the Cenozoic and recent geological history of Yorkshire
-Provide students with an understanding of human interactions with, and exploitation of, the geological resources and landscapes of Yorkshire and northern England
-Further develop students’ knowledge of Yorkshire's role in the evolution of global geological hypotheses

Structure

This part-time two-year programme will comprise six 20-credit modules:
Year One
-Origins – the Development of Geology in Northern England
-Dales and Vales – the Palaeozoic of Yorkshire and Northern England
-Moors and Coast – the Mesozoic of Yorkshire and Northern England

Year Two
-Advanced Palaeoenvironmental Analysis
-Fire and Ice – the Cenozoic of Yorkshire and Northern England
-People and Landscape - The Human Geology of Yorkshire and Northern England

Students will be required to complete all these modules in the first instance, though additional modules may be added in the future to accommodate future programme growth and offer a broader learning experience.

It is anticipated that assessments will comprise a balance of short and long critical essays, laboratory-based projects and project work.

Online Study

Our approach to e-learning is distinctive and may be different from your general perceptions about online study:
-Flexible, fully supported, modular delivery
-Taught exclusively online
-Two stages: Certificate and Diploma. Each stage typically takes 12 months
-Comprises six distinct modules
-Part-time study (approximately 15 hours per week) allows participants to structure their learning around the other life circumstances

Read less
Expand your knowledge and research skills in our highly-focused masters program in geology – a key area of interest for industry and government. Read more
Expand your knowledge and research skills in our highly-focused masters program in geology – a key area of interest for industry and government.

In Acadia's Master of Science in Geology you will both increase your employability in industry and government, and prepare for further studies in the field. As part of a small, research-focused department, you will primarily be working closely with your supervisor on your research, field work, and thesis. You will also take additional courses to supplement your research and broaden your advanced knowledge in the discipline.

You may apply either directly to a two-year program, or, if applying from a diploma in either Geographic Information Systems or Remote Sensing from the Nova Scotia Community College (NSCC) Centre of Geographic Sciences, you may enter a 16-month accelerated version of the program.

Be Inspired

The faculty members in Acadia’s geology program are highly active researchers in the local region and with industry. You will benefit from small class sizes, engaging researchers, and friendly faculty and staff. Acadia’s geology faculty work in partnership with NSCC’s Centre of Geographic Sciences to bring the best skills of both units together in providing programming to you.

You also have access to a wide variety of research tools and facilities within the department, and through connected research centres such as the Acadia Centre for Microstructural Analysis, K.C. Irving Environmental Science Centre, and the Centre of Geographic Sciences.

Research Interests

-Applied geochemistry
-Economic geology
-Environmental earth science
-Igneous petrology
-Metamorphic petrology
-Precambrian environmental evolution
-Quaternary geology
-Regional tectonics
-Sedimentology

Read less
This programme is the only applied structural geology Masters in the UK. It provides advanced training in the practical application of structural geology, preparing you either for employment in the hydrocarbon or mining industries or for postgraduate study (PhD). Read more

Overview

This programme is the only applied structural geology Masters in the UK. It provides advanced training in the practical application of structural geology, preparing you either for employment in the hydrocarbon or mining industries or for postgraduate study (PhD).

You’ll gain a skillset combining advanced structural techniques and interpreting seismic data, an understanding of structural systems in time and space, and an appreciation of both the geological and geophysical constraints of seismic interpretation and model building. This will allow you to use a combination of structural and geophysical techniques to solve geological problems. As a capable seismic interpreter you’ll be able to contribute in an industry role from day one.

Our teaching is research led, with direct links to active applied research. You’ll be taught by a range of research and industry experts, as well as through industry-led workshops. Strong industry links are a feature of this programme.

Course highlights:

• The only applied structural geology masters in the UK, offering you a route to both industry or a PhD.
• Unlike other petroleum/ ore geoscience courses in the UK, which only provide you with broad training in all aspects of petroleum and ore geology. At Leeds, apply your skills, tools, and knowledge in structural geology and tectonics to exploration settings, datasets, and problems.
• A key focus of this masters is on understanding structural evolution in various settings and the use of 3D and 4D thinking in geological contexts. Skills that are essential for your employment in industry.
• Gain an international standard of Masters qualification in 12 months rather than 24. We deliver focused, advanced teaching linked to a research project (in contrast to the more research-oriented US Masters).
• Undertake FREE fieldwork in the UK and EU that is directly linked to your classroom learning.
• Depending on your interests, choose from hydrocarbon andmining module options.
• Access industry-standard computing facilities and software.
• In your final year produce an industry or research focused dissertation.

Read less
This full time 12 month intensive programme is designed to provide advanced specialised training for earth science graduates, leading to excellent employment opportunities in the extractive industry. Read more
This full time 12 month intensive programme is designed to provide advanced specialised training for earth science graduates, leading to excellent employment opportunities in the extractive industry. It is suitable for those who already have an honours degree in geology, mining/minerals engineering or a related subject.

You will attain a comprehensive understanding of the role of a geoscientist working in the mining industry. New skills include underground geological and geotechnical mapping, surveying, mineral exploration, ore microscopy, ore deposit modelling and mine planning. In-depth coverage of mineral resource estimation and grade control, mineral extraction and management, mining law and the environmental impact of mining, enable skills in quantifying the economic value of an ore body and assessing its potential for exploitation to be attained. There is emphasis on acquiring knowledge of the geological characteristics and genesis, methods of exploration, extraction and processing techniques of the major types of metalliferous ore deposit, bulk commodities and industrial minerals.

Taught modules are presented over two semesters and individual projects are undertaken throughout the summer vacation, often as industrial placements with a mining/exploration company. Recent projects have been carried out in all major mining countries on six continents, including Australia, Tanzania, Mongolia, Chile as well as in the UK.

Programme Structure

You will study 180 credits to obtain an MSc and 120 credits for a PgDip

Compulsory modules

The compulsory modules can include; Research Project and Dissertation; Resource Estimation; Ore Deposit Geology and Industrial Minerals; Techniques in Mining Geology ; Excavation and Geomechanics ; Economics, Processing & Environment

Optional modules

Some examples of the optional modules are; Advanced Techniques for Mineral Analysis and Mine Wastes: Principles, Monitoring and Remediation.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Learning and teaching

Formal teaching ends in late April/May with a field excursion to examine the geology and visit mines in an area of the world famous for its mining activity. Extensive use is made of Camborne School of Mines' underground mine facilities, laboratories, mineral processing pilot plant, and the superb field geology and extractive industry operations in South West England.

Read less
Our geotechnical engineering and engineering geology research is revolutionary worldwide. You will work with academics who are leaders in their field so that your research has a real impact on civil engineering. Read more

Course Overview

Our geotechnical engineering and engineering geology research is revolutionary worldwide. You will work with academics who are leaders in their field so that your research has a real impact on civil engineering.

By pursuing research in the School of Civil Engineering and Geosciences you will join an extremely successful research group focussing on geotechnical engineering and geology. Our mission is to foster, promote and conduct research of international quality. This means that we attract high quality graduates and researchers and train them to international standards.

Within the School of Civil Engineering and Geosciences we have a research group focussed on geotechnics and structures, which deals with the fundamental concepts of material behaviour, construction and design technology. Our research has a central theme of Earth systems science engineering and management, focussing on the concepts of: sustainability in construction; climate change and the effects on civil engineering;

We provide supervision within the broad disciplines of geotechnical engineering and engineering geology. Our current research areas are: seismic engineering and extreme loadings; slope stability; multi-phase flow and coupled multi-field analysis; soil modelling; waste minimisation and reuse; ground improvement; site characterisation

We also encourage multidisciplinary research, such as: ground improvement and remediation; in situ testing; geotechnical design; geotechnical processes in construction and the natural environment.

Training and Skills

As a research student you will receive a tailored package of academic and support elements to ensure you maximise your research and future career. The academic information is in the programme profile and you will be supported by our Postgraduate Researcher Development Programme, doctoral training centres and Research Student Support Team.

For further information see http://www.ncl.ac.uk/postgraduate/courses/degrees/civ-eng-geotechnical-engineering-geology-mphil-phd/#training&skills

How to apply

For course application information see http://www.ncl.ac.uk/postgraduate/courses/degrees/civ-eng-geotechnical-engineering-geology-mphil-phd/#howtoapply

Read less
The Engineering Geology MSc responds to a national and international demand for specialist engineering geologists with advanced training in geotechnical engineering. Read more

Course Overview

The Engineering Geology MSc responds to a national and international demand for specialist engineering geologists with advanced training in geotechnical engineering. It provides you with advanced conceptual understanding, detailed factual knowledge, specialist technical skills and an awareness of responsibilities to society and the environment.

Your degree will cover areas such as: engineering geology principles and applications; site investigation, testing, interpretation and reporting processes; analysing diverse geological evidence to assess hazards and risks arising from natural and man-made phenomena; geotechnical design.

By studying at Newcastle you undertake research with students from civil engineering, geological and other scientific backgrounds. Cross-pollination of academic training and experience is actively encouraged.

Modules

For detailed module information see http://www.ncl.ac.uk/postgraduate/courses/degrees/engineering-geology-msc/#modules

How to apply

For course application information see http://www.ncl.ac.uk/postgraduate/courses/degrees/engineering-geology-msc/#howtoapply

Read less
Environmental geology is a growing area of active research, because it provides insights into how the environment has evolved over geological time. Read more
Environmental geology is a growing area of active research, because it provides insights into how the environment has evolved over geological time. Through our modular course structure and use of web-based material for distance learning, we aim to provide up-to-date reviews of research topics across relevant aspects of the earth sciences.

Our teaching is informed by considerable research into environmental issues, which is ongoing in the Department of Earth and Planetary Sciences. Current research focuses on areas such as metal pollution, coastal erosion, mineralogy, earthquake prediction, palaeoclimatology and palaeontology.

Why study this course at Birkbeck?

Can be used as a qualifying year for MRes or PhD study.
Offered as part-time study at Birkbeck or you can study by distance learning, wherever you are in the world (check our distance-learning frequently asked questions for more information).
The Department of Earth and Planetary Sciences has strong links with University College London (UCL) Department of Earth Sciences. Together, the 2 departments form the UCL-Birkbeck Research School of Earth Sciences. The School offers excellent facilities for research in environmental geology and planetary geology, as well as traditional geological and geophysical research.

Read less
Geology is an area of active research across a wide range of sub-disciplines. Through our modular course structure and use of web-based material for distance learning, we aim to provide up-to-date reviews of research topics across most aspects of the earth and planetary sciences. Read more
Geology is an area of active research across a wide range of sub-disciplines. Through our modular course structure and use of web-based material for distance learning, we aim to provide up-to-date reviews of research topics across most aspects of the earth and planetary sciences.

Why study this course at Birkbeck?

Can be used as a qualifying year for MRes or PhD study.
Offered as part-time study at Birkbeck or you can study by distance learning, wherever you are in the world (find out more about studying our distance learning courses).
An opportunity to take part in field classes to put your skills into practice (find out more about past fieldwork outings here).
The Department of Earth and Planetary Sciences is housed with the University College London (UCL) Department of Earth Sciences. Together, the 2 departments form the UCL-Birkbeck Centre for Planetary Sciences. The Research School offers excellent facilities for research in environmental geology and planetary geology, as well as traditional geological and geophysical research.

Read less
This course provides concentrated one-year training in engineering geology and related geotechnical subjects to prepare you for professional practice in engineering geology and geotechnical engineering. Read more

Overview

This course provides concentrated one-year training in engineering geology and related geotechnical subjects to prepare you for professional practice in engineering geology and geotechnical engineering.

It gives you a grounding in the application of geological principles to a wide range of fields within civil and mining engineering.

Studying engineering geology will provide you with excellent job opportunities as a result of high calibre academic training, as well as the development of strong skills in terms of both critical and independent thought and team work. Most of our graduates join environmental consulting companies and consulting engineers, while others go on to PhD studies.

Engineering Geologists

Engineering Geologists are found worldwide working on a wide range of problems, from foundation and mine design to the assessment of seismic and landslide risk.

Their understanding of how groundwater and pollutants travel through the ground may impact on the safe design and construction of excavations and waste disposal sites. They use geological and geomorphological mapping to identify geological hazards and allow for safe development. Their understanding of the ground and how it responds to static and dynamic loads can influence safe and sustainable siting and design of engineering structures.

It is vital that we design and build in a manner which is safe, environmentally friendly, cost effective and sensitive to climate change. Engineering geologists, with a unique understanding of the ground, and a broad appreciation of rates of geological processes over engineering time, are intimately involved in this process.

Course highlights:

• Your teaching will be delivered by the School of Earth and Environment with substantial input from the School of Civil Engineering.
• Attend a series of School seminars and wider university events. The University frequently hosts the Yorkshire Geotechnical Group (Institution of Civil Engineers) and is involved with the Yorkshire Regional Group of the Geological Society
• Benefit from our strong connections with industry:
- We have been training Engineering Geologists over 40 years and maintain links with alumni who can be found in many companies across the globe.
- Industry colleagues contribute to teaching and an Industry Advisory Board informs the content of this course.

Read less
Memorial University of Newfoundland has one of the largest and most diverse Earth Science departments in Canada. With 30 faculty members, 15 staff members, and leading-edge teaching and research facilities, the department is able to offer high quality graduate degree programs. Read more
Memorial University of Newfoundland has one of the largest and most diverse Earth Science departments in Canada. With 30 faculty members, 15 staff members, and leading-edge teaching and research facilities, the department is able to offer high quality graduate degree programs. Graduates of Memorial’s Department of Earth Sciences have gone on to careers in academia, government, and the private sector.

The Province of Newfoundland and Labrador is an excellent natural laboratory in which to study Earth Sciences and many of our courses have field-based components. The cross-section of geology that can be studied in Newfoundland and Labrador is unparalleled and spans a large part of Earth’s history. Our department’s long-standing, excellent reputation is, in part, due to its close proximity to this world-class geology.

Memorial’s Department of Earth Sciences maintains close ties to the mining and petroleum industries of Canada, the USA, and elsewhere. Each year, leading petroleum and mineral exploration companies recruit at Memorial University because of the excellent education and training our students receive, and have taken with them throughout the world.

The MSc program is offered in both Geology and Geophysics, and involves courses and a thesis. The MSc can be completed in two years of full-time study.

Read less
Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms. Read more

Why take this course?

Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms.

This course provides you with the advanced skills to carry out detailed investigations into surface and subsurface geology, identification of adverse ground conditions and the design of suitable remedial measures of engineering structures.

What will I experience?

On this course you can:

Be taught by internationally recognised experts with extensive expertise in engineering geology and geotechnics
Gain experience of environmental assessment techniques, plus a range of other skills such as mapping using GIS, GPS and remote sensing technologies
Go on numerous fieldtrips, both locally and overseas, to undergo specialist field training

What opportunities might it lead to?

This course is accredited by the Geological Society of London. It offers advanced professional and scientific training providing an accelerated route for you to attain Chartered Status, such as Chartered Geologist (CGeol) and Chartered Scientist (CSci) on graduation.

Here are some routes our graduates have pursued:

Aid organisations
Environmental organisations
Offshore work
Civil sector roles
Mining
Insurance companies

Module Details

You can opt to take this course in full-time or part-time mode.

The course is divided into two parts. The first part comprises of the lecture, workshop, practical and field work elements of the course, followed by a five-month independent research project. The course is a mixture of taught units and research project covering topics including site investigation, soil mechanics and rock mechanics, geotechnical engineering design, contaminated land, slope stability and rock engineering.

Here are the units you will study:

Rock and Soil Mechanics: These topics are integral to the role of an engineering geologist. You will gain an advanced understanding of the geo-mechanical behaviour of rocks and soils and how they behave under different geotechnical design scenarios. You will also develop key skills in the assessment, description and testing of geological materials in order to understand and quantify their behaviour, using current British and Eurocode standards.

Soil and Rock Engineering: This unit will give you an advanced understanding of engineering and design in soils and rock masses, including fundamental design principles associated with common geotechnical solutions encountered on engineering geological and civil engineering projects.

Contaminated Land and Groundwater: These are important considerations in all types of construction and so an understanding of both is essential. You will learn key techniques for the identification and assessment of contaminated land and groundwater resources in an engineering geological context.

Ground Models: You will train in the development of geological ground models and geomorphological terrain models within the content of engineering geological practice, essential parts of any investigation.

Ground Investigation Techniques: You will gain advanced experience of ground investigation using invasive techniques, in-situ tests and geophysical methods – essential to an engineering geologist's skill base.

Landslides and Slope Instability: On this unit you will develop an advanced understanding of landslide systems, types of slides in soils and rocks and methods for identification and numerical analysis.

Field Reconnaissance and Geomorphological Mapping: The techniques covered on this unit are integral to the course and an essential skill for any graduate wishing to work in this area. You will have fieldwork training in techniques such as geomorphological mapping and walk-over surveys combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: On this unit you will cover the key tools for terrain evaluation and be trained in the acquisition and interpretation of aerial photography and satellite imagery, and the integration and analysis of spatial datasets using GIS.

Independent Research Project: This give you the opportunity to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Literature reviews
Lab reports
Essays

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X