• University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
Middlesex University Featured Masters Courses
University of Reading Featured Masters Courses
Cass Business School Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Surrey Featured Masters Courses
Finland ×
0 miles
Biological Sciences×

Masters Degrees in Biological Sciences, Finland

We have 11 Masters Degrees in Biological Sciences, Finland

  • Biological Sciences×
  • Finland ×
  • clear all
Showing 1 to 11 of 11
Order by 
Goal of the pro­gramme. Life Sciences.  is one of the strategic research fields at the University of Helsinki. The multidisciplinary Master’s Programme in Life Science Informatics (LSI) integrates research excellence and research infrastructures in the Helsinki Institute of Life Sciences (. Read more

Goal of the pro­gramme

Life Sciences is one of the strategic research fields at the University of Helsinki. The multidisciplinary Master’s Programme in Life Science Informatics (LSI) integrates research excellence and research infrastructures in the Helsinki Institute of Life Sciences (HiLIFE).

The Master's Programme is offered by the Faculty of Science. Teaching is offered in co-operation with the Faculty of Medicine and the Faculty of Biological and Environmental Sciences. As a student, you will gain access to active research communities on three campuses: Kumpula, Viikki, and Meilahti. The unique combination of study opportunities tailored from the offering of the three campuses provides an attractive educational profile. The LSI programme is designed for students with a background in mathematics, computer science and statistics, as well as for students with these disciplines as a minor in their bachelor’s degree, with their major being, for example, ecology, evolutionary biology or genetics. As a graduate of the LSI programme you will:

  • Have first class knowledge and capabilities for a career in life science research and in expert duties in the public and private sectors
  • Competence to work as a member of a group of experts
  • Have understanding of the regulatory and ethical aspects of scientific research
  • Have excellent communication and interpersonal skills for employment in an international and interdisciplinary professional setting
  • Understand the general principles of mathematical modelling, computational, probabilistic and statistical analysis of biological data, and be an expert in one specific specialisation area of the LSI programme
  • Understand the logical reasoning behind experimental sciences and be able to critically assess research-based information
  • Have mastered scientific research, making systematic use of investigation or experimentation to discover new knowledge
  • Have the ability to report results in a clear and understandable manner for different target groups
  • Have good opportunities to continue your studies for a doctoral degree

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The Life Science Informatics Master’s Programme has six specialisation areas, each anchored in its own research group or groups.

Algorithmic bioinformatics with the Genome-scale algorithmicsCombinatorial Pattern Matching, and Practical Algorithms and Data Structures on Strings research groups. This specialisation area educates you to be an algorithm expert who can turn biological questions into appropriate challenges for computational data analysis. In addition to the tailored algorithm studies for analysing molecular biology measurement data, the curriculum includes general algorithm and machine learning studies offered by the Master's Programmes in Computer Science and Data Science.

Applied bioinformaticsjointly with The Institute of Biotechnology and genetics.Bioinformatics has become an integral part of biological research, where innovative computational approaches are often required to achieve high-impact findings in an increasingly data-dense environment. Studies in applied bioinformatics prepare you for a post as a bioinformatics expert in a genomics research lab, working with processing, analysing and interpreting Next-Generation Sequencing (NGS) data, and working with integrated analysis of genomic and other biological data, and population genetics.

Biomathematics with the Biomathematics research group, focusing on mathematical modelling and analysis of biological phenomena and processes. The research covers a wide spectrum of topics ranging from problems at the molecular level to the structure of populations. To tackle these problems, the research group uses a variety of modelling approaches, most importantly ordinary and partial differential equations, integral equations and stochastic processes. A successful analysis of the models requires the study of pure research in, for instance, the theory of infinite dimensional dynamical systems; such research is also carried out by the group. 

Biostatistics and bioinformatics is offered jointly by the statistics curriculum, the Master´s Programme in Mathematics and Statistics and the research groups Statistical and Translational GeneticsComputational Genomics and Computational Systems Medicine in FIMM. Topics and themes include statistical, especially Bayesian methodologies for the life sciences, with research focusing on modelling and analysis of biological phenomena and processes. The research covers a wide spectrum of collaborative topics in various biomedical disciplines. In particular, research and teaching address questions of population genetics, phylogenetic inference, genome-wide association studies and epidemiology of complex diseases.  

Eco-evolutionary Informatics with ecology and evolutionary biology, in which several researchers and teachers have a background in mathematics, statistics and computer science. Ecology studies the distribution and abundance of species, and their interactions with other species and the environment. Evolutionary biology studies processes supporting biodiversity on different levels from genes to populations and ecosystems. These sciences have a key role in responding to global environmental challenges. Mathematical and statistical modelling, computer science and bioinformatics have an important role in research and teaching.

Systems biology and medicine with the Genome-scale Biology Research Program in BiomedicumThe focus is to understand and find effective means to overcome drug resistance in cancers. The approach is to use systems biology, i.e., integration of large and complex molecular and clinical data (big data) from cancer patients with computational methods and wet lab experiments, to identify efficient patient-specific therapeutic targets. Particular interest is focused on developing and applying machine learning based methods that enable integration of various types of molecular data (DNA, RNA, proteomics, etc.) to clinical information.



Read less
Goal of the pro­gramme. Life on Earth depends on solar energy captured by plants - they are the base of most food webs and underpin the functioning of all major ecosystems. Read more

Goal of the pro­gramme

Life on Earth depends on solar energy captured by plants - they are the base of most food webs and underpin the functioning of all major ecosystemsPlants release the oxygen we breath. They convert solar energy into chemical energy, providing us with food, fibres, renewable energy sources, and raw materials for many industries. Plants do not carry out these processes in isolation. They interact with other organisms and the physical and chemical environment, communicate and actively adjust to their circumstances. How do they do these things and how can we profit from understanding them? When you have graduated from the Master’s Program in Plant Biology you will have the answers to these big questions, and more, such as:

  • How one plant cell develops into a complicated organism and how plant cells, tissues and organs communicate with each other
  • How plants avoid, tolerate or defend themselves from external stress factors such as diseases, drought and excessive solar radiation
  • How plants sense their environment and communicate with each other and with other organisms
  • How plants, interacting with microbes, fungi and animals, maintain ecosystems and thus life
  • How the genotypic, functional and morphological differences between plants allow them to thrive in vastly different habitats

You will also be able to:

  • Understand how research in plant biology and biotechnology can contribute to plant breeding and production
  • Plan, coordinate and execute high-quality basic and applied scientific research
  • Have a good command of the scientific method and critically evaluate research across scientific disciplines
  • Use the basic skills needed to expand your knowledge into other related fields and communicate with experts in those fields
  • Act in working life as an expert and innovator in your field, supported by your language, communication and other transferable skills
  • Be eligible for scientific post-graduate (doctoral) studies

After earning your degree, you can continue towards a PhD or move directly into a career. If you have a Bachelor’s degree in a field of biology from another Finnish university or from a foreign university anywhere in the world, you are welcome to apply for the Master’s programme in Plant Biology. Based on your previous studies we will evaluate the possible need for supplementary studies, which will be included in your degree.

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The Master’s Programme in Plant Biology is a joint programme of the Faculty of Biological and Environmental Sciences and the Faculty of Agriculture and Forestry, which ensures an exceptionally comprehensive curriculum. You will be able to study the diversity of wild and cultivated plants from the Arctic to the Tropics, as well as plant functions from the molecular to the ecosystem level.

The teaching is diverse, consisting of modern laboratory and computer courses, field courses, seminars and excursions. The curriculum is intertwined with research. You will be introduced to the research groups from the beginning of your studies, so you will become familiar with research methods as your studies progress. Much of the study material is in various learning platforms (such as Moodle), which allow distance learning. You will have a personal tutor who will help you tailor an individual study plan according to your requirements.

Within the programme you can choose among several optional study modules and focus on, for example:

  • Plant biotechnology and breeding
  • Molecular biology and genetics
  • Regulation of growth, reproduction and differentiation of tissues
  • Biological basis of crop yield
  • Plant ecology and evolutionary biology
  • Evolutionary history and systematics of plants and fungi
  • Species identification

All modules are worth at least 15 credits. They are interlinked to ensure a coherent and balanced degree that allows you to obtain a broad perspective. Alternatively, you can focus on your primary research interest while acquiring the skills needed to follow your career goals on completion of your degree.

A translational perspective is emphasised in courses in which it is relevant. That will allow you to apply the acquired basic knowledge in problem-based research, bridging the gap between basic and applied research.



Read less
Goal of the pro­gramme. Global socio-ecological problems call for multidisciplinary solutions that transcend the usual boundaries of science and decision-making. Read more

Goal of the pro­gramme

Global socio-ecological problems call for multidisciplinary solutions that transcend the usual boundaries of science and decision-making. The Environmental Change and Global Sustainability (ECGS) Master’s programme trains you in wide-ranging interdisciplinary thinking skills and provides you with the ability to:

  • Study environmental and sustainability issues in your respective fields of expertise and
  • Solve problems of socio-ecological sustainability in cooperation with various social actors.

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

ECGS is a truly multidisciplinary Master’s programme. It covers an introductory Core Module common to all students, followed by two distinct study tracks.

The introductory Core Module focuses on the methodologies of environmental and sustainability science as well as the interactions between science and society. The Core Module also offers a pool of optional methodological studies, providing you with the necessary research tools to tackle socio-ecological challenges.

If your orientation is in natural sciences, the Environmental Change study line can provide you with an understanding of the functioning of terrestrial and aquatic ecosystems and can give guidance toward their sustainable use.

If your interests are more in the social sciences and humanities, on the other hand, the Global Sustainability study line provides an understanding of the socio-cultural underpinnings of global sustainability challenges so that you can help to develop solutions that take social and environmental justice into consideration.

Se­lec­tion of the study track

You can apply for one of the two studytracks in the ECGS Master’s programme: the Environmental Change study line or the Global Sustainability study line. You can refine your expertise in your chosen study line by choosing from study modules related to your specialised field of science or from interdisciplinary phenomenon-based modules.

Environmental Change modules are offered in, for example, the following research fields: aquatic sciences, soil and earth sciences, environmental ecology, environmental biotechnology and agroecology. Global Sustainability modules include themes such as environmental and natural resource economics, environmental policy, development studies, public and social policy, consumer research, forest policy and economics, and development geography. ECGS also offers a variety of modules integrating both natural and social scientific perspectives including phenomenon-based modules on the Baltic Sea and the Arctic as well as a variety of interdisciplinary fields such as climate change, food and consumption systems, urban studies and socio-ecological systems studies.

As an international applicant, you will be assessed and accepted for the Master’s program based on the scientific relevance of your bachelor’s degree and your success in previous studies.



Read less
Goal of the pro­gramme. Ecology and evolutionary biology offer a perspective on biology from the level of genes to communities of species. Read more

Goal of the pro­gramme

Ecology and evolutionary biology offer a perspective on biology from the level of genes to communities of species.

In the master's degree program, you can become familiar with a wide variety of topics in three areas: ecology, evolutionary biology and conservation biology. You can choose studies from any of these areas, as well as from other master's degree programmes. The programme is diverse and multidisciplinary: teaching is done with lectures, laboratory and computer training courses, interactive seminars, study tours and field courses. The field courses range from the northern subarctic region to tropical rainforests.

Our wide expertise extends from molecular ecology to population and community biology. The Centres of Excellence of Metapopulation Biology and Biological Interactions are located in our department.

Our programme offers you a wide range of options: evolutionary biology or genetics for those interested in ecological genetics and genomics, as well as the ability to take advantage of the high-quality molecular ecology and systematics laboratory; conservation biology for those interested in regional or global environmental problems; and ecological modelling skills for those interested in computational biology. Our training also offers Behavioural Ecology. 

Ecology, evolutionary biology and conservation biology are not only fascinating topics for basic research, they also have a key role in addressing global environmental challenges.

Upon graduating from the Master's degree in ecology and evolutionary biology programme, you will:

  • Have mastered the main theories and methods in ecology and evolutionary biology and be able to apply them to practical problems
  • Be able to plan and carry out a scientific research project
  • Have read the relevant scientific literature and be able to utilise your expertise in different types of work
  • Be able to work as an expert in your field
  • Be able to to write good scientific English
  • Be able to work in research projects and groups
  • Be able to continue on to doctoral studies

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The Master's degree program includes studies of ecology, evolutionary biology and conservation biology. The studies are organised in modules. You can affect the content of the studies by planning your personal curriculum. You can study the following themes:

  • Ecology studies the abundance and distribution of species (animals, plants, microbes) and the interactions among them and with the environment. The perspective ranges from the molecular to the ecosystem level. In ecology, a central question is: Why are some species able to invade new habitats and displace native species? Which species are able to adapt to environmental change or migrate with the changing climate, and which species will become extinct?
  • Evolutionary biology examines the processes which support biodiversity on its various levels (genes – individuals – populations – species – ecosystems). You will learn about the theory of evolution and how to use population genetics and genomics methods in researching evolutionary issues.
  • Conservation Biology studies the depletion of biodiversity, its causes and consequences. You will learn to apply ecological theory to the problems of environmental conservation, to assess the effectiveness of methods of conservation, as well as to resolve the problems relating to conservation e.g. by modelling and computational methods. The training emphasizes the importance of interdisciplinary education in the area of conservation.


Read less
Goal of the pro­gramme. Read more

Goal of the pro­gramme

How do genes regulate the development and functioning of cells, tissues and organisms? How do molecules, cells and tissues function and communicate with each other, and how are their functions studied? These are the key issues for understanding molecular and cellular mechanisms, whose disruption can contribute to the onset and progression of various diseases. Researchers in the fields of genetics, genomics, cellular and developmental biology, biochemistry, structural biology, and biosciences of health are searching for the answers to these questions.

Upon completing the Master’s Programme in Genetics and Molecular Biosciences:

  • You will have in-depth knowledge of genetics and molecular biosciences and of the experimental methods used in them.
  • You will understand the characteristics and functions of genes and biomolecules at the cellular, tissue and organism levels.
  • You will be able to analyse scientific knowledge critically and communicate it to different audiences.
  • You will have the ability to produce new scientific information about the properties of genes, biomolecules and cells by means of experimental studies.
  • You will be able to take advantage of existing research data and biological databases.
  • You will have mastered good scientific practice and know how to act accordingly.
  • You will have the capacity for independent project management and problem solving, as well as for maintaining and developing your own expertise.
  • You will have the ability to work in multi-disciplinary and multicultural communities.

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The Master's programme is based on basic scientific research. In the programme you will acquire knowledge and skills in modern genetics and molecular biosciences, which you will deepen in your chosen field of specialisation. The programme is tightly integrated with the experimental research carried out at the University of Helsinki in genetics, genomics, biochemistry, structural biology, and cellular and developmental biology. By combining course units, you will be able to acquire a broad-based understanding of biological phenomena and of the molecules that have an effect on health, including their interactions and functions at the levels of cells, tissues and organisms. 

Courses include a variety of working methods: seminars, lectures, laboratory work, oral and written presentations, project work in small groups, independent studies and study circles formed by the students. The instruction will utilise digital learning environments.

These diverse teaching methods require active involvement from you. They will develop your ability to search, structure and present new information, as well as to draw conclusions. You will learn about the principles and methods of research during laboratory exercises, and about practical work in research groups and when writing your Master's thesis. In addition to academic excellence, you will acquire general working life skills such as fact-finding, problem solving, communication, project management and teamwork. You will acquire competence both for post-graduate studies in a Doctoral Programme and for expert positions immediately after gaining your Master's degree.



Read less
Goal of the pro­gramme. Read more

Goal of the pro­gramme

Why are microbes the most important group of organisms on our planet? How is knowledge of microbiology applied in medicine and industry, or in food production? What research techniques are used to study viruses, bacteria and other microbes? These are important questions, and you can find answers to these and many others in the study of Microbiology and microbial biotechnology.

Upon completing your degree, you will:

  • Understand the global significance of microbes as remodelers and processors of life and the environment
  • Understand the potential for the use of microbes in the development of new applications, such as foodstuffs, drugs, and industrial processes
  • Understand the molecular mechanisms that underpin microbial function
  • Be able to evaluate the effects of changes in the environment on microbial communities and thus on the function of the biosphere
  • Be able to estimate the risks of microbes, and assess the use of microbes in a variety of environments and situations
  • Be able to evaluate ethical questions and the prerequisites of commercialisation related to the use of microbes and biotechnology
  • You will understand the most important functional mechanisms of the major groups of microbes
  • Be aware of the most important pathogens and virulence mechanisms
  • Have mastered the most important microbiological and biotechnological research methods, and become proficient in the interpretation and evaluation of research results
  • Be able to develop and evaluate new microbiological and biotechnological applications
  • Have the capability to plan and lead activities that involve microbiology and biotechnology, and will be able to propose appropriate actions in various situations
  • Know how to search for, produce and critically evaluate scientifically relevant information
  • Have developed the capacity for disseminating relevant information about your topic to various target groups in an appropriate manner within an international environment.

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The key contents of the study programme in Microbiology and microbial biotechnology are:

  • Research methods in microbiology, biotechnology and bioinformatics
  • Application of microbiological knowledge
  • Solving microbiological problems
  • Critical, research-based scientific thinking
  • Planning, implementation and reporting of microbiological and biotechnological research
  • Functional principles of microbial cells and communities
  • Development from research to product
  • Leadership, entrepreneurship and patenting
  • Other studies, through which you can adapt the degree towards your own interests
  • Discovery of novel findings in the field of biology.


Read less
Goal of the pro­gramme. Read more

Goal of the pro­gramme

Do you want to affect the future of forests, a key natural resource and the wellspring of biodiversity? Have you ever wondered why forests are called the lungs of the Earth and how climate change relates to forests? Or how trees are grown and processed into products in a sustainable and efficient manner? And how are the economy and forests interrelated?

You can find answers to these questions when you study forest sciences. You will come to view forests not only as a setting for jogging trails or as a source of wood, but rather as a source of versatile renewable resources and as complex ecological systems that are closely connected to their environment. The relationship between humans and nature and between society and natural resources is a strong feature of these studies.

The Master’s Programme in Forest Sciences offers a broad and versatile perspective on forests and their use. The studies focus on and apply knowledge in biology, business economics, environmental sciences, logistics, geoinformatics and information technology. As a graduate in forest sciences you will be a professional in forest ecology, the management and use of forest resources, forest bioeconomy business and policy, with ample career opportunities in Finland and abroad.

Come and study forest sciences at the University of Helsinki, in one of the world’s foremost degree programmes in the field. For more information in Finnish about studies in forest sciences, the field of forestry and its opportunities, see http://www.metsatieteet.fi.

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

General studies in the Master’s programme provide you with skills needed for the academic world and the labour market. In advanced studies, you focus on field-specific issues and develop your professional knowledge when writing your Master’s thesis and completing courses in your field of specialisation. In addition, the studies include elective courses that allow you to diversify and deepen your knowledge.

The Master's Programme in Forest Sciences comprises two study tracks: forest ecology and management and forest bioeconomy business and policy. These study tracks include a total of 10 fields of specialisation.

The specialisations in forest ecology and management focus on various types of forest and peatland ecosystems and their exploitation, examine the planning of forest use and the relevant collection of information, examine forest inventory models, wood harvesting and logistics as well as the processing of wood into bioeconomy products.

Topical issues include

  • climate change
  • the prevention of damage to forests caused by insects and fungi
  • the control of game populations
  • problems related to the exploitation of tropical forests
  • the application of new remote sensing methods in the planning of forest resource management
  • the combination of different values and targets in forestry and bioeconomy
  • various models of silviculture
  • increased efficiency in logging and transportation
  • generating added value in all areas of biorefining.

Studies in the forest bioeconomy business and policy are based on the sustainable use of a renewable natural resource and on the development of responsible business activities in a global environment. The focus of studies is on the globalisation of forest-based industry and business and its structural redevelopment into the bioeconomy. You will become familiar with forest-based issues of the bioeconomy in production, marketing and policy as part of the global operating environment.



Read less
Application period/deadline. November 1, 2017 - January 24, 2018. In-depth training in understanding structure-function relationships of proteins and their characterisation. Read more

Application period/deadline: November 1, 2017 - January 24, 2018

• In-depth training in understanding structure-function relationships of proteins and their characterisation

• Strong focus on practical skills and use of most modern equipment in protein expression and analysis

• Highly flexible degree aimed at students with an interest in a research career, taught by an international staff

The International Master’s Degree Programme in Protein Science and Biotechnology is a two-year programme planned around the early integration of M.Sc. students into research groups and the hands-on use of modern biochemical and molecular biology equipment by individual students. Early exposure to research work provides insights into cutting edge approaches in structural and enzymology characterisation as well as cell and molecular biology methods. A completion of a minimum of 120 study units equivalent to ECTS credits is required to complete the master’s degree studies. The flexible programme includes courses in:

• Protein production and analysis (compulsory)

• Biochemical methodologies (compulsory)

• 3-6 week orientation to research work periods in research groups (compulsory)

• Basic aspects of crystallographic methods

• Structural enzymology

• Biochemistry of protein folding

• Systems biology

• Bioinformatics and biocomputing

• Structure-based drug discovery

Additional optional studies include (but are not limited to):

• Advanced biotechnology/bioprocess engineering

• Immunology

• Animal use in research

• Yeast genetics and genomics

• Information skills for foreign degree students

• Bioreactor technology

• Molecular bases of disease

In addition, up to 15 credits can be taken from other suitable courses taught at the Oulu University or any other university, as long as they are of the appropriate level and connected to biochemistry or logically support some aspect of the Protein Science and Biotechnology programme.

Due to the range of courses available in the programme, a wide variety of expertise that can be obtained during M.Sc. level studies at FBMM. The official diploma title received after successful completion of our international M.Sc. programme will be M.Sc. in Protein Science and Biotechnology. Depending on the course choices, the training received may also provide you with excellent proficiency in molecular and cellular biology.

The duration of the M.Sc. thesis research work is flexible depending on the interest of the students and may be three months (more courses/lectures taken) or eight months (longer M.Sc. thesis research period).

Significant number of students spend orientation to research work periods outside the Faculty of Biochemistry and Molecular Medicine or carry out the research work for their MSc thesis abroad

The Faculty of Biochemistry and Molecular Medicine offers a highly international environment of cutting edge research in Protein Structure analysis, Enzymology, Proteomics, Bioimaging, Developmental Biology, Matrix Biology and Metabolism research. About fifty percent of our staff are native to other countries than Finland, and research groups are well connected globally to other specialists and research groups in their fields of study. Many students holding an M.Sc. from our faculty have gone on to Ph.D. programmes of other prestigious institutions all over the world, and many have stayed at FBMM Oulu to continue in our Ph.D. programme.

The skills gained in the programme offer you the academic training and expertise required to succeed in a research environment, but will also open opportunities in biomedical and related industries.

Successful applicants should hold a B.Sc. or higher degree in Biochemistry, Chemistry or a related field in the natural or life sciences and have a good command of technical English language in biochemistry and molecular biology.

Email Now



Read less
Application period/deadline. November 1, 2017 - January 24, 2018. A unique combination of studies in ecology, population genetics and molecular ecology with emphasis in northern issues. Read more

Application period/deadline: November 1, 2017 - January 24, 2018

• A unique combination of studies in ecology, population genetics and molecular ecology with emphasis in northern issues

• The study programme is a combination of field work in the arctic and subarctic and in old-growth boreal forests and mires as well as molecular lab work

• Prepares the students for future leadership positions in conservation biology and environmental ecology

International master’s degree programme in Ecology and Population Genetics (ECOGEN) is a two-year programme concentrating on conservation issues and population genetics of endangered animals and plants. The programme will give you relevant skills and core knowledge of the latest methods and tools in:

• Molecular ecology

• Microbial ecology

• Metagenomics and microbiomes of organisms

• Conservation genomics of large mammals

• Distribution history of plants and their phylogeography

• Bioinformatics

The two-year programme has two specialisation options:

• Ecology

• Genetics

Optional courses make it possible to widen your expertise into:

• Aquatic ecology

• Microbial ecology

• Conservation ecology

• Restoration ecology

• Plant evolutionary genomics

The master’s programme is based on high quality and productive research in the fields of evolutionary ecology and genetics. Field research stations in natural reserves as well as Biodiversity Unit offer great opportunities for courses and research. Study environment is multicultural. ECOGEN provides positions as a trainee or a master’s thesis student, and an excellent background for PhD studies.

The skills gained in the master’s programme offer you a solid academic training and essential knowledge on wildlife conservation ecology and genetics, as well as their management. After graduation you are capable of evaluating risks, conducting management on small populations of endangered species, and doing research in the field and in lab. You are able to use molecular and bioinformatic tools.

Possible titles include:

• Project manager

• Researcher

• Planning coordinator of conservation issues

• Conservation biologist

Students applying for the programme must have a B.Sc. degree in biology or in closely related fields.

Email Now



Read less
Application period/deadline. November 1, 2017 - January 24, 2018. Interdisciplinary knowledge in medical and health technologies from theoretical and practical perspective. Read more

Application period/deadline: November 1, 2017 - January 24, 2018

• Interdisciplinary knowledge in medical and health technologies from theoretical and practical perspective

• Capability to design and implement biomedical measurement systems and health applications, and process multimodal biomedical signals and images

• Opportunity to modify personal study profile according to your professional interests

The applicant can select from the two alternatives. Degrees to be obtained:

(1) Master of Health Sciences, with focus on biomechanics, medical imaging and health technology applications

(2) Master of Science (Technology), with focus on biomedical signal and image processing, machine learning, and measurement and analysis of biomedical data

The International Master’s Degree Programme in Biomedical Engineering (BME) is a two-year interdisciplinary programme focusing on biomechanics and medical imaging as well as biomedical signal and image processing. The programme will give you relevant skills and core knowledge of the latest methods, tools and technologies combined with issues such as:

• Anatomy and physiology

• Biomechanics

• Biomedical measurements

• Medical physics and imaging techniques

• Biomedical signal and image processing

• Machine learning

• E-Health

• Health technology applications

Finland has impressive health technology industry and its health care system is worldwide known. University of Oulu and the OuluHealth innovation ecosystem offer an excellent platform for research and development (R&D). The BME program is organized by internationally recognized high-quality research groups in close collaboration with the Oulu University Hospital. The program and the international research groups have also cooperation with other health care organizations and health technology industry.

Master graduate from the BME program typically works in different expert duties in industry, research, education, and health care. He/she may work e.g. as designer, developer, researcher, service provider, or entrepreneur. Typically the tasks involve strong international perspective.

Occupational profiles of the graduates:

• Developing and testing products in the industry as well as marketing and post-marketing support and managerial tasks

• Research, education, and specialist duties in academia and research institutes

• Consulting on the use and procurement of products, evaluation of performance, maintenance, customization of appliances to clinical and research needs in health care units

• Public official tasks related to the quality control, and management, and establishment of safety standards

Students applying for the programme must possess an applicable B.Sc. degree in biomedical engineering, biophysics, physics, computer engineering, computer science, information technology, electrical engineering, control engineering, mechanical engineering, or other related fields.

Email Now



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X