• Anglia Ruskin University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • University of Southampton Featured Masters Courses
King’s College London Featured Masters Courses
Leeds Beckett University Featured Masters Courses
Imperial College London Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Aberdeen University Featured Masters Courses
0 miles
Geography×

University of Portsmouth, Full Time Masters Degrees in Geography

We have 5 University of Portsmouth, Full Time Masters Degrees in Geography

  • Geography×
  • University of Portsmouth×
  • Full Time×
  • clear all
Showing 1 to 5 of 5
Order by 
Geographical Information Systems (GIS) has grown rapidly to become a major component of information technology, creating distinctive methods of data analysis, algorithms and software tools. Read more

Why take this course?

Geographical Information Systems (GIS) has grown rapidly to become a major component of information technology, creating distinctive methods of data analysis, algorithms and software tools.

This course emphasises the acquisition of practical GIS skills. We use a wide range of industry-standard software tools and a structured approach to the analysis of spatial data through project work.

What will I experience?

On this course you can:

Get hands-on experience of using instruments such as GPS, Total Stations and 3D laser scanners
Be taught by experts, who have extensive industrial and consultancy experience and strong research portfolios
Practise your GIS data collection skills in a range of environments

What opportunities might it lead to?

The wide range of career opportunities across public and private sectors and in university-based research, coupled with the rapid rate of technological change, mean that major organisations and industrial firms are finding it essential to update their skills through advanced study. We therefore aim to meet this demand by tailoring our course to the needs of both regional and national markets.

Here are some routes our graduates have pursued:

Environmental consultancies
Geographical information science specialists
Working for the Environmental Agency
Working for the Ordnance Survey

Module Details

The academic year is divided into two parts. The first part comprises the lecture, workshop, practical and field work elements of the course, followed by a dissertation which will take approximately five months to complete.

Here are the units you will study:

Principles of Geographic Information Science: Beginning with an overview of the development of GIS, the first part of this unit examines data sources and data capture, as well as hardware and software tools. The second part deals with vector-based data structures and data management, followed by vector GIS operations, such as overlay and buffering. You will undertake a project to create a GIS of your own, which may be presented as a seminar session. Practical exercises are undertaken using MapInfo. You will then go on to develop an understanding of raster-based approaches to GIS, cartographic modelling and related areas of image processing which are often applied in remote sensing. Topics include raster data models and data compression techniques, raster GIS and cartographic modelling, imaging systems and image processing, geometric correction techniques and GIS/remote sensing integration in the raster domain. Practical work uses MapInfo, ArcGIS - ArcMap and ERDAS Imagine.

GIS and Database Management Systems: Your major focus on this unit will be the use of industry-standard methods and tools to develop competence in the successive stages of database design, development and implementation. You will have an introduction to data analysis techniques, followed by an examination of alternative types of database system and the rules of relational database design. There is extensive treatment of the SQL query language in standard databases and for attribute query within a GIS. You will be introduced to advanced topics including database programming and computer-aided database design. You will also consider the Object-Relational databases and spatial data types, explore the use of spatial queries using the ORACLE relational database management system and examine procedural database programming and web database connectivity. Practical work for this unit uses the ORACLE relational database management system, running in full client-server mode.

Applied Geographic Information Systems: On this unit you will develop a general, inferential, model-based approach to the analysis of quantitative data within a geographical framework. You will examine a range of underlying concepts including model specification, bias, linearity, robustness and spatial autocorrelation. You will subsequently develop these in the context of a unified framework for analysis. Practical work is based on ArcGIS - ArcMap.

Research Methods and Design: This unit will introduce you to the basic principles of research design and methodology, enabling you to develop a critical approach to the selection and evaluation of appropriate methods for different types of research problem.

Modelling and Analysis and the Web: This unit gives you the chance to consider the use of GIS technology for creating terrain models and explore the basics of photogrammetry, as well as analytical and digital techniques for photogrammetric data capture. You will also look at Orthophotography, LiDAR and RADAR systems. ArcGIS is used for spatial analysis, such as buffering and overlay techniques. You will also explore and exemplify data transfer between GIS software systems and technologies for internet-based GIS.

Dissertation: This provides an opportunity for you to pursue a particular topic to a greater depth than is possible within the taught syllabus. It can take a variety of forms, for example GIS-based analysis of original data sources and digital datasets, case studies of GIS adoption in public or private sector organisations, the development of new software tools/applications or the design of GIS algorithms. The final submission takes the form of an extended written report or dissertation of a maximum of 15,000 words.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

The majority of assessment takes the form of practical exercises and project-based activity. This enables you to become familiar with industry-standard software systems and develop your skills by applying your newfound expertise in areas that particularly interest you.

Student Destinations

GIS technology is now very widely deployed in many organisations ranging from utility companies, telecommunications networks, civil engineering, retailing, local and national government, international charities and NGOs, the National Health Service, environmental organisations, banking and finance, and insurance. GIS has become an essential part of the world's information infrastructure.

You can expect to go on to find work in organisations such as local authorities, health authorities, conservation organisations, banks and insurance companies, amongst others. Many of our previous graduates are now employed all over the world, working on a whole variety of GIS-related projects in a very wide range of different organisations and industries.

Read less
On this course you will investigate solutions for conserving our coastal zones, seas and oceans through the development of a coordinated strategy to distribute environmental, socio-cultural and institutional resources. Read more

Why take this course?

On this course you will investigate solutions for conserving our coastal zones, seas and oceans through the development of a coordinated strategy to distribute environmental, socio-cultural and institutional resources. It is a dynamic process and you will possess a genuine desire to ensure the long-term sustainability of the world’s coast lines.

What will I experience?

On this course you can:

Benefit from a wealth of coastal and marine environments on your doorstep – internationally important wildlife, urban development, maritime heritage and the busiest waterway in Britain
Complement your studies with case study analysis, lectures from guest speakers and fieldtrip opportunities
Learn alongside students from diverse international backgrounds and politico-economic cultures

What opportunities might it lead to?

This course is accredited by the Royal Institution of Chartered Surveyors (RICS). On graduating from this course, you can expect to find roles within government agencies, environmental consultancies and observational or research institutions that oversee the investigation and application of resource management issues.

Module Details

You can opt to take this course in full-time or part-time mode.

You will be introduced to technical and analytical frameworks and concepts, which will enable you to study these three major themes:

The physical environment
The institutional frameworks that have been developed for coastal and ocean areas
The value of coastal and marine resources

The course is divided into three parts. The first two comprise the taught units of the course covering the key conceptual, institutional and applied bases of the subject. The third focuses on your dissertation.

Here are the units you will study:

Coastal and Marine Resource Management: You will examine the theory, concepts and frameworks of coastal and marine management, and use topical issues as examples of practical application.

Coastal Physical Processes and Shoreline Management: You will study the biophysical behaviour of contemporary coastal systems. You will then investigate how and why coastal risk management is practiced and examine the effects of management upon ‘natural’ systems.

Law of the Sea and Marine Spatial Planning: You will examine the nature of coastal and marine policy and the forces instrumental in creating such a policy. You will also learn about the law affecting the utilisation of marine space and resources and consider the stages, key stakeholders and approaches to marine planning in the UK, Europe and internationally.

Fieldwork and Research Methods: Firstly, you will examine the role and importance of fieldwork in coastal and marine resource management studies and practice. The concepts, issues and practices covered will mean you can undertake a field-based project on the compulsory residential trip. Secondly, you will have an introduction to research design and methods so you can conduct field research in two contexts: 1) the residential field trip and 2) for your dissertation/independent study.

Dissertation: This provides you with an opportunity to independently study a topic of your choice related to coastal and marine resource management.

Programme Assessment

The course provides a balanced structure of lectures, tutorials and laboratory work. You will generally be taught in small classes, providing an informal, friendly and supportive atmosphere for your studies.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Preparation of web pages
Poster and oral presentations
Project reports
Literature reviews
Book chapters
Essays

Student Destinations

If you work or hope to work in an organisation involved in marine resource policy or in the use or development of maritime resources, or would like to contribute to the conservation of natural resources of coasts and oceans, this could be the course for you.

It will prepare you to work in industry, for central or local government, with community groups, for landowners or in a consultancy role. Alternatively, you might wish to pursue a career in research or education.

We aim to provide you with as much support as possible in finding employment through close industrial contacts, careers events, recruitment fairs and individual advice.

Read less
This course focuses on the physical processes that generate natural hazards through an advanced understanding of geological and environmental processes. Read more

Why take this course?

This course focuses on the physical processes that generate natural hazards through an advanced understanding of geological and environmental processes.

You will be fully trained by internationally recognised experts in hazard identification, terrain evaluation techniques as well as hazard modelling and risk assessment techniques. Providing you with the essential skills to monitor, warn and help control the consequences of natural hazards.

What opportunities might it lead to?

This course is accredited by the Geological Society of London. It offers advanced professional and scientific training providing an accelerated route for you to attain Chartered Status, such as Chartered Geologist (CGeol) and Chartered Scientist (CSci) on graduation.

Here are some routes our graduates have pursued:

Aid organisations
Environmental organisations
Offshore work
Civil sector roles
Mining
Insurance companies

Module Details

You can opt to take this course in full-time or part-time mode.

The course is divided into two parts. The first part comprises the lecture, workshop, practical and field work elements of the course, followed by a five-month independent research project. The course is a mixture of taught units and research project covering topics including site investigation, hazard modelling and mapping, soil mechanics and rock mechanics, contaminated land, flooding and slope stability.

Here are the units you will study:

Natural Hazard Processes: The topic of this unit forms the backbone of the course and give you an advanced knowledge of a broad range of geological and environmental hazards, including floods, landslides, collapsible ground, volcanoes, earthquakes, tsunamis, hydro-meteorological and anthropogenic hazards. External speakers are used to provide insights and expertise from an industry, regulatory and research perspective.

Numerical Hazard Modelling and Simulation: This forms an important part of the course, whereby you are trained in the application of computer models to the simulation of a range of geological and environmental hazards. You will develop skills in computer programming languages and use them to develop numerical models that are then used to simulate different natural hazard scenarios.

Catastrophe Modelling: On this unit you will cover the application of natural hazard modelling to better understand the insurance sector exposure to a range of geological and environmental hazards. It includes external speakers and sessions on the application of models for this type of catastrophe modelling.

Volcanology and Seismology: You will gain an in-depth knowledge of the nature of volcanism and associated hazards and seismology, associated seismo-tectonics and earthquake hazards. This unit is underpinned by a residential field course in the Mediterranean region that examines the field expression of volcanic, seismic and other natural hazards.

Flooding and Hydrological Hazards: These are a significant global problem that affect urban environments, one that is likely to increase with climate change. This unit will give you an in-depth background to these hazards and opportunities to simulate flooding in order to model the flood hazard and calculate the risk.

Hazard and Risk Assessment: This unit gives you the chance to study the techniques that are employed once a hazard has been identified and its likely impact needs to be measured. You will have advanced training in the application of qualitative and quantitative approaches to hazard and risk assessment and their use in the study of different natural hazards.

Field Reconnaissance and Geomorphological Mapping: These techniques are integral to the course and an essential skill for any graduate wishing to work in this area of natural hazard assessment. On this unit you will have fieldwork training in hazard recognition using techniques such as geomorphological mapping and walk-over surveys, combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: You will learn how to acquire and interpret aerial photography and satellite imagery, and the integration and analysis of spatial datasets using GIS – all key tools for hazard specialists.

Geo-mechanical Behaviour of Earth Materials: You will train in geotechnical testing and description of soils and rocks to the British and international standards used by industry.

Landslides and Slope Instability: This unit will give you an advanced understanding of landslide systems, types of slides in soils and rocks and methods for identification and numerical analysis.

Impacts and Remediation of Natural Hazards: You will cover a growing area of study, including the impact of hazardous events on society and the environment, and potential mitigation and remediation methods that can be employed.

Independent Research Project: This provides you with an opportunity to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Literature reviews
Lab reports
Essays

Student Destinations

This course provides vocational skills designed to enable you to enter this specialist environmental field. These skills include field mapping, report writing, meeting deadlines, team working, presentation skills, advanced data modelling and communication.

You will be fully equipped to gain employment in the insurance industry, government agencies and specialist geoscience companies, all of which are tasked with identifying and dealing with natural hazards. Previous destinations of our graduates have included major re-insurance companies, geological and geotechnical consultancies, local government and government agencies.

It also has strong research and analytical components, ideal if you wish to pursue further research to PhD level.

We aim to provide you with as much support as possible in finding employment through close industrial contacts, careers events, recruitment fairs and individual advice.

Read less
Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms. Read more

Why take this course?

Engineering geological expertise is critical to all types of civil engineering projects such as tunnels, dams, mines, quarries, offshore platforms and wind farms.

This course provides you with the advanced skills to carry out detailed investigations into surface and subsurface geology, identification of adverse ground conditions and the design of suitable remedial measures of engineering structures.

What will I experience?

On this course you can:

Be taught by internationally recognised experts with extensive expertise in engineering geology and geotechnics
Gain experience of environmental assessment techniques, plus a range of other skills such as mapping using GIS, GPS and remote sensing technologies
Go on numerous fieldtrips, both locally and overseas, to undergo specialist field training

What opportunities might it lead to?

This course is accredited by the Geological Society of London. It offers advanced professional and scientific training providing an accelerated route for you to attain Chartered Status, such as Chartered Geologist (CGeol) and Chartered Scientist (CSci) on graduation.

Here are some routes our graduates have pursued:

Aid organisations
Environmental organisations
Offshore work
Civil sector roles
Mining
Insurance companies

Module Details

You can opt to take this course in full-time or part-time mode.

The course is divided into two parts. The first part comprises of the lecture, workshop, practical and field work elements of the course, followed by a five-month independent research project. The course is a mixture of taught units and research project covering topics including site investigation, soil mechanics and rock mechanics, geotechnical engineering design, contaminated land, slope stability and rock engineering.

Here are the units you will study:

Rock and Soil Mechanics: These topics are integral to the role of an engineering geologist. You will gain an advanced understanding of the geo-mechanical behaviour of rocks and soils and how they behave under different geotechnical design scenarios. You will also develop key skills in the assessment, description and testing of geological materials in order to understand and quantify their behaviour, using current British and Eurocode standards.

Soil and Rock Engineering: This unit will give you an advanced understanding of engineering and design in soils and rock masses, including fundamental design principles associated with common geotechnical solutions encountered on engineering geological and civil engineering projects.

Contaminated Land and Groundwater: These are important considerations in all types of construction and so an understanding of both is essential. You will learn key techniques for the identification and assessment of contaminated land and groundwater resources in an engineering geological context.

Ground Models: You will train in the development of geological ground models and geomorphological terrain models within the content of engineering geological practice, essential parts of any investigation.

Ground Investigation Techniques: You will gain advanced experience of ground investigation using invasive techniques, in-situ tests and geophysical methods – essential to an engineering geologist's skill base.

Landslides and Slope Instability: On this unit you will develop an advanced understanding of landslide systems, types of slides in soils and rocks and methods for identification and numerical analysis.

Field Reconnaissance and Geomorphological Mapping: The techniques covered on this unit are integral to the course and an essential skill for any graduate wishing to work in this area. You will have fieldwork training in techniques such as geomorphological mapping and walk-over surveys combined with interpretation of remote sensing and aerial photography imagery.

Spatial Analysis and Remote Sensing: On this unit you will cover the key tools for terrain evaluation and be trained in the acquisition and interpretation of aerial photography and satellite imagery, and the integration and analysis of spatial datasets using GIS.

Independent Research Project: This give you the opportunity to undertake an original piece of research to academic or industrial standards, typically in collaboration with research staff in the department or external industry partners. In addition to submission of a thesis report, you also present the results of your project at the annual postgraduate conference held at the end of September.

Programme Assessment

The course provides a balanced structure of lectures, seminars, tutorials and workshops. You will learn through hands-on practical sessions designed to give you the skills in laboratory, computer and field techniques. The course also includes extensive field work designed to provide field mapping and data collection skills.

Assessment is varied, aimed at developing skills relevant to a range of working environments. Here’s how we assess your work:

Poster and oral presentations
Project reports
Literature reviews
Lab reports
Essays

Read less
The Master of Architecture provides a vibrant, challenging and expansive programme aimed at equipping you with the professional and creative skills for a successful career as an architect and leads to Royal Institute of British Architects (RIBA) Part 2 exemption. Read more

Why take this course?

The Master of Architecture provides a vibrant, challenging and expansive programme aimed at equipping you with the professional and creative skills for a successful career as an architect and leads to Royal Institute of British Architects (RIBA) Part 2 exemption. Through the design studios you will be exposed to a range of related architectural interests, including urbanism, landscape, practice, sustainability and culture, providing a cross-disciplinary learning environment that is appropriate in today’s professionally complex architectural world. We can also provide all incoming, full-time MArch students with funding toward a Course field trip.

What will I experience?

On this course you will undertake studio-based design projects, with opportunities to:

Engage with current collaborative projects with academic institutions in other countries – in the past these have included Turkey, Spain, Denmark and Australia
Work on projects with 'live' clients through our RIBA registered Project Office practice
Opt to study at a choice of European universities through the ERASMUS exchange scheme

What opportunities might it lead to?

This course is professionally accredited by the Architects Registration Board (ARB) and the Royal Institute of British Architects (RIBA). It is structured to ensure the integration and synthesis of contextual, technical and professional complexities inherent within the design process, helping you to engage with the prescribed ARB/RIBA criteria, and attain RIBA Part 2 exemption.

Module Details

The design curriculum is delivered through studios, each having a distinct research topic relating to the research and practice of the studio tutors. The studio topics and pedagogy provide a framework and guidance for student projects in Year One and support in Year Two as you develop your particular thesis questions into design propositions. Studios topics change annually in response to current issues in practice and society, challenging the architectural profession, and offering variety in scale,content and context in the UK and abroad.

Please see our proposed 2016/17 MArch studios below. You can find more information on our course blog and see output in our MArch Gallery.

MArch Studios 2016-17*

Latent Culture- Exploring the Reading, Mapping and Making of Place: Mapping, reading and drawing out, Studio 1 will explore cartography, archaeology, memory, narrative and material of place. Through a series of thematic studies – text and making based – the studio will bring together an understanding of place using artefacts, films, maps and narratives.

Littoral Landscapes: Change Labs for Coastal Experimentation: This studio will experiment with the ‘seeds’ of transformation, focussing on littoral landscapes – coastal villages, towns and cities in the UK and abroad. The studio is the Lab, the seeds are about speculation, growth, invention and entrepreneurialism - small changes which can lead to revolutions.

Urban Futures. Cities constantly change in response to changes in society: Today, major environmental and economic challenges we are facing require new models for the built environment that are capable to be resource efficient, adaptable to environmental modifications and designed to facilitate placemaking.

The Emergent Studio: Architecture of, on and around the Edge: The Emergent Studio explores the idea of making architecture within cultural contexts that are not ‘our own’; always in a location that in some way exemplifies an edge condition. Our theoretical platform for exploring these conditions has been, and continues to be, rooted within phenomenology, drawing from the writings of the humane Nordic modernist tradition, in informing our methodologies of interrogation and design.

Portsmouth: The Anatomy of "The Island City”: This studio continues our reflections on Portsmouth's response to climate change induced rise in sea levels adding an analysis of infrastructures and their impact on developing Urban & Architectural visions for the city.

Tactical Urbanism: Tactical Urbanism will investigate, in a radical and provocative way, how a university environment will change in the future and create alternative and hypothetical social scenarios as starting point for your design project. The aim is not to create a futuristic environment but to challenge the current paradigms and try to address the real problems and issues that our society will face in a near 2050 future.

Coastal Latent Dynamics: Material Voids: This new studio will frame the architectural process, starting with a close up of the Micro (the detail, the material qualities of place, prototyping), continuing to a wide shot of the Macro (the notion of municipality in a coastal context) and then zooming into the Meso (dealing with the opportunities of voids, empty buildings and their environs).

*Please note: studio offers may change due to staff and student numbers.

Programme Assessment

You will be taught through a combination of individual and group tutorials in your selected studio, while year-wide units are lecture-based, complemented by seminars and workshops. Our studio-teaching method will mean that you will be working with tutors with professional and academic experience in their field and all unit programmes are complemented by contributions from external professionals.

Studio programmes will often entail shared sessions with European and, sometimes, other overseas institutions, in countries such as Denmark, Turkey, Morocco, Italy and Spain. Representatives of local public and private bodies and agencies frequently contribute to studio tutorials and crits. All this helps to ensure that your learning and studio research outputs can have regional impact and global reach.

Design assessment is through studio review (crit) as work progresses and portfolio assessment at the end of the academic year. ‘Taught’ units, in support of the design curriculum, are assessed through various forms of illustrated written coursework – both individual and group, such as reports and the Dissertation.

Student Destinations

Careers in architecture are demanding ever-increasing specialism and professional competence.

The unique learning experience we offer on this course will enable you to develop as an expansive, creative and professional individual capable of success in a range of creative and professional environments. The breadth of engagement with the discipline and range of studios ensures that you will become confident in responding to the demands of the profession. The regional, national and international destinations of the School’s alumni are testament to this, as are our graduate employment take-up statistics.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X