• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
King’s College London Featured Masters Courses
FindA University Ltd Featured Masters Courses
Queen Mary University of London Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Loughborough University Featured Masters Courses
0 miles
Engineering×

Rochester Institute of Technology USA, Full Time Masters Degrees in Engineering

  • Engineering×
  • Rochester Institute of Technology USA×
  • Full Time×
  • clear all
Showing 1 to 15 of 22
Order by 
See the Department website - http://www.rit.edu/kgcoe/program/sustainable-engineering-0. Sustainable engineering refers to the integration of social, environmental, and economic considerations into product, process, and energy system design methods. Read more
See the Department website - http://www.rit.edu/kgcoe/program/sustainable-engineering-0

Sustainable engineering refers to the integration of social, environmental, and economic considerations into product, process, and energy system design methods. Additionally, sustainable engineering encourages the consideration of the complete product and process lifecycle during the design effort. The intent is to minimize environmental impacts across the entire lifecycle while simultaneously maximizing the benefits to social and economic stakeholders. The master of engineering in sustainable engineering is multidisciplinary and managed by the industrial and systems engineering department.

The program builds on RIT’s work in sustainability research and education and offers students the flexibility to develop tracks in areas such as renewable energy systems, systems modeling and analysis, product design, and engineering policy and management. The program is offered on campus, and available on a full- or part-time basis.

Educational objectives

The program is designed to accomplish the following educational objectives:

- Heightened awareness of issues in areas of sustainability (e.g., global warming, ozone layer depletion, deforestation, pollution, ethical issues, fair trade, gender equity, etc.).

- Clear understanding of the role and impacts of various aspects of engineering (design, technology, etc.) and engineering decisions on environmental, societal, and economic problems. Particular emphasis is placed on the potential trade-offs between environmental, social, and economic objectives.

- Strong ability to apply engineering and decision-making tools and methodologies to sustainability-related problems.

- Demonstrated capacity to distinguish professional and ethical responsibilities associated with the practice of engineering.

Plan of study

Technical in nature, the program equips engineers with the tools they need to meet the challenges associated with delivering goods, energy, and services through sustainable means. In addition to basic course work in engineering and classes in public policy and environmental management, students are required to complete a capstone project directly related to sustainable design challenges impacting society. Many of these projects can be incorporated into sustainability themed research by RIT faculty in the areas of fuel-cell development, life-cycle engineering, and sustainable process implementation.

Students must successfully complete a total of 36 credit hours through course work and a capstone project. This program is designed to be completed in three semesters.

Curriculum

- First Year

Fundamentals of Sustainable Engineering
Engineering of Systems I
Renewable Energy Systems
Lifecycle Assessment
Engineering Elective

- Second Year

Engineering Elective
Social Context Elective
Technology Elective
Engineering Capstone

Read less
Sustainable engineering refers to the integration of social, environmental, and economic considerations into product, process, and energy system design methods. Read more
Sustainable engineering refers to the integration of social, environmental, and economic considerations into product, process, and energy system design methods. Additionally, sustainable engineering encourages the consideration of the complete product and process lifecycle during the design effort. The intent is to minimize environmental impacts across the entire lifecycle while simultaneously maximizing the benefits to social and economic stakeholders. The MS in sustainable engineering is multidisciplinary and managed by the industrial and systems engineering department.

The program builds on RIT’s work in sustainability research and education and offers students the flexibility to develop tracks in areas such as renewable energy systems, systems modeling and analysis, product design, and engineering policy and management. Course work is offered on campus and available on a full- or part-time basis.

Educational objectives

The program is designed to accomplish the following educational objectives:

- Heighten awareness of issues in areas of sustainability (e.g., global warming, ozone layer depletion, deforestation, pollution, ethical issues, fair trade, gender equity, etc.).

- Establish a clear understanding of the role and impact of various aspects of engineering (design, technology, etc.) and engineering decisions on environmental, societal, and economic problems. Particular emphasis is placed on the potential trade-offs between environmental, social, and economic objectives.

- Strong ability to apply engineering and decision-making tools and methodologies to sustainability-related problems.

- Demonstrate a capacity to distinguish professional and ethical responsibilities associated with the practice of engineering.

Plan of study

Technical in nature, the program equips engineers with the tools they need to meet the challenges associated with delivering goods, energy, and services through sustainable means. In addition to basic course work in engineering and classes in public policy and environmental management, students are required to complete a research thesis directly related to sustainable design challenges impacting society. Many thesis projects support the sustainability-themed research being conducted by RIT faculty in the areas of fuel-cell development, life-cycle engineering, and sustainable process implementation.

Students must successfully complete a total of 33 semester credit hours of course work comprised of five required core courses; two graduate engineering electives in an area of interest such as energy, modeling, manufacturing and materials, transportation and logistics, or product design and development; one social context elective; one environmental technology elective; two semesters of Graduate Seminar I, II (ISEE-795, 796); and a thesis. This research-oriented program is designed to be completed in two years.

Curriculum

- First Year

Fundamentals of Sustainable Engineering
Engineering of Systems I
Renewable Energy Systems
Graduate Seminar I
Lifecycle Assessment
Engineering Electives
Graduate Seminar II

- Second Year

Technology Elective
Social Context Elective
Research and Thesis

Read less
See the department website - http://www.rit.edu/kgcoe/program/engineering-management. The engineering management curriculum is a combination of engineering courses from the industrial and systems engineering program and management courses from Saunders College of Business. Read more
See the department website - http://www.rit.edu/kgcoe/program/engineering-management

The engineering management curriculum is a combination of engineering courses from the industrial and systems engineering program and management courses from Saunders College of Business. The program combines technical expertise with managerial skills to focus on the management of engineering and technological enterprises. Students understand the technology involved in engineering projects and the management process through which the technology is applied. The objective is to provide a solid foundation in the areas commonly needed by managers who oversee engineers and engineering projects. In addition to industrial engineering expertise, students gain valuable knowledge in areas such as organizational behavior, finance, and accounting.

Curriculum

- First Year

Systems and Project Management
Engineering of Systems I
Cost Management in Technical Organizations
Design of Experiments
Engineering Management Elective
Elective

- Second Year

Engineering Management Electives
Electives
Engineering Capstone

Read less
The master of science degree in computer engineering provides students with a high level of specialized knowledge in computer engineering, strengthening… Read more

Program overview

The master of science degree in computer engineering provides students with a high level of specialized knowledge in computer engineering, strengthening their ability to successfully formulate solutions to current technical problems, and offers a significant independent learning experience in preparation for further graduate study or for continuing professional development at the leading edge of the discipline. The program accommodates applicants with undergraduate degrees in computer engineering or related programs such as electrical engineering or computer science. (Some additional bridge courses may be required for applicants from undergraduate degrees outside of computer engineering).

Plan of study

The degree requires 30 semester credit hours and includes Analytical Topics in Computer Engineering (CMPE-610), two core courses, four graduate electives, two semesters of graduate seminar, and the option of completing either a thesis research or a graduate project. The core courses and graduate electives provide breadth and depth of knowledge. The Computer Engineering Graduate Seminar (CMPE-795) provides students with exposure to a variety of topics presented by researchers from within RIT, industry, and other universities, and guides students to choose either a thesis or project as their culminating experience. The Project/Thesis Initiation Seminar (CMPE-796) guides students to complete their thesis proposal or project execution plan with their faculty adviser.

Students who pursue the thesis option complete nine semester credit hours of thesis research (CMPE-790) to conduct research with a faculty adviser to answer a fundamental science/engineering question that contributes to new knowledge in the field. Students are expected to formulate the problem under the faculty adviser's guidance and conduct extensive quantitative or qualitative analyses with sound methodology. Research findings should be repeatable and generalizable, with sufficient quality to make them publishable in technical conferences and/or journals. Students who pursue the project option take six semester credits of graduate electives directly related to their project deliverables and three semester credits of Graduate Project (CMPE-792) to professionally execute a project under the supervision of a faculty adviser. The project generally addresses an immediate and practical problem, a scholarly undertaking that can have tangible outcomes, where students are expected to give a presentation or demonstration of the final deliverables of the project.

Research tracks/Graduate electives

Students may select four graduate electives from within the following research tracks. Students are encouraged to choose most of their graduate electives within a single research track. At least two of the electives must be from the computer engineering department (computer engineering department courses begin with the prefix CMPE). Courses outside the lists below may be considered with approval from the department of computer engineering. Research tracks are available in the following areas (see website for research track details):
-Computer architecture
-Computer vision and machine intelligence
-Integrated circuits and systems
-Networks and security
-Signal processing, control and embedded systems
-Additional graduate-level math courses

Curriculum

Thesis and project options differ in course sequence, see website for a particular option's module information.

Other admission requirements

-Submit official transcripts (in English) from all previously completed undergraduate and graduate course work.
-Have an GPA of 3.0 or higher.
-Submit scores from the Graduate Record Exam (GRE).
-Submit two letters of reference from individuals well qualified to judge the candidate's ability for graduate study, and complete a graduate application.
-International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL) or International English Language Testing System (IELTS).

Read less
The master of science degree in materials science and engineering, offered jointly by the College of Science and the Kate Gleason College of Engineering, is designed with a variety of options to satisfy individual and industry needs in the rapidly growing field of materials. Read more
The master of science degree in materials science and engineering, offered jointly by the College of Science and the Kate Gleason College of Engineering, is designed with a variety of options to satisfy individual and industry needs in the rapidly growing field of materials.

The objectives of the program are threefold:

- With the advent of new classes of materials and instruments, the traditional practice of empiricism in the search for and selection of materials is rapidly becoming obsolete. Therefore, the program offers a serious interdisciplinary learning experience in materials studies, crossing over the traditional boundaries of such classical disciplines as chemistry, physics, and electrical, mechanical, and microelectronic engineering.

- The program provides extensive experimental courses in diverse areas of materials-related studies.

- The program explores avenues for introducing greater harmony between industrial expansion and academic training.

Plan of study

A minimum of 30 semester credit hours is required for the completion of the program. This includes five required core courses, graduate electives, and either a thesis or project. The core courses are specially designed to establish a common base of materials-oriented knowledge for students with baccalaureate degrees in chemistry, chemical engineering, electrical engineering, mechanical engineering, physics, and related disciplines, providing a new intellectual identity to those involved in the study of materials.

The program has an emphasis on experimental techniques, with one required experimental course as part of the core. Additional experimental courses are available for students who wish to pursue course work in this area. These courses are organized into appropriate units covering many aspects of the analysis of materials. This aspect of the program enhances a student’s confidence when dealing with materials-related problems.

- Electives

Elective courses may be selected from advanced courses offered by the School of Chemistry and Materials Science or, upon approval, from courses offered by other RIT graduate programs. Elective courses are scheduled on a periodic basis. Transfer credit may be awarded based on academic background beyond the bachelor’s degree or by examination, based on experience.

- Thesis/Project

Students may choose to complete a thesis or a project as the conclusion to their program. Students who pursue the thesis option take two graduate electives, complete nine semester credit hours of research, and produce a thesis paper. The project option includes four graduate electives and a 3 credit hour project.

Admission requirements

To be considered for admission to the MS program in materials science and engineering, candidates must fulfill the following requirements:

- Hold a baccalaureate degree in chemistry, physics, chemical engineering, electrical engineering, mechanical engineering, or a related field from an accredited college or university,

- Submit official transcripts (in English) from all previously completed undergraduate and graduate course work,

- Submit two letters of recommendation, and

- Complete a graduate application.

- International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL) and the Test of Written English (TWE). A minimum TOEFL score of 575 (paper-based) or 88-89 (Internet-based) is required. A 4.0 is required on the TWE. International English Language Testing System (IELTS) scores are accepted in place of the TOEFL exam. Minimum scores will vary; however, the absolute minimum score required for unconditional acceptance is 6.5. For additional information about the IELTS, please visit http://www.ielts.org. In addition, upon arrival at RIT, international students are required to take the English language exams, administered by the English Language Center. Individuals scoring below an established minimum will be referred to the center for further evaluation and assistance. These students are required to follow the center’s recommendations regarding language course work. It is important to note that this additional course work may require additional time and financial resources to complete the degree requirements. Successful completion of this course work is a requirement for the program.

Candidates not meeting the general requirements may petition for admission to the program. In such cases, it may be suggested that the necessary background courses be taken at the undergraduate level. However, undergraduate credits that make up deficiencies may not be counted toward the master’s degree.

Any student who wishes to study at the graduate level must first be admitted to the program. However, an applicant may be permitted to take graduate courses as a nonmatriculated student if they meet the general requirements mentioned above.

Additional information

- Part-time study

The program offers courses in the late afternoon and evenings to encourage practicing scientists and engineers to pursue the degree program without interrupting their employment. (This may not apply to courses offered off campus at selected industrial sites.) Students employed full time are normally limited to a maximum of two courses, or 6 semester credit hours, each semester. A student who wishes to register for more than 6 semester credit hours must obtain the permission of his or her adviser.

- Maximum limit on time

University policy requires that graduate programs be completed within seven years of the student's initial registration for courses in the program. Bridge courses are excluded.

Read less
See the Department website - http://www.rit.edu/kgcoe/program/microelectronic-engineering-1. Read more
See the Department website - http://www.rit.edu/kgcoe/program/microelectronic-engineering-1

The master of engineering in microelectronics manufacturing engineering provides a broad-based education for students who are interested in a career in the semiconductor industry and hold a bachelor’s degree in traditional engineering or other science disciplines.

Program outcomes

After completing the program, students will be able to:

- Design and understand a sequence of processing steps to fabricate a solid state device to meet a set of geometric, electrical, and/or processing parameters.

- Analyze experimental electrical data from a solid state device to extract performance parameters for comparison to modeling parameters used in the device design.

- Understand current lithographic materials, processes, and systems to meet imaging and/or device patterning requirements.

- Understand the relevance of a process or device, either proposed or existing, to current manufacturing practices.

- Perform in a microelectronic engineering environment, as evidenced by an internship.

- Appreciate the areas of specialty in the field of microelectronics, such as device engineering, circuit design, lithography, materials and processes, and yield and manufacturing.

Plan of study

This 30 credit hour program is awarded upon the successful completion of six core courses, two elective courses, a research methods course, and an internship. Under certain circumstances, a student may be required to complete bridge courses totaling more than the minimum number of credits. Students complete courses in microelectronics, microlithography, and manufacturing.

Microelectronics

The microelectronics courses cover major aspects of integrated circuit manufacturing technology, such as oxidation, diffusion, ion implantation, chemical vapor deposition, metalization, plasma etching, etc. These courses emphasize modeling and simulation techniques as well as hands-on laboratory verification of these processes. Students use special software tools for these processes. In the laboratory, students design and fabricate silicon MOS integrated circuits, learn how to utilize semiconductor processing equipment, develop and create a process, and manufacture and test their own integrated circuits.

Microlithography

The microlithography courses are advanced courses in the chemistry, physics, and processing involved in microlithography. Optical lithography will be studied through diffraction, Fourier, and image-assessment techniques. Scalar diffraction models will be utilized to simulate aerial image formation and influences of imaging parameters. Positive and negative resist systems as well as processes for IC application will be studied. Advanced topics will include chemically amplified resists; multiple-layer resist systems; phase-shift masks; and electron beam, X-ray, and deep UV lithography. Laboratory exercises include projection-system design, resist-materials characterization, process optimization, and electron-beam lithography.

Manufacturing

The manufacturing courses include topics such as scheduling, work-in-progress tracking, costing, inventory control, capital budgeting, productivity measures, and personnel management. Concepts of quality and statistical process control are introduced. The laboratory for this course is a student-run factory functioning within the department. Important issues such as measurement of yield, defect density, wafer mapping, control charts, and other manufacturing measurement tools are examined in lectures and through laboratory work. Computer-integrated manufacturing also is studied in detail. Process modeling, simulation, direct control, computer networking, database systems, linking application programs, facility monitoring, expert systems applications for diagnosis and training, and robotics are supported by laboratory experiences in the integrated circuit factory. The program is also offered online for engineers employed in the semiconductor industry.

Internship

The program requires students to complete an internship. This requirement provides a structured and supervised work experience that enables students to gain job-related skills that assist them in achieving their desired career goals.

Students with prior engineering-related job experience may submit a request for internship waiver with the program director. A letter from the appropriate authority substantiating the student’s job responsibility, duration, and performance quality would be required.

For students who are not working in the semiconductor industry while enrolled in this program, the internship may be completed at RIT. It involves an investigation or study of a subject or process directly related to microelectronic engineering under the supervision of a faculty adviser. An internship may be taken any time after the completion of the first semester, and may be designed in a number of ways. At the conclusion of the internship, submission of a final internship report to the faculty adviser and program director is required.

Read less
See the department website - http://www.rit.edu/kgcoe/program/industrial-engineering-1. The master of engineering in industrial and systems engineering focuses on the design, improvement, and installation of integrated systems of people, materials, information, equipment, and energy. Read more
See the department website - http://www.rit.edu/kgcoe/program/industrial-engineering-1

The master of engineering in industrial and systems engineering focuses on the design, improvement, and installation of integrated systems of people, materials, information, equipment, and energy. The program emphasizes specialized knowledge and skills in the mathematical, physical, computer, and social sciences together with the principles and methods of engineering analysis and design. The overarching goal of industrial and systems engineering is the optimization of the system, regardless of whether the activity engaged in is a manufacturing, distribution, or a service-related capacity. Students graduate with a variety of skills in the areas of applied statistics/quality, ergonomics/human factors, operations research/simulation, manufacturing, and systems engineering.

Curriculum

- First Year

Systems Modeling and Optimization
Engineering of Systems I
Design of Experiments
Electives

- Second Year

Electives
Engineering Capstone

Read less
See the department website - http://www.se.rit.edu/grad. The master of science in software engineering is designed to attract professionals with a formal undergraduate background in software engineering, computer science, or computer engineering and at least one year of professional experience. Read more
See the department website - http://www.se.rit.edu/grad

The master of science in software engineering is designed to attract professionals with a formal undergraduate background in software engineering, computer science, or computer engineering and at least one year of professional experience. The program’s core content ensures that graduates will possess both breadth and depth of knowledge in software engineering. Specialization tracks in software quality and design provide students with the opportunity to match their graduate education with their professional goals.

Plan of study

The program comprises 36 semester credit hours, anchored by either a thesis or a capstone project.

Admission requirements

To be considered for admission to the MS program in software engineering, candidates must fulfill the following requirements:

- Hold a baccalaureate degree from an accredited institution,

- Have a cumulative grade point average of 3.0 or higher (Prospective students from institutions that do not use the GPA scale are expected to demonstrate an equivalent level of academic accomplishment. Formal academic background in software engineering, computer science, or computer engineering is a plus.),

- Submit official transcripts (in English) of all previously completed undergraduate and graduate course work,

- Submit a professional essay (1-4 pages) describing current job (if applicable), relevant experience, and career plans,

- Submit a current resume (including descriptions of significant software projects in which the candidate participated),

- Submit two letters of recommendation, and

- Complete a graduate application.

- International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL). Minimum scores of 570 (paper-based) or 88 (Internet-based) are required. International applicants must provide Graduate Record Exam (GRE) scores. Domestic students are encouraged to provide GRE scores.

Professional experience developing software is preferred, but candidates without a background in computing will be considered. Additional bridge course work will be required, and may extend time to graduation.

Additional information

- Bridge courses

Based on the evaluation of academic and relevant experience, the graduate program director may require some applicants to successfully complete bridge courses to fill in any gaps in their background. Successful completion of bridge courses is necessary for registration in graduate-level courses.

Read less
The master of science degree in electrical engineering allows students to customize their course work while working closely with electrical engineering faculty in a contemporary, applied research area. Read more

Program overview

The master of science degree in electrical engineering allows students to customize their course work while working closely with electrical engineering faculty in a contemporary, applied research area. Students may choose among the following six options to customize their graduate program of study:
-Communication
-Control
-Digital systems
-Integrated electronics
-MEMs
-Signal and image processing

Plan of study

The MS degree is awarded upon the successful completion of a minimum of 30 semester credit hours, which includes a 6 credit hour thesis. Students have the option of doing a 3 credit hour graduate paper in place of the thesis. In this case an additional course is required. Students may also choose a course-only option with comprehensive exam (0 credits). All students are expected to attend the Electrical Engineering Graduate Seminar (EEEE-795) for every semester they are on campus.

Curriculum

Course sequence for this program differs according to focus area, see website to view a particular focus area's modules
http://www.rit.edu/programs/electrical-engineering-ms

Other admission requirements

-Submit official transcripts (in English) from all previously completed undergraduate and graduate course work.
-Have a GPA of 3.0 or higher.
-Submit scores from the Graduate Record Exam (GRE).
-Submit two letters of reference from individuals well qualified to judge the candidate's ability for graduate study, and complete a graduate application.
-International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL).
-Candidates with a bachelor of science degree in fields outside of electrical engineering may be considered for admission, however, they may be required to complete bridge courses to ensure they are adequately prepared for graduate studies in electrical engineering.

Additional information

Graduation requirements:
Students must maintain a minimum grade-point average of 3.0 or higher. Under certain circumstances, a student chooses or may be required to complete more than the minimum number of credits.

Read less
See the department website - http://www.rit.edu/kgcoe/mechanical/program/graduate-meng/overview. The master of engineering in mechanical engineering is a 30 credit hour degree program. Read more
See the department website - http://www.rit.edu/kgcoe/mechanical/program/graduate-meng/overview

The master of engineering in mechanical engineering is a 30 credit hour degree program. It is intended to be a terminal degree program designed for those who do not expect to pursue a doctoral degree but who wish to become a leader within the mechanical engineering field. This degree is particularly well-suited for students who wish to study part time, for those interested in updating their technical skills, or for those who are not focused on a research-oriented master of science thesis. A conventional thesis is not required for the program. In its place, students complete a capstone experience, which may be a design project leadership course or a well-organized and carefully chosen industrial internship. A research methods course may also fulfill the capstone experience; however, this option is primarily intended for students who are considering transitioning to the MS program in mechanical engineering. (Courses taken within the ME program are transferrable to the MS program.)

Plan of study

In addition to the two required courses, students choose three courses from 9 different focus areas and four elective courses. All full-time equivalent students are required to attend the weekly graduate seminar each semester they are on campus. Up to three courses may be taken outside the mechanical engineering department. Students may complete the program's requirements within one calendar year with summer study. Students may also augment their education through cooperative education employment opportunities. Although co-op is not a requirement of the program, it does give students an opportunity to gain employment experience within the field.

Read less
See the department website - http://www.rit.edu/kgcoe/program/microelectronic-engineering-0. Read more
See the department website - http://www.rit.edu/kgcoe/program/microelectronic-engineering-0

The objective of the master of science degree in microelectronic engineering is to provide an opportunity for students to perform graduate-level research as they prepare for entry into either the semiconductor industry or a doctoral program. The degree requires strong preparation in the area of microelectronics and requires a thesis.

Program outcomes

- Understand the fundamental scientific principles governing solid-state devices and their incorporation into modern integrated circuits.

- Understand the relevance of a process or device, either proposed or existing, to current manufacturing practices.

- Develop in-depth knowledge in existing or emerging areas of the field of microelectronics, such as device engineering, circuit design, lithography, materials and processes, and yield and manufacturing.

- Apply microelectronic processing techniques to the creation/investigation of new process/device structures.

- Communicate technical material effectively through oral presentations, written reports, and publications.

Plan of study

The MS degree is awarded upon the successful completion of a minimum of 33 semester credit hours, including a 6 credit hour thesis.

The program consists of eight core courses, two graduate electives, 3 credits of graduate seminar and a thesis. The curriculum is designed for students who do not have an undergraduate degree in microelectronic engineering. Students who have an undergraduate degree in microelectronic engineering develop a custom course of study with their graduate adviser.

- Thesis

A thesis is undertaken once the student has completed approximately 20 semester credit hours of study. Planning for the thesis, however, should begin as early as possible. Generally, full-time students should complete their degree requirements, including thesis defense, within two years (four academic semesters and one summer term).

Curriculum

- First Year

Microelectronic Fabrication
Lithographic Materials and Processes
Thin Films
Microelectronics Research Methods
Microelectronic Man.
VLS Process Modeling
Graduate Elective*
Microelectronics Research Methods

- Second Year

Graduate Elective*
MS Thesis
Microelectronics Research Methods

* With adviser approval.
Physical Modeling of Semiconductor Devices

Read less
See the department website - http://www.rit.edu/kgcoe/mechanical/program/graduate-ms/overview. The master of science degree in mechanical engineering consists of a minimum of 30 credit hours (24 credit hours of course work and 6 credit hours of thesis). Read more
See the department website - http://www.rit.edu/kgcoe/mechanical/program/graduate-ms/overview

The master of science degree in mechanical engineering consists of a minimum of 30 credit hours (24 credit hours of course work and 6 credit hours of thesis). A limited number of credit hours may be transferred from graduate courses taken outside the university, provided such courses complement a student’s proposed graduate program in the mechanical engineering department. An adviser will review course work for possible transfer credit. Upon matriculation into the MS program, the student should formulate a plan of study in consultation with an adviser.

Plan of study

The program includes core courses, focus area courses, elective courses, and a thesis. All full-time and full-time equivalent students are required to attend the weekly graduate seminar each semester they are on campus.

- Focus area courses

All students must develop a focus area of study, with prior approval from their adviser and the department head. The focus area should consist of at least 9 credit hours of graduate study in mechanical engineering and be related to the student’s technical and professional development interests. Examples of focus areas include controls, thermo/fluids, and mechanics/design/materials.

- Independent study

A student also may earn a limited number of credits by doing an independent study with guidance from a member of the graduate faculty. Areas for independent study include selected topics in applied mathematics, mechanics, thermo-fluids, and controls.

- Thesis

Students prepare and present a formal thesis proposal to their faculty adviser prior to completing their course work. An acceptable proposal – including a statement of work, extensive literature search, and proposed timeline, signed by the student and approved by their faculty adviser and department head – is required before students can register for MSMS Thesis (MECE-790). Students are required to submit a written thesis and orally present their thesis work.

International Students

International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL) or the International English Language Testing System (IELTS).

Curriculum

Engineering Analysis
Advanced Engineering Mathematics
Focus Area Courses
Electives
MSME Thesis
Graduate Seminar

Read less
See the department website - http://www.rit.edu/kgcoe/program/industrial-engineering-0. The master of science degree in industrial and systems engineering allows students to customize their course work while working closely with industrial and systems engineering faculty in a contemporary, applied research area. Read more
See the department website - http://www.rit.edu/kgcoe/program/industrial-engineering-0

The master of science degree in industrial and systems engineering allows students to customize their course work while working closely with industrial and systems engineering faculty in a contemporary, applied research area. Faculty members are currently conducting applied project and research work in the areas of contemporary manufacturing processes/systems, ergonomic/biomedical analysis, logistics and supply chain management, sustainable design and development, systems engineering/product development, and systems simulation.

Plan of study

The MS degree is awarded upon successful completion of a minimum of 30 semester credit hours of study. This includes eight courses and a 6 semester credit hour thesis. All students are required to complete at least two semesters of Graduate Seminar (ISEE-795, 796).

Curriculum

- First Year

Systems Modeling and Optimization
Engineering of Systems I
Graduate Seminar I, II
Design of Experiments
Electives

- Second Year

Electives
Research and Thesis

Read less
See the department website - https://www.rit.edu/cast/ectet/ms-telecommunications-engineering-technology. The telecommunications industry has driven technological innovation and provided outstanding career opportunities for people with the right technical and leadership skills. Read more
See the department website - https://www.rit.edu/cast/ectet/ms-telecommunications-engineering-technology

The telecommunications industry has driven technological innovation and provided outstanding career opportunities for people with the right technical and leadership skills. New services offered through the internet, mobility offered by wireless technology, and extreme capacity offered by fiber optics, as well as the evolution of policy and regulation, are shaping the telecommunication network of the future. The MS in telecommunications engineering technology focuses on developing the advanced level of skill and knowledge needed by future leaders in the industry. The program is designed for individuals who seek advancement into managerial roles in the dynamic telecommunications environment.

Plan of study

The program requires 33 semester credit hours of study and includes eight core courses that introduce essential fundamental concepts and skills. Each student is required to complete a comprehensive exam or, with faculty approval, a capstone project or a master’s thesis. The remaining credits consist of technical electives or other approved graduate courses.

Comprehensive Exam/Project/Thesis options

All students are required to complete a comprehensive exam at the conclusion of their course work. The comprehensive exam focuses on knowledge of the core competencies, theory and foundation principles, and application of this knowledge to a variety of scenarios. Students who wish to complete a graduate project or thesis under the supervision of a faculty adviser (in place of the comprehensive exam) must have the approval of the faculty and the graduate program director.

Additional information

- Transfer credit

A limited number of credit hours may be transferred from an accredited institution to the program. Please consult the department chair for more information.

- Other approved electives

All students may take three credit hours of graduate elective course work from other graduate programs subject to the approval of the graduate program director. Students often choose to include courses from Saunders College of Business, B. Thomas Golisano College of Computing and Information Sciences, or Kate Gleason College of Engineering. The number of elective credits depends on which completion strategy faculty have approved for the student, the student's choice of thesis, project, or comprehensive exam option.

- Research and cooperative education

Students have the opportunity to apply for research projects or a cooperative education experience. While not a requirement of the program, these opportunities increase the value of the program and the marketability of its graduates.

International Students

International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL). Minimum scores of 570 (paper-based), or 88-89 (Internet-based) are required. Applicants with a lower TOEFL score may be admitted conditionally and may be required to take a prescribed program in English and a reduced program course load. International applicants from universities outside the United States must submit scores from the Graduate Record Examination (GRE).

Read less
See the department website - http://www.rit.edu/cast/mmetps/graduate-programs/ms-in-manufacturing-and-mechanical-systems-integration. Read more
See the department website - http://www.rit.edu/cast/mmetps/graduate-programs/ms-in-manufacturing-and-mechanical-systems-integration

The master of science in manufacturing and mechanical systems integration is a multidisciplinary degree designed for individuals who wish to achieve competence in mechanical or manufacturing engineering through an applied course of study. Highlights of the program include foundation courses in engineering, business practices, and management functions found in many manufacturing enterprises. Students select an area of concentrated study, and a thesis, capstone, or comprehensive exam. Concentrations consisting of a three-course sequence are available in product design, automation, quality, or electronics manufacturing.

The program is offered by the department of manufacturing and mechanical engineering technology in collaboration with the Saunders College of Business and the industrial and systems engineering department and the Center for Quality and Applied Statistics within the Kate Gleason College of Engineering.

Plan of study

The program consists of 36 semester credit hours and is comprised of core courses, a concentration, electives, and a capstone project, thesis, or comprehensive exam. Students may be required to take additional prerequisite courses depending on their background and the concentration they select. The graduate director may approve the waiver of courses in the prerequisite group from graduation requirements, depending on a students’ academic and employment background. Full-time students are eligible for two co-op blocks (three months for each block) after completing two semesters of study.

- Electives

Students in the thesis option must complete one elective. Students in the capstone project option must complete two electives. Students choosing the comprehensive examination option must complete three electives. Courses selected to fulfill elective requirements must be any course from another MMET program concentration, any course outside the concentration or a graduate course from another graduate program (if approved by the graduate director and faculty member teaching the course), or any independent study course if approved by the student’s program director.

Admission requirements

To be considered for admission to the MS program in manufacturing and mechanical systems integration, candidates must fulfill the following requirements:

- Hold a baccalaureate degree (or equivalent) from an accredited institution in the field of engineering, engineering technology, or computing. Students with degrees in other disciplines will be considered on an individual basis.

- Have a minimum grade point average of 3.0. Applicants with a lower GPA will be evaluated on a case-by-case basis and may be admitted on a probationary basis. These students will have to secure a B or better average in the first three graduate courses to be considered for full admission.

- Have completed college level course work in computer programming and probability and statistics.

- Submit two professional recommendations.

- Submit official transcripts (in English) of all previously completed undergraduate and graduate course work.

- Submit a clearly written, one-page statement of purpose.

- Complete a graduate application.

- International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL). A minimum score of 550 (paper-based) or 79-80 (Internet-based) is required. International applicants must also submit scores from the Graduate Record Exam (GRE). A score of 1,200 (V&Q) and an analytical writing score of 3.5 or higher are required. Applicants with low GRE scores may be admitted conditionally; but may be required to take additional English language tests and, if required, English language courses along with a reduced program course load.

Read less

Show 10 15 30 per page



Cookie Policy    X