• University of Surrey Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Ulster University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
Cranfield University Featured Masters Courses
Staffordshire University Featured Masters Courses
Cranfield University Featured Masters Courses
Swansea University Featured Masters Courses
0 miles
Engineering×

Teesside University Masters Degrees in Engineering

We have 19 Teesside University Masters Degrees in Engineering

  • Engineering×
  • Teesside University×
  • clear all
Showing 1 to 15 of 19
Order by 
This MSc programme offers you an advanced level of study in specific aspects of mechanical engineering which are in demand from industry. Read more

This MSc programme offers you an advanced level of study in specific aspects of mechanical engineering which are in demand from industry. You study develop knowledge and key skills in CAD/CAM and Product Development, Finite Element Methods and Machine Design and options available include Automotive Engineering and Vehicle Design, Manufacturing Systems, Project Management and Enterprise, Supply Chain Management and Applied Continuum Mechanics.

Course details

There are three routes you can select from to gain a postgraduate Master’s award:

  • MSc Mechanical Engineering – one year full time
  • MSc Mechanical Engineering – two years part time
  • MSc Mechanical Engineering (with Advanced Practice) – two years full time

The one-year programme is a great option if you want to gain a traditional MSc qualification – you can find out more here. This two-year master’s degree with advanced practice enhances your qualification by adding to the one-year master’s programme an internship, research or study abroad experience.

Professional accreditation

Our one-year MSc Mechanical Engineering is accredited to CEng level by the Institution of Mechanical Engineers under licence from the UK regulator, the Engineering Council. Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). [include Engineering Council logo, Institution of Mechanical Engineers logo]

The accredited Masters-level award will provide you with the underpinning knowledge, understanding and skills in preparation for your registration as a Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

The two-year MSc Mechanical Engineering with Advanced Practice incorporates all the elements of the one-year MSc and adds to these the advanced practice module. The new title is being prepared for formal recognition as accredited title. 

What you study

For the MSc with advanced practice, you complete 120 credits of taught modules, a 60-credit master’s research project and 60 credits of advanced practice.

Course structure

Core modules

  • CAD/CAM and Product Developments
  • Finite Element Methods
  • Machine Design
  • Practical Health and Safety Skills
  • Project Management and Enterprise
  • Research and Study Skills
  • Research Project (Advanced Practice)

and two optional modules

  • Applied Continuum Mechanics
  • Automotive Engineering and Vehicle Design
  • Manufacturing Systems
  • Supply Chain Management

Advanced Practice options

  • Research Internship
  • Study Abroad
  • Vocational Internship

Modules offered may vary.

Teaching

How you learn

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems. 

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

In addition to the taught sessions, you undertake a substantive MSc research project and the Advanced Practice module. This module enables you to experience and develop employability or research attributes and experiential learning opportunities in either an external workplace, internal research environment or by studying abroad. You also critically engage with either external stakeholders or internal academic staff, and reflect on your own personal development through your Advanced Practice experience.

How you are assessed

Assessment varies from module to module. It may include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Your Advanced Practice module is assessed by an individual written reflective report (3,000 words) together with a study or workplace log, where appropriate, and through a poster presentation.

Employability

Mechanical engineers typically work in structural engineering, research and development, automotive engineering and design, the aerospace industry, manufacturing, processing and chemical industries as well as management positions.



Read less
Teesside is a major European centre for the chemical and petroleum processing sector and our MSc helps you gain knowledge and develop skills with industrial relevance. Read more

Teesside is a major European centre for the chemical and petroleum processing sector and our MSc helps you gain knowledge and develop skills with industrial relevance. Petroleum reservoir engineering, well drilling, petroleum chemistry and economics of the oil and gas sector are just some of the topics covered.

Course details

There are three routes you can select from to gain a postgraduate Master’s award:

  • MSc Petroleum Engineering – one year full time
  • MSc Petroleum Engineering – two years part time
  • MSc Petroleum Engineering (with Advanced Practice) two years full time

The one-year programme is a great option if you want to gain a traditional MSc qualification – you can find out more here. This two-year master’s degree with advanced practice enhances your qualification by adding to the one-year master’s programme an internship, research or study abroad experience.

The MSc Petroleum Engineering (with Advanced Practice) offers you the chance to enhance your qualification by completing an internship, research or study abroad experience in addition to the content of the one-year MSc.

The programme of lectures and project work encompasses a range of petroleum fundamentals, pertinent to the modern petroleum industry. Project work provides an opportunity for ideas and methods, assimilated through lectures and tutorials, to be applied to real field evaluation and development design problems.

Professional accreditation

Our one-year MSc Petroleum Engineering course is accredited by the Energy Institute under licence from the Engineering Council. This means that it meets the requirements for further learning for Chartered Engineer (CEng) under the provisions of UK-SPEC. 

By completing this professionally accredited MSc you could benefit from an easier route to professional membership or chartered status, and it can help improve your job prospects and enhance your career. Some companies show preference for graduates who have a professionally accredited qualification. The earning potential of chartered petroleum engineers can exceed £100,000 a year.

The two-year MSc Petroleum Engineering with Advanced Practice incorporates all the elements of the one-year MSc and adds to these the advanced practice module. The new title is being prepared for formal recognition as accredited title. 

Teesside University Society of Petroleum Engineering student chapter

Our Society of Petroleum Engineering (SPE) student chapter is one of only nine in the UK. SPE is the largest individual member organisation serving managers, engineers, scientists and other professionals worldwide in the upstream segment of the oil and gas industry. Through our SPE chapter we can invite professional speakers from industry, and increase industrial networking opportunities for students.

What you study

For the MSc with advanced practice, you complete 120 credits of taught modules, a 60-credit master’s research project and 60 credits of advanced practice.

You select your master’s research project from titles suggested by either industry or our academic staff but you may also, with your supervisor’s agreement, suggest your own titles. 

Student projects

Here are some examples of the Major Project module developed by our MSc Petroleum Engineering students.

View the projects

Course structure

Core modules

  • Drill Engineering and Well Completion
  • Hydrocarbon Production Engineering
  • Material Balance and Recovery Mechanisms
  • Petroleum Chemistry
  • Petroleum Economics and Simulation
  • Petroleum Reservoir Engineering
  • Practical Health and Safety Skills
  • Research and Study Skills
  • Research Project (Advanced Practice)

Advanced Practice options

  • Research Internship
  • Study Abroad
  • Vocational Internship

Modules offered may vary.

Employability

This course provides specialist education tailored to the upstream and downstream petroleum industry. The relevance of this education, combined with our careful selection of candidates, has encouraged oil and gas companies to target our graduates for recruitment over the years.

The petroleum industry is subject to dramatic changes of fortune over time, with the oil price capable of very rapid rates of change in either direction. Petroleum, however, remains the dominant source of energy with current world production of oil and gas at record rates. In this environment, companies face increasing technological and commercial challenges to keep their wells flowing and are increasingly dependent on input from petroleum engineers and geoscientists. 

It is widely recognised that a steady influx of fresh people and ideas is vital for the longer-term success and stability of an organisation. As a result, it is expected that recruitment will continue, especially if you have the motivation and appropriate qualifications.



Read less
Our MSc programmes are ideal if you are a graduate or professional in the civil engineering, structural engineering or construction sector and want to deepen and broaden your technical knowledge and understanding of specialised areas. Read more

Our MSc programmes are ideal if you are a graduate or professional in the civil engineering, structural engineering or construction sector and want to deepen and broaden your technical knowledge and understanding of specialised areas.

Course details

There are three routes you can select from to gain a postgraduate Master’s award:

  • MSc Civil and Structural Engineering – one year full time
  • MSc Civil and Structural Engineering – two years part time
  • MSc Civil and Structural Engineering (with Advanced Practice) – two years full time

The one-year programme is a great option if you want to gain a traditional MSc qualification – you can find out more here. This two-year master’s degree with advanced practice enhances your qualification by adding to the one-year master’s programme an internship, research or study abroad experience.

The MSc Civil and Structural Engineering (with Advanced Practice) offers you the chance to enhance your qualification by completing an internship, research or study abroad experience in addition to the content of the one-year MSc. Our MSc helps you to enhance your technical skills in various core areas of civil engineering that are in demand in the construction industry, such as advanced geotechnics and river and coastal engineering. You further develop your conceptual understanding of critical aspects of structural engineering, such as advanced structural analysis and design, and become familiar with complex analysis and design techniques, modelling the causes and solutions of problems involving the real behaviour of structures. You also acquire an advanced knowledge and understanding of the design of structures under dynamic and earthquake conditions. Advanced project planning and visualisation methods, such as building information modelling, are also integrated into the course.

Professional accreditation

Our MSc Civil and Structural Engineering is accredited by the Joint Board of Moderators (representing the ICE, IStructE, IHE and CIHT) as a technical master's. This means it meets the requirements for further learning for Chartered Engineer (CEng) under the provisions of UK-SPEC for candidates who have already acquired a CEng-accredited BEng (Hons) undergraduate first degree.

By completing this professionally accredited MSc you benefit from an easier route to professional membership or chartered status. It also helps improve your job prospects, enhancing your career and earning potential. Some companies show preference for graduates who possess a professionally accredited qualification.

The Joint Board of Moderators represents the following four professional bodies:

  • Institution of Civil Engineers
  • Institution of Structural Engineers
  • Chartered Institution of Highways and Transportation
  • Institute of Highway Engineers

The two-year MSc Civil and Structural Engineering with Advanced Practice incorporates all the elements of the one-year MSc and adds to these the advanced practice module. The new title is being prepared for formal recognition as an accredited title.

What you study

For the MSc with advanced practice, you complete 120 credits of taught modules, a 60-credit master’s research project and 60 credits of advanced practice.

Examples of past MSc research projects include:

  • Shear strength of composite and non-composite steel beam and concrete slab construction
  • Investigation into the self-healing capability of bacterial concrete
  • A review of the use of smart materials and technologies in cable stayed bridge construction
  • FRP and its use as structural components
  • Non-linear modelling of ground performance under seismic conditions

Course structure

Core modules

  • Advanced Geotechnics
  • Advanced Project Planning and Visualisation
  • Advanced Structural Analysis with Dynamics
  • Advanced Structural Design
  • Advanced Structural Engineering
  • Practical Health and Safety Skills
  • Research and Study Skills
  • Research Project (Advanced Practice)
  • River and Coastal Engineering

Advanced Practice options

  • Research Internship
  • Study Abroad
  • Vocational Internship

Modules offered may vary.

Teaching

How you learn

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems. 

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

In addition to the taught sessions, you undertake a substantive MSc research project and the Advanced Practice module. This module enables you to experience and develop employability or research attributes and experiential learning opportunities in either an external workplace, internal research environment or by studying abroad. You also critically engage with either external stakeholders or internal academic staff, and reflect on your own personal development through your Advanced Practice experience.

How you are assessed

Assessment varies from module to module. It may include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Your Advanced Practice module is assessed by an individual written reflective report (3,000 words) together with a study or workplace log, where appropriate, and through a poster presentation.

Employability

The course equips you with the relevant technical and transferrable skills to pursue a career as a civil or structural engineer or technical manager with leading multidisciplinary consultancies or contractors, as well as research and government organisations.



Read less
Instrumentation and control engineers are highly sought after in a range of industries including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure. Read more

Instrumentation and control engineers are highly sought after in a range of industries including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.

Course details

There are three routes you can select from to gain a postgraduate Master’s award:

  • MSc Instrumentation and Control Engineering - one-year full time
  • MSc Instrumentation and Control Engineering - two-years part time
  • MSc Instrumentation and Control Engineering (with Advanced Practice) – two years full time

The one-year programme is a great option if you want to gain a traditional MSc qualification – you can find out more here. This two-year master’s degree with advanced practice enhances your qualification by adding to the one-year master’s programme an internship, research or study abroad experience.

The MSc Instrumentation and Control Engineering (with Advanced Practice) offers you the chance to enhance your qualification by completing an internship, research or study abroad experience in addition to the content of the one-year MSc. This programme helps you develop your knowledge and skills in instrumentation, electronics and control engineering. And you develop your ability to synthesise information from a variety of sources and make effective decisions on complex instrumentation and control engineering problems.

What you study

For the MSc with advanced practice, you complete 120 credits of taught modules, a 60-credit master’s research project and 60 credits of advanced practice.

Examples of past MSc research projects:

  • effects of particle size on gas-solid flow measurement using dynamic electrostatic meters
  • an investigation of self-turning and predictive control with MATLAB
  • modelling and control of hot air blow rig PT326
  • wireless controlled car with data acquisition
  • BCD to 6-3-1-1 code converter design using VHDL
  • comparative evaluation of turning techniques for MPC
  • digital traffic signal controller design
  • proteus control board test site
  • design of temperature measurement system
  • control system design for stepping motor.

Course structure

Core modules

  • Data Acquisition and Signal Processing Techniques
  • Digital Control and Implementation
  • Hydrocarbon Production Engineering
  • Identification and Model Predictive Control
  • Project Management and Enterprise
  • Research and Study Skills
  • Research Project (Advanced Practice)
  • Robust Control Systems
  • Signal Conditioning and Data Processing

Advanced Practice options

  • Research Internship
  • Study Abroad
  • Vocational Internship

Modules offered may vary.

Teaching

How you learn

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems. 

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

In addition to the taught sessions, you undertake a substantive MSc research project and the Advanced Practice module. This module enables you to experience and develop employability or research attributes and experiential learning opportunities in either an external workplace, internal research environment or by studying abroad. You also critically engage with either external stakeholders or internal academic staff, and reflect on your own personal development through your Advanced Practice experience.

How you are assessed

Assessment varies from module to module. It may include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Your Advanced Practice module is assessed by an individual written reflective report (3,000 words) together with a study or workplace log, where appropriate, and through a poster presentation.

Employability

An instrumentation and control engineer may be involved in designing, developing, installing, managing and maintaining equipment which is used to monitor and control engineering systems, machinery and processes. As a graduate you can expect to be employed in a range of sectors including industries involved with oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.



Read less
Petroleum engineering is key to the functioning of the modern world, providing both energy and materials for industry. Teesside is a major European centre for the chemical and petroleum processing sector, making it an ideal location for individuals seeking to study for an MSc with industrial relevance. Read more

Petroleum engineering is key to the functioning of the modern world, providing both energy and materials for industry. Teesside is a major European centre for the chemical and petroleum processing sector, making it an ideal location for individuals seeking to study for an MSc with industrial relevance.

Course details

The programme of lectures and project work, encompasses a wide range of petroleum fundamentals, pertinent to the modern petroleum industry. Project work provides an opportunity for ideas and methods, assimilated through lectures and tutorials, to be applied to real field evaluation and development design problems. The course is applied in nature and has been designed so that on completion, you are technically well prepared for a career in industry.

Professional accreditation

Our MSc Petroleum Engineering is accredited by the Energy Institute, under licence from the Engineering Council. This means that it meets the requirements for further learning for Chartered Engineer (CEng) under the provisions of UK-SPEC.

By completing this professionally accredited MSc you could benefit from an easier route to professional membership or chartered status, and it can help improve your job prospects and enhance your career. Some companies show preference for graduates who have a professionally accredited qualification, and the earning potential of chartered petroleum engineers can exceed £100,000 a year.

Teesside University Society of Petroleum Engineering student chapter

Our Society of Petroleum Engineering (SPE) student chapter is one of only nine in the UK. SPE is the largest individual member organisation serving managers, engineers, scientists and other professionals worldwide in the upstream segment of the oil and gas industry. Through our SPE chapter we can invite professional speakers from industry, and increase the industrial networking opportunities for students. 

What you study

For the Postgraduate Diploma (PgDip) award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

You select your master’s research projects from titles suggested by either industry or our academic staff, but you may also, with your supervisor’s agreement, suggest your own titles. 

Student projects

Here are some examples of the Major Project module developed by our MSc Petroleum Engineering students.

View the projects

Course structure

Core modules

  • Drill Engineering and Well Completion
  • Hydrocarbon Production Engineering
  • Material Balance and Recovery Mechanisms
  • Petroleum Chemistry
  • Petroleum Economics and Simulation
  • Petroleum Reservoir Engineering
  • Practical Health and Safety Skills
  • Research and Study Skills

MSc candidates

  • Research Project

Modules offered may vary.

Teaching

How you learn

The course is delivered using a series of lectures, tutorials and laboratory sessions.

Our MSc Petroleum Engineering is supported by excellent laboratory and engineering machine workshop facilities including fluid flow measurement, computer modelling laboratories, other laboratories and workshops, an excellent library and computing facilities. We have invested around £150,000 in laboratory equipment particularly in within core analysis and enhanced oil recovery. 

We have several computer laboratories equipped with specialised and general-purpose software. This generous computing provision gives you extended access to industry-standard software – it allows you to develop skills and techniques using important applications. For upstream processes, Teesside University has access to educational software packages like Petrel, Eclipse, CMG, PIPESIM and Ecrin to simulate the behaviour of oil reservoirs, calculating oil in situ, and oil and gas production optimisation. As for downstream processes, you can use HYSYS to test different scenarios to optimise plant designs. 

Petroleum Experts Ltd has donated to Teesside University a network system and 10 educational licences for the IPM suite (Integrated Production Modelling software) which includes Prosper, Gap, Mbal, Pvtp, Reveal and Resolve. This £1.3m system and software is used by our students to design complete field models including the reservoir tanks, all the wells and the surface gathering system.

Petroleum laboratory facilities

Enhanced oil recovery and core analysis laboratory

The flow through porous media, enhanced oil recovery techniques and core analysis is done in the core flooding lab. The lab is equipped with core plugging and trimming, core preparation and conventional core properties measurement equipment. At a higher level, the lab is also equipped to perform some special core analysis measurements such as fluid relative permeabilities as well as rock surface wetting quantification. 

Petrophysics laboratory

The petrophysics lab allows you to study the properties of rocks, particularly the measurement of porosity and evaluation of permeability. The lab is equipped with sieve analysis equipment to investigate grain sorting and its effect on permeability and the porosity of rocks. You are able to gauge saturation and fluid flow through porous media.

Surface characterisation laboratory

The rock surface characterisation lab is equipped with a zeta analyser to measure the rock surface electric charge. You study the rock surface wetting state, adsorption and desorption potential using digitised contact angle apparatus and thermos-gravimetric apparatus respectively.

Drilling laboratory

The drilling lab is equipped with mud measurement equipment including mud density, mud rheology and mud filtration systems to enable you to measure mud cake and formation damage. The lab highlights the importance of oilfield drilling fluids.

How you are assessed

Assessment varies from module to module. The assessment methodology could include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Employability

These courses provide specialist education tailored to the requirements of both the upstream and downstream petroleum industry. The relevance of this education combined with careful selection of candidates has encouraged oil and gas companies to target our graduates for recruitment over the years.

The petroleum industry is subject to dramatic changes of fortune over time, with the oil price capable of very rapid rates of change in either direction. Petroleum, however, remains the dominant source of energy, with current world production of oil and gas at record rates. In this environment, companies face increasing technological and commercial challenges to keep their wells flowing and are increasingly dependent on input from petroleum engineers and geoscientists. 



Read less
The programme is designed for graduates and professionals involved in the civil engineering, structural engineering and construction sectors who wish to deepen and broaden their technical knowledge and understanding of specialised areas of civil and structural engineering. Read more

The programme is designed for graduates and professionals involved in the civil engineering, structural engineering and construction sectors who wish to deepen and broaden their technical knowledge and understanding of specialised areas of civil and structural engineering.

Course details

You enhance your technical skills in various core areas of civil engineering that are in demand in the construction industry, such as advanced geotechnics and river and coastal engineering. You also further develop your conceptual understanding of critical aspects of structural engineering, such as advanced structural analysis and design, and become familiar with complex analysis and design techniques, modelling the causes and solutions of problems involving the real behaviour of structures. You also acquire an advanced knowledge and understanding of the design of structures under dynamic and earthquake conditions. Advanced project planning and visualisation methods, such as building information modelling, are also integrated into the course. The 60-credit dissertation gives you the opportunity to conduct a supervised research project developing original knowledge in a specific area of civil or structural engineering. The programme structure is divided into a combination of 10 and 20-credit taught modules, delivered over two semesters. By successfully completing these modules, you proceed to a 60-credit research project.

Starting salaries for new graduate civil and structural engineers can reach £32,000, increasing to £70,000 when a senior level is reached (prospects.ac.uk, 2015).

Professional accreditation

Our MSc Civil and Structural Engineering is accredited by the Joint Board of Moderators (representing the ICE, IStructE, IHE and CIHT) as a technical master's. This means it meets the requirements for further learning for Chartered Engineer (CEng) under the provisions of UK-SPEC for candidates who have already acquired a CEng-accredited BEng (Hons) undergraduate first degree.

By completing this professionally accredited MSc you benefit from an easier route to professional membership or chartered status. It also helps improve your job prospects, enhancing your career and earning potential. Some companies show preference for graduates who possess a professionally accredited qualification.

The Joint Board of Moderators represents the following four professional bodies:

What you study

For the Postgraduate Diploma (PgDip) award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

Examples of past MSc research projects include:

  • Shear strength of composite and non-composite steel beam and concrete slab construction
  • Investigation into the self-healing capability of bacterial concrete
  • A review of the use of smart materials and technologies in cable stayed bridge construction
  • FRP and its use as structural components
  • Non-linear modelling of ground performance under seismic conditions

Course structure

Core modules

  • Advanced Geotechnics
  • Advanced Project Planning and Visualisation
  • Advanced Structural Analysis with Dynamics
  • Advanced Structural Design
  • Advanced Structural Engineering
  • Practical Health and Safety Skills
  • Research and Study Skills
  • River and Coastal Engineering

MSc only

  • Research Project

Modules offered may vary.

Teaching

How you learn

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning, while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems. 

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. Some of the modules require using specialised technical software and practical computer-based sessions are timetabled. 

In addition to the taught sessions, you undertake a substantive MSc research project.

How you are assessed

Assessment varies from module to module. The assessment methodology could include in-course assignments, presentations or formal examinations. For your MSc project, you prepare a dissertation.

Employability

The course will equip you with the relevant technical and transferrable skills to pursue a career as a civil/structural engineer or technical manager with leading multidisciplinary consultancies, contractors, as well as research and government organisations.



Read less
This MSc programme offers you an advanced level of study in specific aspects of mechanical engineering which are in demand from industry. Read more

This MSc programme offers you an advanced level of study in specific aspects of mechanical engineering which are in demand from industry. It is an ideal bridging programme for those graduates seeking to register as a Chartered Engineer with the Institution of Mechanical Engineers.

Course details

You study the core modules in CAD/CAM and Product Development, Finite Element Methods and Machine Design and you select three additional modules from Automotive Engineering and Vehicle Design, Manufacturing Systems, Project Management and Enterprise, Supply Chain Management and Applied Continuum Mechanics.

Professional accreditation

Our MSc Mechanical Engineering is accredited to CEng level by the Institution of Mechanical Engineers under licence from the UK regulator, the Engineering Council. Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). 

The accredited Masters-level award will provide you with the underpinning knowledge, understanding and skills in preparation for your registration as a Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

What you study

For the Postgraduate Diploma (PgDip) award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

Course structure

Core modules

  • CAD/CAM and Product Developments
  • Finite Element Methods
  • Machine Design
  • Practical Health and Safety Skills
  • Project Management and Enterprise
  • Research and Study Skills

and three optional modules

  • Applied Continuum Mechanics
  • Automotive Engineering and Vehicle Design
  • Manufacturing Systems
  • Supply Chain Management

MSc candidates

  • Project

Modules offered may vary.

Teaching

How you learn

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems.

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

How you are assessed

Assessment varies from module to module. The assessment methodology could include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Employability

Mechanical engineers typically secure employment in structural engineering, research and development, automotive engineering and design, the aerospace industry, manufacturing, processing and chemical industries as well as management positions.



Read less
Instrumentation and control engineers are highly sought after in a range of industries, including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure. Read more

Instrumentation and control engineers are highly sought after in a range of industries, including oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.

Course details

This programme will help you develop your knowledge and skills in instrumentation, electronics and control engineering, and it will help you develop the ability to synthesise information from a variety of sources and make effective decisions on complex instrumentation and control engineering problems.

What you study

For the Postgraduate Diploma (PgDip) award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

Examples of past MSc research projects:

  • effects of particle size on gas-solid flow measurement using dynamic electrostatic meters
  • an investigation of self-turning and predictive control with MATLAB
  • modelling and control of hot air blow rig PT326
  • wireless controlled car with data acquisition
  • BCD to 6-3-1-1 code converter design using VHDL
  • comparative evaluation of turning techniques for MPC
  • digital traffic signal controller design
  • proteus control board test site
  • design of temperature measurement system
  • control system design for stepping motor.

Course structure

Core modules

  • Digital Control and Implementation
  • Hydrocarbon Production Engineering
  • Identification and Model Predictive Control
  • Project Management and Enterprise
  • Research and Study Skills
  • Robust Control Systems
  • Signal Conditioning and Data Processing

MSc only

  • Major Project

Modules offered may vary.

Teaching

How you learn

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems. 

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

How you are assessed

Assessment varies from module to module. The assessment methodology could include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Employability

An instrumentation and control engineer may be involved in designing, developing, installing, managing and maintaining equipment which is used to monitor and control engineering systems, machinery and processes. Graduates can expect to be employed in a wide range of sectors, including industries involved with oil and gas, petrochemicals, chemical engineering, manufacturing, research, transport and infrastructure.



Read less
This course is an ideal launchpad for graduates seeking careers in the thriving food and drink industry – an industry which is facing particularly acute skills shortages with excellent employability prospects for suitably skilled graduates. Read more

This course is an ideal launchpad for graduates seeking careers in the thriving food and drink industry – an industry which is facing particularly acute skills shortages with excellent employability prospects for suitably skilled graduates.

Course details

The food and drink sector is the largest manufacturing sector in the UK delivering 18% of the UK's total output by value. Tasked by government and the Food and Drink Federation with achieving 20% growth in productivity by 2020, the industry is developing innovative solutions to increase productivity, reduce waste and energy usage, and introduce more efficient manufacturing to reduce costs and drive competitive advantage. 

Offering both full-time and part-time study modes, this course is accessible to recent graduates and to those in employment wishing to qualify to MSc level. The blended learning methodologies used in delivering the course means that employers seeking to upskill and retain their best employees can do so with minimum time off work.

Teesside University is highly praised for its links with local and national industries and businesses such as Marlow Foods (Quorn), SK Chilled Foods and Sainsbury’s. The University is commitment to integrating with industry in the Tees Valley and has a record of producing employment-ready problem solvers and innovators. This postgraduate programme embeds key transferable skills, visits to industry and talks from industrial speakers relevant to the food and drink industries.

You may also be interested in our MSc Food Science and Biotechnology.

What you study

Course structure

Core modules

  • Food Chemistry Composition and Analysis
  • Food Manufacturing Engineering
  • Food Product Design and Manufacturing Process Development
  • Food Safety Engineering and Management

MSc only

  • Project

Modules offered may vary.

Teaching

How you learn

Making the transition to postgraduate-level study can be challenging. We provide support during the programme induction and within the Food Product Design and Manufacturing Processes module. This support helps you understand the requirements of academic study at postgraduate level, enhancing your skills in academic writing and referencing, and developing the skills necessary to operate professionally, safely and ethically in planning and implementing a research project at master’s level.

By including work-based problem-solving projects and case-study exercises this programme places an emphasis on real-world working. This helps to blend theory and knowledge in the context of business, developing the skills employers are seeking, all designed to set you on a successful career path. 

A significant feature of the programme is blended learning to provide a rich and varied learning experience. This also provides additional flexibility for learners who are working.

On campus you have access to a dedicated food product development laboratory and pilot-scale processing equipment, giving you valuable hands-on experience of both food processing and food product development. Fully equipped microbiological and chemical analysis labs enable relevant practical investigative projects, allowing you to explore a range of ingredients and food products.

How you are assessed

Your assessments test subject knowledge, independent thought and skills. They are robust, equitable and manageable and incorporate formative and summative assessments. These particular assessments have been selected to match the learning outcomes. These are:

  • exams
  • oral presentations
  • technical interviews
  • technical reports
  • laboratory reports
  • literature surveys, evaluations and summaries
  • dissertation or thesis

You are presented with an assessment schedule with details of the submission deadlines for summative assessments.

Employability

Food and drink manufacturing is vital to the UK economy. It is the single largest manufacturing sector in the UK, employing 15% of the manufacturing workforce. Food and drink manufacturing businesses make up 7% of all manufacturing businesses and buy two thirds of all the UK's agricultural produce. The industry generates 18% of total manufacturing turnover. 

To meet the demands of this dynamic sector, the industry needs to recruit more than 49,000 new skilled professionals and managers by 2022. This is great news for graduates wanting to study toward a rewarding career in a dynamic and highly innovative sector - home to some of the UK's best known brands (National Skills Academy for Food & Drink). 

Graduate careers in the food sector, include:

  • food processing engineering
  • new product development
  • quality management and food safety management
  • food production management
  • technical management.


Read less
This programme is for graduate engineers wishing to work in the electrical power industry. It develops your knowledge of electrical power and energy systems, giving you a good understanding of the latest developments and techniques within the electrical power industry. Read more

This programme is for graduate engineers wishing to work in the electrical power industry. It develops your knowledge of electrical power and energy systems, giving you a good understanding of the latest developments and techniques within the electrical power industry.

Course details

The programme is centred around three major themes:

  • electrical power networks with emphasis on conventional networks, smart grids, high voltage direct current transmission and asset management of network infrastructure
  • renewable energies with emphasis on wind and solar power
  • power electronics with emphasis on power electronic convertors in converting and controlling power flows in electrical networks and renewable energy systems.

There are three routes you can select from to gain a postgraduate Master’s award:

  • MSc Electrical Power and Energy Systems – one year full time
  • MSc Electrical Power and Energy Systems – two years part time
  • MSc Electrical Power and Energy Systems (with Advanced Practice) – two years full time

The one-year programme is a great option if you want to gain a traditional MSc qualification – you can find out more here. This two-year master’s degree with advanced practice enhances your qualification by adding to the one-year master’s programme an internship, research or study abroad experience.The MSc Electrical Power and Energy Systems (with Advanced Practice) offers you the chance to enhance your qualification by completing an internship, research or study abroad experience in addition to the content of the one-year MSc.

What you study

For the MSc with advanced practice, you complete 120 credits of taught modules, a 60-credit master’s research project and 60 credits of advanced practice.

Course structure

Core modules

  • Asset Management
  • Data Acquisition and Signal Processing Techniques
  • Emerging Transmission Systems
  • Power Electronics
  • Practical Health and Safety Skills
  • Project Management and Enterprise
  • Renewable Energy Conversion Systems
  • Research and Study Skills
  • Research Project (Advanced Practice)
  • Smart Power Distribution

Advanced Practice options

  • Research Internship
  • Study Abroad
  • Vocational Internship

Modules offered may vary.

Teaching

How you learn

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems. 

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

In addition to the taught sessions, you undertake a substantive MSc research project and the Advanced Practice module. This module enables you to experience and develop employability or research attributes and experiential learning opportunities in either an external workplace, internal research environment or by studying abroad. You also critically engage with either external stakeholders or internal academic staff, and reflect on your own personal development through your Advanced Practice experience.

How you are assessed

Assessment varies from module to module. It may include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Your Advanced Practice module is assessed by an individual written reflective report (3,000 words) together with a study or workplace log, where appropriate, and through a poster presentation.

Employability

As an electrical power and energy systems engineer you can be involved in designing, constructing, commissioning and lifecycle maintenance of complex energy production, conversion and distribution systems. 

Your work can include energy storage systems, management and efficient use of energy in building, manufacturing and processing systems. You can also be involved in work relating to the environmental and economic impact of energy usage.

Examples of the types of jobs you could be doing include:

  • designing new electrical transmission and distribution systems
  • managing maintenance and repair
  • managing operations of existing systems
  • managing operations of a wind turbine farm
  • analysing the efficiency of hydroelectric power systems
  • evaluating the economic viability of new solar power installations
  • assessing the environmental impact of energy systems.


Read less
This programme is for graduate engineers wishing to work in the electrical power industry. It develops your knowledge of electrical power and energy ystems, giving you a good understanding of the latest developments and techniques within the electrical power industry. Read more

This programme is for graduate engineers wishing to work in the electrical power industry. It develops your knowledge of electrical power and energy ystems, giving you a good understanding of the latest developments and techniques within the electrical power industry.

Course details

The programme is centred around three major themes:

  • electrical power networks with emphasis on conventional networks, smart grids, high voltage direct current transmission and asset management of network infrastructure
  • renewable energies with emphasis on wind and solar power
  • power electronics with emphasis on power electronic convertors in converting and controlling power flows in electrical networks and renewable energy systems.

What you study

For the postgraduate diploma (PgDip) award you must successfully complete 120 credits of taught modules. 

For MSc students

For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

Course structure

Core modules

  • Asset Management
  • Emerging Transmission Systems
  • Power Electronics
  • Practical Health and Safety Skills
  • Project Management and Enterprise
  • Renewable Energy Conversion Systems
  • Research and Study Skills
  • Smart Power Distribution

MSc only

  • Major Project

Modules offered may vary.

Teaching

How you learn

You learn through lectures, tutorials and practical sessions. Lectures provide the theoretical underpinning while practical sessions give you the opportunity to put theory into practice, applying your knowledge to specific problems. 

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. In addition to the taught sessions, you undertake a substantive MSc research project.

How you are assessed

Assessment varies from module to module. The assessment methodology could include in-course assignments, design exercises, technical reports, presentations or formal examinations. For your MSc project you prepare a dissertation.

Employability

As an electrical power and energy systems engineer you can be involved in designing, constructing, commissioning and lifecycle maintenance of complex energy production, conversion and distribution systems. 

Your work could include energy storage systems, management and efficient use of energy in building, manufacturing and processing systems.

You could also be involved in work relating to the environmental and economic impact of energy usage.

Examples of the types of jobs you could be doing include:

  • designing new electrical transmission and distribution systems
  • managing maintenance and repair
  • managing operations of existing systems
  • managing operations of a wind turbine farm
  • analysing the efficiency of hydroelectric power systems
  • evaluating the economic viability of new solar power installations
  • assessing the environmental impact of energy systems.


Read less
This programme is appropriate for you if are seeking to develop the skills and confidence to address the critical global challenges of energy and diminishing natural resources. Read more

This programme is appropriate for you if are seeking to develop the skills and confidence to address the critical global challenges of energy and diminishing natural resources. Clean energy, optimal use of resources and the economics of climate change are the key issues facing society, and form the fundamental themes of this programme.

Course details

You explore the world’s dependency on hydrocarbon-based resources, together with strategies and technologies to decarbonise national economies. The course examines global best practice, government policies, industrial symbiosis and emerging risk management techniques. You also address the environmental, economic and sociological (risk and acceptability) impacts of renewable energy provision and waste exploitation as central elements. 

The programme develops the problem-solvers and innovators needed to face the enormous challenges of the 21st century - those who can play key roles in driving energy and environmental policies, and in formulating forward-looking strategies on energy use and environmental sustainability at corporate, national and global scales.

What you study

For the PgDip award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete the 120 credits of taught modules and a 60-credit master's research project. 

Energy, environment, risk managing projects, sustainability and integrated waste management are the main foci of the programme, but you also explore the financial aspects of energy and environmental management. Economics is integral to the development of policies and is often a key influencing factor.

This programme aims to develop a comprehensive knowledge and understanding of the role and place of energy in the 21st century and the way the environment impinges on the types of energy used and production methods. It also aims to investigate the environment as it is perceived, and contextualise its actual importance to mankind. Specific objectives for this course are to establish the financial validity for the pursuit of alternative energy forms and management of the environment.

You are encouraged to take up opportunities of voluntary placements with local industries to conduct real-world research projects. These placements are assessed in line with the assessment criteria and learning outcomes of the Project module. 

Examples of past MSc research projects

  • The taxonomy of facilitated industrial symbioses
  • Assessment of the climate change impacts of the Tees Valley
  • Exploring the links between carbon disclosure and carbon performance
  • Hydrothermal carbonisation of waste biomass
  • Quantifying the impact of biochar on soil microbial ecology
  • Potential for biochar utilisation in developing rural economies
  • Carbon trading opportunities for renewable energy projects in developing countries
  • Exploring the potential for wind energy in Libya
  • Demand and supply potential of solar panel installations
  • A feasibility study of the application of zero-carbon retrofit technologies in building communal areas
  • Energy recovery from abandoned oil wells through geothermal processes

Course structure

Core modules

  • Concepts of Sustainability
  • Economics of Climate Change
  • Energy and Global Climate Change
  • Global Energy Policy
  • Integrated Waste Management and Exploitation
  • Project
  • Research Methods and Proposal

Modules offered may vary.

Teaching

How you learn

The course provides a number of contact teaching and assessment hours (through lectures, tutorials, projects, assignments), but you are also expected to spend time on your own, called 'self-study' time, to review lecture notes, prepare course work assignments, work on projects and revise for assessments. For example, each 20-credit module typically has around 200 hours of learning time. 

In most cases, around 60 hours are spent in lectures, tutorials and in practical exercises. The remaining learning time is for you to gain a deeper understanding of the subject. Each year of full-time study consists of modules totalling 180 credits; hence, during one year of full-time study a student can expect to have 1,800 hours of learning and assessment.

How you are assessed

Modules are assessed by a variety of methods including examination and in-course assessment with some utilising other approaches such as group-work or verbal/poster presentations.

Employability

Work placement

There may be short-term placement opportunities for some students, particularly during the project phase of the course. This University is also in the process of seeking accreditation for the Waste Management module from the Chartered Institution of Wastes Management.

Career opportunities

Successful graduates from this course are well placed to find employment. As an energy and environmental manager, you might find yourself in a role responsible for overseeing the energy and environmental performance of private, public and voluntary sector organisations, as well as in a wide range of engineering industries.

Energy and environmental managers examine corporate activities to establish where improvements can be made and ensure compliance with environmental legislation across the organisation. You might be responsible for reviewing the whole operation, carrying out energy and environmental audits and assessments, identifying and resolving energy and environmental problems and acting as agents of change. Your role could include the training of the workforce to develop the ability to recognise their own contributions to improved energy and environmental performance.

Your role may also include the development, implementation and monitoring of energy and environmental strategies, policies and programmes that promote sustainable development at corporate, national or global levels.



Read less
This course is ideal if you are intending to pursue a management career in the oil and gas industry, or if you are already working in the sector and would like to develop management skills and knowledge at master’s level. Read more

This course is ideal if you are intending to pursue a management career in the oil and gas industry, or if you are already working in the sector and would like to develop management skills and knowledge at master’s level. Graduates from a range of technical, non-technical and commercial backgrounds are eligible to apply.

Course details

These courses broaden your technical skills in essential areas directly relevant to the oil and gas sector. It has several optional themes to direct you into specialist areas of knowledge such as project management, economics and finance, international human resources management, and environmental management. The 60-credit dissertation module allows you to conduct a supervised research project developing original knowledge in a specific area of oil and gas management. Teesside is a major European centre for the chemical and petroleum processing sector, making it an ideal location to study this field. The oil and gas industry is well represented with a range of internationally recognised companies operating in the region.

The programme structure is divided into a combination of 10 and 20-credit taught modules delivered over two semesters. Following successful completion of these modules, you proceed to a 60-credit research project.

What you study

For the postgraduate diploma (PgDip) award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete 120 credits of taught modules and a 60-credit master's research project.

Course structure

Core modules

  • Global Oil and Gas Industry
  • Oil and Gas Economics and Contracts
  • Practical Health and Safety Skills
  • Project Management and Enterprise
  • Quality Health Safety and Environment
  • Research and Study Skills

Project management options

  • Quality and Supply Chain Management
  • Risk Management in Projects

Economics and finance options

  • Global Environment and Strategy
  • Managing Operations and Finance

International HR management options

  • Managing Change
  • Managing People in Organisations

Energy and environment options

  • Economics of Climate Change
  • Global Energy Policy

MSc only

  • Research Project

Modules offered may vary.

Teaching

The course is delivered through a series of lectures, tutorials and computer laboratory sessions. The course is jointly delivered by the School of Science & Engineering and the School of Social Sciences, Business & Law.

Lectures convey substantial elements of the subject content, provide explanations of complex concepts, and set the scene for your independent learning. 

Tutorials and seminars provide a context for interactive learning and allow you to explore relevant topics in depth. 

Some of the modules require specialised technical software and practical computer-based sessions are timetabled. You are supported in technical modules by excellent laboratory and computing facilities.

Coursework may include technical reports, analysis and design calculations, essays, project and design exercises and verbal presentations. Some of the modules are assessed by formal examinations.

Employability

The course equips you with the relevant technical skills to pursue a career as technical manager in the oil and gas sector in consultancies, contracting companies and government organisations.



Read less
This MSc Energy and Environmental Management (with Advanced Practice) course is ideal if are seeking to develop your skills and confidence to address the critical global challenges of energy and diminishing natural resources. Read more

This MSc Energy and Environmental Management (with Advanced Practice) course is ideal if are seeking to develop your skills and confidence to address the critical global challenges of energy and diminishing natural resources. Clean energy, optimal use of resources and the economics of climate change are the key issues facing society, and form the fundamental themes of this programme.

Course details

You explore the world’s dependency on hydrocarbon-based resources, together with strategies and technologies to decarbonise national economies. This course examines global best practice, government policies, industrial symbiosis and emerging risk management techniques. You also address the environmental, economic and sociological (risk and acceptability) impacts of renewable energy provision and waste exploitation as central elements.There are three routes you can select from to gain a postgraduate Master’s award:

  • MSc Energy and Environmental Management – one year full time
  • MSc Energy and Environmental Management – two years part time
  • MSc Energy and Environmental Management – two years full time

The one-year programme is a great option if you want to gain a traditional MSc qualification – you can find out more here. This two-year master’s degree with advanced practice enhances your qualification by adding to the one-year master’s programme an internship, research or study abroad experience.The MSc Energy and Environmental Management (with Advanced Practice) offers you the chance to enhance your qualification by completing an internship, research or study abroad experience in addition to the content of the one-year MSc. This two-year programme is an opportunity to enhance your qualification by spending one semester completing a vocational internship, research internship or by studying abroad. Although we can’t guarantee an internship, we can provide you with practical support and advice on how to find and secure your own internship position. A vocational internship is a great way to gain work experience and give your CV a competitive edge. Alternatively, a research internship develops your research and academic skills as you work as part of a research team in an academic setting – ideal if you are interested in a career in research or academia. A third option is to study abroad in an academic exchange with one of our partner universities. This option does incur additional costs such as travel and accommodation. You must also take responsibility for ensuring you have the appropriate visa to study outside the UK, where relevant.

What you study

For the MSc with advanced practice, you complete 120 credits of taught modules, a 60-credit master’s research project and 60 credits of advanced practice.

Energy, environment, risk managing projects, sustainability and integrated waste management are emphasised on the programme, but you also explore the financial aspects of energy and environmental management. Economics is integral to developing policies and is often a key influencing factor.

You develop a comprehensive knowledge and understanding of the role and place of energy in the 21st century, and how the environment impinges on the types of energy used and the way they are produced. You investigate the environment as it is perceived, and contextualise its actual importance to mankind. Specific objectives for this course are to establish the financial validity of pursing alternative energy forms and managing the environment.

Examples of past MSc research projects

  • The taxonomy of facilitated industrial symbioses
  • Assessment of the climate change impacts of the Tees Valley
  • Exploring the links between carbon disclosure and carbon performance
  • Hydrothermal carbonisation of waste biomass
  • Quantifying the impact of biochar on soil microbial ecology
  • Potential for biochar utilisation in developing rural economies
  • Carbon trading opportunities for renewable energy projects in developing countries
  • Exploring the potential for wind energy in Libya
  • Demand and supply potential of solar panel installations
  • A feasibility study of the application of zero-carbon retrofit technologies in building communal areas
  • Energy recovery from abandoned oil wells through geothermal processes

Course structure

Core modules

  • Concepts of Sustainability
  • Data Acquisition and Signal Processing Techniques
  • Economics of Climate Change
  • Energy and Global Climate Change
  • Global Energy Policy
  • Integrated Waste Management and Exploitation
  • Research Methods and Proposal
  • Research Project (Advanced Practice)

Advanced Practice options

  • Research Internship
  • Study Abroad
  • Vocational Internship

Modules offered may vary.

Teaching

How you learn

You learn through a variety of teaching methods including lectures, tutorials, projects and assignments. You are also expected to participate in self-directed study, to review lecture notes, prepare assignments, work on projects and revise for assessments. Each 20-credit module typically has around 200 hours of learning time. 

You usually spend around 60 hours in lectures, tutorials and in practical exercises over the duration of the course. The remaining learning time is for you to gain a deeper understanding of the subject. Each year of full-time study consists of modules totalling 180 credits. During one year of full-time study you can expect to have 1,800 hours of learning and assessment.

How you are assessed

Modules are assessed by a variety of methods including exams and in-course assessment with some using other approaches such as group work, or verbal or poster presentations. 

Your Advanced Practice module is assessed by an individual written reflective report (3,000 words) together with a study or workplace log, where appropriate, and through a poster presentation.

Employability

Career opportunities

Successful graduates from this course are well-placed to find employment. As an energy and environmental manager, you might find yourself responsible for overseeing the energy and environmental performance of a private, public or voluntary sector organisation, or in one of a wide range of engineering industries.

Work placement

There may be short-term placement opportunities for some students, particularly during the project phase of the course. This University is also in the process of seeking accreditation for the Waste Management module from the Chartered Institution of Wastes Management.



Read less
The MSc Advanced Home Futures course is designed to revolutionise the building and construction of houses and homes. It was developed adhering closely to TV architect George Clarke’s MOBIE modular building concept and advanced home construction principles. Read more

The MSc Advanced Home Futures course is designed to revolutionise the building and construction of houses and homes. It was developed adhering closely to TV architect George Clarke’s MOBIE modular building concept and advanced home construction principles.

Course Details

This course places an emphasis on the innovative design and construction of new homes, conceptualising prototypes of how we will live in the future and the exciting new materials and building techniques that are becoming available. 

You develop knowledge of housing design and are introduced to the role of CAD, BIM and model making. These are all developed alongside a multidisciplinary approach to understanding the housing provision for health, wellbeing and universal needs creating a learning experience that disrupts and challenges the concept of ‘home’ as we traditionally know it. 

Hosted by the School of Science, Engineering & Design this course has academic input drawn from across the University to consider housing design, materials and technology, the role of the home in health and wellbeing and in society, and methods of effectively managing projects and leading change. You learn about concepts of sustainability, design thinking, design processes and technological innovations and you are challenged to develop new ideas and approaches to the housing and homes for the future. 

This course emphasises group work and collaborative learning, and mixes practical and theoretical experiences. 

George Clarke’s social enterprise, the Ministry of Building, Innovation, Education (MOBIE), is kickstarting a fundamental change to the building industry and our courses have been designed to adhere closely to the modular building concept and advanced home construction principles of MOBIE.

What you study

Course structure

Core modules

  • Future Home Design Project
  • Future Houses
  • Future Thinking Technologies
  • House and Home
  • Managing Innovation

Modules offered may vary.

Teaching

How you learn

You study four 30-credit modules and then work on a 60-credit project. 

How you are assessed

You are assessed within each module through a variety of methods including writing reports, creating artefacts and presentations. Each module is led by a different academic School within the University to embed the culture of multidisciplinarity into the course.

Employability

You are challenged to develop new ideas and approaches to housing and homes for the future. Graduate career opportunities exist primarily in the home design and construction industry, but also in town and social housing planning and management.



Read less

Show 10 15 30 per page



Cookie Policy    X