• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Durham University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Swansea University Featured Masters Courses
Middlesex University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Cranfield University Featured Masters Courses
University of Pennsylvania Featured Masters Courses
0 miles
Engineering×

Cardiff University, Full Time Masters Degrees in Engineering

We have 13 Cardiff University, Full Time Masters Degrees in Engineering

  • Engineering×
  • Cardiff University×
  • Full Time×
  • clear all
Showing 1 to 13 of 13
Order by 
In recent years, there has been a growing world-wide concern about environmental water management issues, including concerns about coastal and estuarine water pollution, river flooding and urban drainage, wetland and mangrove management, and ecological aspects of lakes and reservoirs, to mention but a few. Read more
In recent years, there has been a growing world-wide concern about environmental water management issues, including concerns about coastal and estuarine water pollution, river flooding and urban drainage, wetland and mangrove management, and ecological aspects of lakes and reservoirs, to mention but a few. In addressing these and other environmental challenges, engineers and environmental managers are using sophisticated numerical models for predicting complex hydrodynamic, water quality and sediment transport processes. These models are increasingly complemented with decision support software systems and a wide range of related hydroinformatics software tools.

The MSc in Civil and Water Engineering will offer you the knowledge and expertise that you need for a career as a consulting water engineer within this specialist professional area of civil engineering. The course aims to complement a relevant undergraduate degree by introducing you to hydroinformatics, computational hydraulics and environmental hydraulics, including water quality indicators and sediment transport processes in coastal, estuarine and inland waters.

The MSc is aimed at graduates in Civil Engineering, Earth Sciences, Environmental Sciences and Bio-Sciences. Good mathematical skills are an advantage. The degree programme is also aimed at engineers/scientists working in relevant areas wishing to upgrade or refresh their qualifications.

Distinctive features

• The School of Engineering received the highest rating in the UK for its research and its research impact in the Government’s latest Research Excellence Framework (REF 2014).

• The course lecturers have considerable experience of working on a wide range of practical environmental hydraulics project and their models have been mounted by over 35 companies for over 80 world-wide EIA projects and by over 45 universities in 17 countries.

• The MSc in Civil and Water Engineering is accredited by the ICE, IStructE, IHT and IHIE, as meeting the requirements for Further Learning for a Chartered Engineer under the provisions of UK-SPEC for intakes 2014-2018 inclusive, for candidates that have already acquired a CEng accredited BEng (Hons) undergraduate first degree or an IEng accredited BSc (Hons) undergraduate first degree.

Structure

The MSc in Civil and Water Engineering is run by the School of Engineering and is designed to provide specialised, postgraduate training in environmental water engineering whilst having a measure of flexibility to permit some study of related subjects in Civil and Geoenvironmental Engineering.

The aim of the programme is to enhance your engineering skills and the completion of an extended project within one of the water engineering fields forms a major part of the programme. Thus, the MSc in Civil and Water Engineering aims to complement an undergraduate degree in Civil Engineering, or similar, by introducing you to hydroinformatics, computational hydraulics and environmental hydraulics, including water quality indicator and sediment transport processes in coastal, estuarine and inland waters. You will have the opportunity to work with some of these models in an extended project. The degree programme is available on a one-year full-time basis or on a three-year part-time basis.

For a list of modules for the FULL-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-water-engineering-msc

For a list of the modules for the PART-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-water-engineering-msc-part-time

Teaching

A wide range of teaching styles will be used to deliver the diverse material forming the curriculum of the programme. You will attend lectures and participate in examples classes. You must complete 120 credits in Stage 1 in order to progress to the dissertation, for which you will be allocated a supervisor from among the teaching staff. Dissertation topics are normally chosen from a range of project titles proposed by academic staff, usually in areas of current research interest, although you will be encouraged to put forward your own project ideas.

Assessment

Assessment is conducted via coursework and examinations.

You will be required to undertake an individual research project in a specialist area of Water Engineering, leading to the preparation of a dissertation. Project work is undertaken under the direct supervision of a member of staff in one of the three participating departments.

Career prospects

The record of employment of graduates of the Cardiff University MSc in Civil and Water Engineering is excellent, with the majority of graduates joining engineering consultancies. A small number of graduates each year go on to further study, typically a PhD.

Read less
This MSc offers you the knowledge and expertise that you need to help you forge a career as a consulting geoenvironmental engineer within a multi-disciplinary professional team. Read more
This MSc offers you the knowledge and expertise that you need to help you forge a career as a consulting geoenvironmental engineer within a multi-disciplinary professional team. The course is designed to provide specialist postgraduate professional development in this emerging discipline, encompassing areas traditionally within civil engineering, earth sciences and biology.

Geoenvironmental engineering is an inclusive discipline which recognises that many environmental challenges cannot be solved by one traditional discipline alone. The solutions to environmental challenges relating to human interaction with soil, groundwater and surface water require engineers to possess a broad range of knowledge and expertise. Cardiff University's MSc in Civil and Geoenvironmental Engineering prepares you to meet these challenges.

Civil engineering, earth sciences and the life sciences are all part of the discipline of geoenvironmental engineering. As a geoenvironmental engineer you could be involved in a wide range of activities, including contaminated land management, hydrogeology, water resource management, geochemical analysis, groundwater and surface water contamination fate and transport prediction, environmental impact assessment, environmental risk assessment, and habitat management. Geoenvironmental engineers frequently work in multidisciplinary project teams and developments.

Distinctive features

• Professional practice issues are integrated with the scientific and engineering foundation of the MSc through a series of short, workshop-style training courses covering practical aspects. These short courses are delivered by recognised professional practitioners in the industry.

• The course involves an innovative partnership between the Cardiff School of Engineering, the School of Earth, Ocean and Planetary Sciences and the Cardiff School of Biosciences.

• The MSc in Civil and Geoenvironmental Engineering is accredited by the ICE, IStructE, IHT and IHIE, as meeting the requirements for Further Learning for a Chartered Engineer under the provisions of UK-SPEC for intakes 2014-2018 inclusive, for candidates that have already acquired a CEng accredited BEng (Hons) undergraduate first degree or an IEng accredited BSc (Hons) undergraduate first degree.

Structure

The degree programme is available on a one year full-time basis or on a three year part-time basis. The full-time programme is delivered over two taught semesters followed by a research period and preparation of a dissertation. The part-time course is taught over three years. On successful completion of Part 1, the taught part of the course, you will proceed to the research project and dissertation stage.

This MSc is a partnership between the School of Engineering, the School of Earth, Ocean and Planetary Science and the School of Biosciences, and is administered by the School of Engineering.

For a list of the modules taught on the FULL-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-geoenvironmental-engineering-msc

For a list of the modules taught on the PART-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-and-geoenvironmental-engineering-msc-part-time

Teaching

Part 1 of your course involves taught classes such as lectures, laboratory sessions and tutorials. You will be taught by leading international researchers in the fields of civil and geoenvironmental engineering.

A feature of the MSc in Civil and Geoenvironmental Engineering is the series of short, workshop style training courses covering practical applications, integrating professional practice issues with the scientific and engineering foundation of the course. These workshops are delivered by recognised professional practitioners in the industry.

Assessment

Achievement of learning outcomes in the majority of modules is assessed by a combination of coursework assignments, plus University examinations set in January or May. Examinations count for 60%–70% of assessment in Stage 1 of the programme, depending on the options chosen, the remainder being largely project work and pieces of coursework.

Award of an MSc requires successful completion of Stage 2, the Dissertation, with a mark of 50% or higher. Candidates achieving a 70% average may be awarded a Distinction. Candidates achieving a 60% average may be awarded a Merit. Candidates failing to qualify for an MSc may be awarded a Postgraduate Diploma for 120 credits in Stage 1. Candidates failing to complete the 120 credits required for Stage 1 may still be eligible for the award of a Postgraduate Certificate for the achievement of at least 60 credits.

Career prospects

The record of employment of graduates of the Cardiff University MSc in Civil and Geoenvironmental Engineering is excellent, with the majority of graduates joining engineering consultants. A small number of graduates each year go on to further study, typically a PhD.

Substantial industrial involvement with the design and delivery of the course ensures the continuing relevance of the MSc as preparation for professional employment work in this area.

Read less
The MSc in Civil Engineering aims to build on the knowledge and skills that you have obtained as an undergraduate and to help prepare you for a career as a consulting civil engineer across the broad spectrum of the professional discipline. Read more
The MSc in Civil Engineering aims to build on the knowledge and skills that you have obtained as an undergraduate and to help prepare you for a career as a consulting civil engineer across the broad spectrum of the professional discipline. The overall aim of this well-established course is to provide a sound scientific, technical and commercial understanding of civil engineering issues and practice. You will be introduced to the broad nature of civil engineering through the integration of knowledge from structural engineering, geotechnical engineering and water engineering. The course will also provide training in engineering research methods and will develop a range of related transferable skills. You will also develop an appreciation of the principles and activities involved in the day-to-day management of engineering business units, typical of those within which civil engineering is practised.

Graduates of this course will be able to work as professional and highly proficient engineers with the skills and expertise necessary to work in a range of careers across the field of civil engineering.

Distinctive features

• The employment record of graduates is excellent, with the majority of graduates joining engineering consultancies.

• The MSc in Civil Engineering is accredited by the ICE, IStructE, IHT and the IHIE. It meets the requirements for Further Learning for a Chartered Engineer under the provisions of UK-SPEC for intakes 2014-2018 inclusive, for candidates that have already acquired a CEng-accredited BEng (Hons) undergraduate first degree or an IEng-accredited BSc (Hons) undergraduate first degree.

• You have the opportunity to study in a research-led department taught by staff rated in the highest possible category by independent Government assessment, and with facilities commensurate with a top-class research unit.

• We encourage an open and engaging culture between students and staff.

Structure

The programme is presented as a one-year full-time Master's level programme, and is also available in part-time mode over three years.

The programme is presented in two stages:

• The taught material is delivered during the Autumn and Spring semesters. An extended project within one of the Civil Engineering fields forms a major part of the course. In Stage 1 students follow taught modules to the value of 120 credits, with a limited amount of choice between optional modules.

• Stage 2 consists of a project and dissertation module worth 60 credits.

Summative assessment is undertaken at the end of each stage (or each year if part-time).

For a list of modules for the FULL-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-engineering-msc

For a list of the modules for the PART-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/civil-engineering-msc-part-time

Teaching

A wide range of teaching styles will be used to deliver the diverse material forming the curriculum of the programme. You will attend lectures and participate in examples classes. All students must complete 120 credits in Stage 1 in order to progress to the dissertation, for which they are allocated a supervisor from among the teaching staff. Dissertation topics are normally chosen from a range of project titles proposed by academic staff, usually in areas of current research interest, although students are encouraged to put forward their own project ideas.

Assessment

Achievement of learning outcomes in the majority of modules is assessed by a combination of coursework assignments, plus University examinations set in January or May. Examinations count for 60%–70% of assessment in Stage 1 of the programme, depending on the options chosen, the remainder being largely project work and pieces of coursework.

The award of an MSc requires successful completion of Stage 2, the dissertation, with a mark of 50% or higher. Candidates achieving a 70% average may be awarded a Distinction. Candidates achieving a 60% average may be awarded a Merit. Candidates failing to qualify for an MSc may be awarded a Postgraduate Diploma for 120 credits in Stage 1. Candidates failing to complete the 120 credits required for Stage 1 may still be eligible for the award of a Postgraduate Certificate for the achievement of at least 60 credits.

Career prospects

This course's graduate employment record is excellent, with the majority of graduates joining engineering consultancies.

Read less
Tissue engineering is an ever-emerging interdisciplinary field of biomedical research, which combines life, engineering and materials sciences, to progress the maintenance, repair and replacement of diseased and damaged tissues. Read more
Tissue engineering is an ever-emerging interdisciplinary field of biomedical research, which combines life, engineering and materials sciences, to progress the maintenance, repair and replacement of diseased and damaged tissues. The Cardiff Institute of Tissue Engineering & Repair (CITER) MSc in Tissue Engineering aims to provide graduates from life sciences and clinical backgrounds with an advanced knowledge, understanding and skills in the science and practice of tissue engineering; from theoretical science, through to research translation and clinical application. The Programme provides in-depth training in this branch of biomedical science, including stem cell biology, biomaterials and tissue/organ engineering. The MSc offers a balanced combination of theory and practice; and can serve either as preparation for a PhD or as a self-contained advanced qualification in its own right. The MSc in Tissue Engineering is both lecture- and laboratory-based, and includes a number of opportunities to visit relevant clinical settings and local industrial partners. Graduates from this Programme will have a broad spectrum of knowledge and a variety of skills, making them highly attractive both to potential employers and research establishments.

Distinctive features of this course include:

• The first course of its kind in the UK, created in response to demand in the field of tissue engineering for interdisciplinary teaching.

• Excellent clinical, academic and research facilities.

• High probability of further research study and careers in tissue engineering and repair, relevant to the CITER MSc remit.

• Opportunity to study at Cardiff University, one of the UK’s major teaching and research universities.

• Opportunity to join a vibrant postgraduate community.

Structure

The CITER MSc Programme commences in September each year with Stage 1, a 6-month, taught component.

Stage 1 is taught almost entirely at a small group teaching level, supported by laboratory sessions, interactive workshops and tutorials, in addition to visits to relevant hospital clinics and local companies involved in producing tissue engineering and repair therapies. Modules are assessed by various written assignments, presentations and formal examinations.

On completing Stage 1, students undertake a 5-month, laboratory-based research project within the CITER network, between April-September (Stage 2). Projects are chosen by students from topics supplied by academic supervisors within CITER. Previous student projects have been in research areas such as embryonic or mesenchymal stem cell biology; cartilage, bone, skin or oral tissue repair; fibrosis; and biomaterials and drug delivery. Stage 2 culminates in the submission of an MSc Dissertation, based on MSc Project findings.

Core modules:

Cellular & Molecular Biology
Tissue Engineering From Concept To Clinical Practice
Research Methods
Stem Cells and Regenerative Medicine
Dissertation

Teaching

Teaching is delivered via lectures, laboratory sessions, interactive workshops and tutorials, in addition to visits to relevant hospital clinics, such as orthopaedics, nephrology and dermatology, and local companies involved in producing tissue engineering and repair therapies.

This Programme is based within the School of Dentistry and taught by academic staff from across Cardiff University and by external speakers.

All taught modules within the Programme are compulsory and students are expected to attend all lectures, laboratory sessions and other timetabled sessions. Students will receive supervision to help them complete the dissertation, but are also expected to engage in considerable independent study. Dissertation topics are normally chosen by the students from a list of options proposed by CITER academic staff in areas relevant to the MSc in Tissue Engineering.

Assessment

The 4 taught Modules within the Programme are assessed through in-course assessments, including:

Extended essays.
Oral presentations.
Poster presentations.
Statistical assignments.
Critical appraisals.
Dissertation (no more than 20,000 words).

Career prospects

After successfully completing this MSc, you should have a broad spectrum of knowledge and a variety of skills, making you highly attractive both to potential employers and research establishments.

Since its introduction in 2006, 95% of our MSc graduates have progressed onto career paths highly relevant to the CITER MSc remit. These include PhDs within CITER and at other UK, EU and USA Universities, Graduate-Entry Medicine, Specialist Registrar Training, Teaching, and positions in Industry and Clinical Laboratory settings.

Placements

You will have the opportunity to attend clinical attachments, in areas such as orthopaedics, nephrology and dermatology. Furthermore, you will also have the opportunity to visit local companies involved in producing tissue engineering and repair therapies for clinical use. These include Cell Therapy Ltd., Reneuron plc, Biomonde Ltd., and MBI Wales Ltd.

Read less
Tissue engineering is an ever-emerging interdisciplinary field of biomedical research, which combines life, engineering and materials sciences, to progress the maintenance, repair and replacement of diseased and damaged tissues. Read more
Tissue engineering is an ever-emerging interdisciplinary field of biomedical research, which combines life, engineering and materials sciences, to progress the maintenance, repair and replacement of diseased and damaged tissues. The Cardiff Institute of Tissue Engineering & Repair (CITER) MSc in Tissue Engineering aims to provide graduates from life sciences and clinical backgrounds with an advanced knowledge, understanding and skills in the science and practice of tissue engineering; from theoretical science, through to research translation and clinical application. The Programme provides in-depth training in this branch of biomedical science, including stem cell biology, biomaterials and tissue/organ engineering. The MSc offers a balanced combination of theory and practice; and can serve either as preparation for a PhD or as a self-contained advanced qualification in its own right. The MSc in Tissue Engineering is both lecture- and laboratory-based, and includes a number of opportunities to visit relevant clinical settings and local industrial partners. Graduates from this Programme will have a broad spectrum of knowledge and a variety of skills, making them highly attractive both to potential employers and research establishments.

Distinctive features of this course include:

• The first course of its kind in the UK, created in response to demand in the field of tissue engineering for interdisciplinary teaching.

• Excellent clinical, academic and research facilities.

• High probability of further research study and careers in tissue engineering and repair, relevant to the CITER MSc remit.

• Opportunity to study at Cardiff University, one of the UK’s major teaching and research universities.

• Opportunity to join a vibrant postgraduate community.

Course structure

The CITER MSc Programme commences in September each year with Stage 1, a 6-month, taught component.

Stage 1 is taught almost entirely at a small group teaching level, supported by laboratory sessions, interactive workshops and tutorials, in addition to visits to relevant hospital clinics and local companies involved in producing tissue engineering and repair therapies. Modules are assessed by various written assignments, presentations and formal examinations.

On completing Stage 1, students undertake a 5-month, laboratory-based research project within the CITER network, between April-September (Stage 2). Projects are chosen by students from topics supplied by academic supervisors within CITER. Previous student projects have been in research areas such as embryonic or mesenchymal stem cell biology; cartilage, bone, skin or oral tissue repair; fibrosis; and biomaterials and drug delivery. Stage 2 culminates in the submission of an MSc Dissertation, based on MSc Project findings.

Core modules:

Cellular & Molecular Biology
Tissue Engineering From Concept To Clinical Practice
Research Methods
Stem Cells and Regenerative Medicine
Dissertation

Teaching

Teaching is delivered via lectures, laboratory sessions, interactive workshops and tutorials, in addition to visits to relevant hospital clinics, such as orthopaedics, nephrology and dermatology, and local companies involved in producing tissue engineering and repair therapies.

This Programme is based within the School of Dentistry and taught by academic staff from across Cardiff University and by external speakers.

All taught modules within the Programme are compulsory and students are expected to attend all lectures, laboratory sessions and other timetabled sessions. Students will receive supervision to help them complete the dissertation, but are also expected to engage in considerable independent study. Dissertation topics are normally chosen by the students from a list of options proposed by CITER academic staff in areas relevant to the MSc in Tissue Engineering.

Support

All Modules within the Programme make extensive use of Cardiff University’s Virtual Learning Environment (VLE) Blackboard, on which students will find course materials and links to related materials. Students will be supervised when undertaking their dissertation. Supervision will include scheduled regular meetings to discuss progress, provide advice and guidance; and provide written feedback on draft dissertation contents.

Feedback:

Students will receive written feedback on all assessments, in addition to oral feedback on assessed oral/poster presentations.

Assessment

The 4 taught Modules within the Programme are assessed through in-course assessments, including:

Extended essays.
Oral presentations.
Poster presentations.
Statistical assignments.
Critical appraisals.
Dissertation (no more than 20,000 words).

Career prospects

After successfully completing this MSc, you should have a broad spectrum of knowledge and a variety of skills, making you highly attractive both to potential employers and research establishments.

Since its introduction in 2006, 95% of our MSc graduates have progressed onto career paths highly relevant to the CITER MSc remit. These include PhDs within CITER and at other UK, EU and USA Universities, Graduate-Entry Medicine, Specialist Registrar Training, Teaching, and positions in Industry and Clinical Laboratory settings.

Read less
This MSc offers you the knowledge and expertise for a career as a consulting structural engineer within this specialist professional area of civil engineering. Read more
This MSc offers you the knowledge and expertise for a career as a consulting structural engineer within this specialist professional area of civil engineering. It is designed to provide specialist postgraduate professional development across the areas of steel, concrete and timber design, structural dynamics, and structural mechanics. It will provide you with a sound scientific, technical and commercial understanding of structural engineering issues and practice, while training you in engineering research methods in order to develop a range of related transferable skills. It will cover the diverse nature of structural engineering through the integration of knowledge from mechanics, materials, structural analysis and structural design. You will gain new advanced level skills in engineering theory and practice related to the management of structural engineering challenges.

Distinctive features:

• The employment record of graduates is excellent, with the majority of graduates joining engineering consultancies.

• The MSc in Structural Engineering is accredited by the ICE, IStructE, IHT and IHIE as meeting the requirements for Further Learning for a Chartered Engineer under the provisions of UK-SPEC for intakes 2014-2018 inclusive, for candidates that have already acquired a CEng accredited BEng (Hons) undergraduate first degree or an IEng accredited BSc (Hons) undergraduate first degree.

• You will be learning in a research-led teaching institution taught by staff rated in the highest possible category by independent Government assessment.

• It will give you the opportunity to work in facilities commensurate with a top-class research unit.

• Available as 1 year full-time study or 3 years part-time study which provides the flexibility for you to continue working and study at the same time.

Structure

The programme is presented as a one-year full-time Master's level programme, and is also available in part-time mode over three years.

The programme is presented in two stages:

• In Stage 1 you will follow taught modules to the value of 120 credits, with a limited amount of choice between option modules.
• Stage 2 consists of a Dissertation module worth 60 credits.

Summative assessment is undertaken at the end of each stage (or each year if part-time).

For a list of modules for the FULL-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/structural-engineering-msc

For a list of the modules for the PART-TIME route, please see website:

http://www.cardiff.ac.uk/study/postgraduate/taught/courses/course/structural-engineering-msc-part-time

Teaching

A wide range of teaching styles will be used to deliver the diverse material forming the curriculum of the programme. You will attend lectures and participate in examples classes. All students must complete 120 credits in Stage 1 in order to progress to the dissertation, for which they are allocated a supervisor from among the teaching staff. Dissertation topics are normally chosen from a range of project titles proposed by academic staff, usually in areas of current research interest, although you are encouraged to put forward your own project ideas.

Assessment

Achievement of learning outcomes in the majority of modules is assessed by a combination of coursework assignments, plus University examinations set in January or May. Examinations count for 60%–70% of assessment in Stage 1 of the programme, depending on the options chosen, the remainder being largely project work and pieces of coursework.

Award of an MSc requires successful completion of Stage 2, the Dissertation, with a mark of 50% or higher. Candidates achieving a 70% average may be awarded a Distinction. Candidates achieving a 60% average may be awarded a Merit. Candidates failing to qualify for an MSc may be awarded a Postgraduate Diploma for 120 credits in Stage 1. Candidates failing to complete the 120 credits required for Stage 1 may still be eligible for the award of a Postgraduate Certificate for the achievement of at least 60 credits.

Career prospects

This course's graduate employment record is excellent, with the majority of graduates joining engineering consultancies.

Read less
As a graduate mechanical engineer, this MSc course will provide you with an advanced qualification which will enhance your career prospects and extend and update your skills and knowledge. Read more
As a graduate mechanical engineer, this MSc course will provide you with an advanced qualification which will enhance your career prospects and extend and update your skills and knowledge. The course actively encourages the understanding and practice of inter-disciplinary systems engineering thinking that brings together mechanical engineering subjects in a way that reflects the needs of industrial and academic problem solving.

The close integration of the case study and project will allow you to explore, in-depth, a chosen topic related to the course. This provides you with an individually tailored programme to meet your needs in a flexible yet focused manner, with the project seen as being the key opportunity to acquire and exercise leading edge mechanical engineering knowledge. You will be given the opportunity to show originality in applying the knowledge you acquire, and will develop an appreciation of how the boundaries of knowledge are advanced through research. You will be trained to deal with complex issues both systematically and creatively, and will be given the opportunity and encouragement to demonstrate initiative and innovation in solving challenging problems and in designing new components and systems.

The close involvement with industry, particularly at the project stage, ensures that the experience the course provides has both relevance and meaning. Lecturers delivering the modules are working with some of the world's most renowned engineering companies. Partners include Airbus, BAe Systems, Bosch, Tata Steel, Daimler, EADS, Fiat, Hewlett-Packard, IBM, Messier-Dowty, Network Rail, TWI, Parametric Technology, Physical Acoustics Ltd, Renault, Renishaw, Rolls-Royce, SAP, Siemens, Silicon Graphics, Stile Bertone, The Highways Agency, TRL, Microchip, and WS Atkins.

This degree course will prepare you for entry into careers in research or industry. In addition to technical skills, you will acquire professional skills such effective communication with technical, management and non-technical audiences, project planning, evaluation and prioritisation.

Structure

This is a one year full time MSc course beginning with a taught section worth 120 credits. The Autumn and Spring semesters utilise taught and research project based material to enable you to progress from a typical bachelor graduate standard at entry to the master’s level. The eight taught optional modules are split between these semesters to provide eighty credits of masters level study. Two twenty credit Case Study modules form both group (semester 1) and individual (semester 2) activities. This prepares you for the third section of the course where you will use your advanced skills to complete an in-depth project and prepare a dissertation in the field of Advanced Mechanical Engineering. The project and dissertation stage of your course are worth a further 60 credits.

A 10-credit module typically represents 100 hours of study in total. This may involve 24–36 hours of contact time with teaching staff. The remaining hours are intended to be for private study, coursework, revision and assessment: all students are expected to spend a significant amount of time (typically 20 hours each week) studying independently. You must keep your personal tutor, project supervisor and the Teaching Office informed of any circumstances or illnesses that might affect your capacity to attend teaching or undertake assessment.

Core modules:

Advanced Mechanical Engineering Group Research Study
Advanced Mechanical Engineering Case Study
Advanced Mechanical Engineering Project

Optional modules:

Measurement Systems
Manufacturing Informatics
Fundamentals of Nanomechanics
Tribology
Artificial Intelligence
Control
Quality and Reliability
Risk and Hazard Management in the Energy Sector
Condition Monitoring, Systems Modelling and Forecasting
Management in Industry
Thermodynamics and Heat Transfer 2
Energy Management
Advanced Robotics

Teaching

A wide range of teaching styles and mechanisms will be used to deliver the diverse material forming the curriculum of the programme. You will be expected to attend lectures and participate in tutorial classes. All students must complete 120 credits in Stage 1 in order to progress to the dissertation, for which they are allocated a supervisor from among the teaching staff. Dissertation topics are normally chosen from a range of project titles proposed by academic staff, usually in areas of current research interest, although you are encouraged to put forward your own project ideas.

Assessment

Achievement of learning outcomes in the classroom based modules is assessed by University examinations set in January and May/June. Predominantly examination-based assessment will be deployed in eight modules (80 credits) taken in Stage 1 of the programme. The balance between examination and coursework depends upon the modules selected, with the equivalent of up to six credits being available in coursework elements in individual modules, in addition to two double module (40-credit) case studies.

Award of an MSc requires successful completion of Stage 2, the Dissertation, with a mark of 50% or higher. Candidates achieving a 70% average may be awarded a Distinction. Candidates achieving a 60% average may be awarded a Merit. Candidates failing to qualify for an MSc may be awarded a Postgraduate Diploma of Higher Education for 120 credits in Stage 1. Candidates failing to complete the 120 credits required for Stage 1 may still be eligible for the award of a Postgraduate Certificate of Higher Education for the achievement of at least 60 credits.

Career prospects

The course provides master’s level training to the standard necessary to practice as a chartered professional mechanical engineer. When you graduate you will be equipped to apply for management level roles across a broad spectrum of mechanical and related engineering fields. The material presented during the course will provide an excellent foundation for any career in mechanical engineering or related discipline.

Read less
This newly developed MSc programme aims to take well qualified students (typically those having a good bachelor's degree in Manufacturing Engineering or an equivalent qualification) and to equip them with the skills they need to be employed as professional engineers across a wide range of the Manufacturing Engineering industry. Read more
This newly developed MSc programme aims to take well qualified students (typically those having a good bachelor's degree in Manufacturing Engineering or an equivalent qualification) and to equip them with the skills they need to be employed as professional engineers across a wide range of the Manufacturing Engineering industry.

The distinctive features of this programme include:

• The opportunity to learn within a vibrant research environment which has benefited from major strategic investment via directed SRIF funds of £2.4M into the Cardiff University Structural Performance (CUSP) laboratory, and collaborative industrial partnerships.

• The application of measurement techniques within the recently installed Renishaw Metrology Laboratory, part of a strategic partnership between the School and Renishaw.

• A close involvement with industry ensures that the research has both relevance and meaning, working with some of the world’s most renowned engineering companies.

• Significant inputs into teaching and project work will also be made by members of Cardiff Business School, providing the latest in business and management knowledge and skills.

• A programme which will be informed by up-to-date internationally renowned research expertise undertaken within the School’s Mechanics, Materials and Advanced Manufacturing research theme. These will include the modules in the subject areas of robotics, metrology, manufacturing, informatics, innovation and artificial intelligence/image processing.

Structure

This course is presented as a one-year, full time Masters level programme which will comprise two stages and give a total duration of one calendar year.

Stage 1 which will extend for two semesters and consist of predominantly taught modules and a case study as a forerunner to the research project and dissertation in the field of Manufacturing Engineering, Innovation, and Management to the value of 120 credits, and Stage 2, which consists of a Dissertation module worth 60 credits.

Core modules:

Lean Operations
Manufacturing Engineering Innovation and Management Case Study
Manufacturing Engineering Innovation and Management Project
Advanced Mechanical Engineering Project

Optional modules:

Measurement Systems
Manufacturing Informatics
Commercialising Innovation
Artificial Intelligence
Quality and Reliability
Condition Monitoring, Systems Modelling and Forecasting
Management in Industry
Advanced Robotics

Teaching

A wide range of teaching styles will be used to deliver the diverse material forming the curriculum of the programme, and you will be required to attend lectures and participate in examples classes.

A 10-credit module represents approximately 100 hours of study in total, which includes 24–36 hours of contact time with teaching staff. The remaining hours are intended to be for private study, coursework, revision and assessment. Therefore you are expected to spend a significant amount of time (typically 20 hours each week) studying independently.

At the dissertation stage, you will be allocated a supervisor in the relevant field of research whom you should expect to meet with regularly.

Learning Central, the Cardiff University virtual learning environment (VLE), will be used extensively to communicate, support lectures and provide general programme materials such as reading lists and module descriptions. It may also be used to provide self-testing assessment and give feedback.

Assessment

Achievement of learning outcomes in the classroom based modules is assessed by University examinations set in January and May/June. The balance between examination and coursework depends upon the modules selected, in addition to a triple module (30-credit) case study.

Award of an MSc requires successful completion of Stage 2, the Dissertation, with a mark of 50% or higher.

Candidates achieving a 70% average may be awarded a Distinction. Candidates achieving a 60% average may be awarded a Merit. Candidates failing to qualify for an MSc may be awarded a Postgraduate Diploma of Higher Education for 120 credits in Stage 1. Candidates failing to complete the 120 credits equired for Stage 1 may still be eligible for the award of a Postgraduate Certificate of Higher Education for the achievement of at least 60 credits.

Career prospects

Employment opportunities for students undertaking the proposed programme will be largely with national and international companies in the manufacturing engineering sector.

You may wish to use the MSc platform to go on to study for a PhD which can lead to an industrial or academic career.

Read less
This course aims to provide you with key, advanced level knowledge and skills that will allow you to succeed in the rapidly growing wireless and microwave communication industry. Read more
This course aims to provide you with key, advanced level knowledge and skills that will allow you to succeed in the rapidly growing wireless and microwave communication industry. You will also develop research skills and other related abilities, enhancing your general engineering competency, employability, and providing you with an excellent platform for career development, whether that be within industry or academic research.

The distinctive features of this course include:

• The opportunity to learn in a research-led teaching institution, taught by staff in one of the highest ranked university units in the 2014 Research Excellence Framework (REF), ranked 7th in the UK for research and 1st in the UK for the research impact.

• The opportunity to work in modern facilities and commensurate with a top-class research university.

• The participation of research-active staff in programme design and delivery.

• MSc teaching complemented by guest lectures given by industrial professionals.

• Formal accreditation by the Institution of Engineering and Technology (IET).

Structure

The course is presented as a one-year full time Masters level programme, and is also available as a part-time scheme run over two years. The programme is presented in two stages: In Part 1 students follow two semesters of taught modules to the value of 120 credits. Part 2 consists of a Dissertation or research project module worth 60 credits.

Core modules:

RF Circuits Design & CAD
RESEARCH STUDY
Advanced Communication Systems
Fundamentals of Micro- and Nanotechnology
Management in Industry
Software Tools and Simulation
High Frequency Electronic Materials
HF and RF Engineering
Optoelectronics
Non-Linear RF Design and Concepts
Advanced CAD, Fabrication and Test
Dissertation (Electronic)

Teaching

A wide range of teaching styles are used to deliver the diverse material forming the curriculum of the programme. You will attend lectures and take part in lab and tutorial based study during the Autumn and Spring semesters. During the summer you will undertake an individual research project.

At the beginning of Stage 2, you will be allocated a project supervisor. Dissertation topics are normally chosen from a range of project titles proposed by academic staff in consultation with industrial partners, usually in areas of current research or industrial interest. You will also be encouraged to put forward your own project ideas.

Assessment

The course is assessed through examinations, written coursework, and a final individual project report.

Achievement of learning outcomes in the majority of modules is assessed by a combination of coursework assignments, plus University examinations set in January and May. Examinations count for 60%–70% of assessment in Stage 1 of the programme, depending on the options chosen, the remainder being largely project work and elements of coursework.

Career prospects

Career prospects are generally excellent with graduating students following paths either into research or related industry.

If you are interested in working in industry, many of our graduating MSc students achieve excellent employment opportunities in organisations including Infineon, Huawei, Cambridge Silicon Radio, Vodafone and International Rectifier.

In terms of research, Cardiff University has many electrical, electronic and microwave related research areas that require PhD students, and this MSc will provide you with an excellent platform if this is your chosen career path.

Read less
The MSc in Compound Semiconductor Electronics has been designed to provide you with advanced level knowledge and skills in compound semiconductor engineering, fabrication and applications, and to develop related skills, enhancing your engineering competency and employability. Read more
The MSc in Compound Semiconductor Electronics has been designed to provide you with advanced level knowledge and skills in compound semiconductor engineering, fabrication and applications, and to develop related skills, enhancing your engineering competency and employability.

This programme is jointly delivered with the School of Physics and Astronomy and the Institute for Compound Semiconductors (ICS). The ICS is an exciting new development at the cutting edge of compound semiconductor technology. The Institute has been established in partnership with IQE plc, to capitalise on the existing expertise at Cardiff University and to move academic research to a point where it can be introduced reliably and quickly into the production environment. It is unique facility in the UK, and aims to create a global hub for compound semiconductor technology research, development and innovation.

As a student on this programme, you will have the opportunity to undertake a 3-month summer project which will be based either within the Institute for Compound Semiconductors, or in placement with one of our industrial partners. We have strong, long-established industrial links with companies such as National Instruments and Mesuro and are therefore able to offer a portfolio of theoretical, practical, fabrication and applications-centred projects in both academic and industrial placement environments.

Our flexible curriculum contains a robust set of required modules and a number of elective modules which include the latest results, innovations and techniques and are designed to incorporate the most effective teaching and learning techniques.

Upon graduation, you will have the training, skill-sets and hands-on experience you need to succeed in the dynamic and highly competitive fields of compound semiconductors and advanced communications systems. Given the University’s unique position at the forefront of compound semiconductor technology, you will have a distinct advantage when applying for PhD studentships or employment in industry.

Structure

The MSc in Compound Semiconductor Electronics is a two-stage programme delivered over three semesters (autumn, spring, and summer) for a total of 180 credits.

• Stage 1: Autumn/Spring terms (120 credits, taught)

You will undertake required modules totaling 70 credits, covering essential skills.

You will additionally have the choice of 50 credits of optional modules from a total of 100 credits, with each module covering specialist skills.

You must successfully complete the 120 credits of the taught component of the course before you will be permitted to progress to the research project component.

• Stage 2: Summer term (60 credits, dissertation/research project)

The summer semester consists of a single 60 credit research project module of 3 months’ duration. You will be required to produce a research dissertation to the required standard in order to complete this module. Students completing Stages 1 and 2 will qualify for the award of the MSc degree.

Core modules:

High Frequency Device Physics and Design
RF Circuits Design & CAD
RESEARCH STUDY
Management in Industry
Software Tools and Simulation
Compound Semiconductor Fabrication
Compound Semiconductors Research Project

Optional modules:

Commercialising Innovation
Fundamentals of Micro- and Nanotechnology
High Frequency Electronic Materials
HF and RF Engineering
Optoelectronics
Magnetism, Superconductivity and their Applications
Low Dimensional Semiconductor Devices
Quantum Theory of Solids
Compound Semiconductor Application Specific Photonic Integrated Circuits

Teaching

A wide range of teaching styles will be used to deliver the diverse material forming the curriculum.

Lectures can take a variety of forms depending on the subject material being taught. Generally, lectures are used to convey concepts, contextualise research activities in the School and to demonstrate key theoretical, conceptual and mathematical methods.

You will practice and develop critique, reflective, analytical and presentational skills by participating in diverse learning activities such as research group meetings, seminars and open group discussions. At all times you will be encouraged to reflect on what you have learned and how it can be combined with other techniques and concepts to tackle novel problems.

In the practical laboratory sessions, you will put the breadth of your knowledge and skills to use, whether that be using your coding skills to automate a laboratory experiment, designing components for a large piece of equipment or troubleshooting research hardware. The emphasis on the MSc in Compound Semiconductor Electronics is squarely on acquiring and demonstrating practical skills which will be of use in a research environment and hence highly sought-after by employers.

When working on your dissertation you will be allocated a supervisor from among our teaching staff. Dissertation topics are typically chosen from a range of project titles proposed by academic staff, usually in areas of current research interest, although students are encouraged to put forward their own project ideas. Projects may also come forward from potential employers and industrial partners who may be able to offer work-based placements for the duration of the project work.

Assessment

Multiple assessment methods are used in order to enhance learning and accurately reflect your performance on the course. In the required modules, a mixture of problem-based learning, in-lab assessment, written assignment, simulation exercises, written and oral examinations and group-based case study work will be used.

Feedback provided by your MSc Tutor, Module Leaders and for some modules, your fellow students will allow you to make incremental improvements to the development of your core skillset.

The methods used on the optional modules vary depending on the most appropriate assessment method for each module, but typically include written and/or practical assignments together with a written and/or oral examination.

Career prospects

An MSc in Compound Semiconductor Electronics will open up opportunities in the following areas:

• Technical, research, development and engineering positions in industrial compound semiconductors, silicon semiconductors and advanced communication systems;

• Theoretical, experimental and instrumentational doctoral research;

• Numerate, technical, research, development and engineering positions in related scientific fields;

• Physics, mathematics and general science education.

Cardiff University’s unique position at the forefront of compound semiconductor technology will provide you with the opportunity to develop experience and build contacts with a range of leading companies and organisations.

Placements

There will be a number of industrial placements each year for the summer research project module, which will either be hosted at the Institute for Compound Semiconductors or at the industrial partner’s facilities. The number and nature of these projects will vary from year to year and will be assigned based on performance in formal assessments.

Read less
This course aims to provide you with key, advanced level knowledge and skills that will allow you to succeed in the rapidly growing wireless and microwave communication industry. Read more
This course aims to provide you with key, advanced level knowledge and skills that will allow you to succeed in the rapidly growing wireless and microwave communication industry. You will also develop research skills and other related abilities, enhancing your general engineering competency, employability, and providing you with an excellent platform for career development, whether that be within industry or academic research.

In addition, modules delivered by Cardiff University’s internationally recognised Business School will allow you the opportunity to gain valuable skills in entrepreneurship and an insight into what’s involved in starting your own business.

Distinctive features:

• The opportunity to learn in a research-led teaching institution taught by staff in one of the highest ranked university units in the 2014 Research Excellence Framework (REF 2014).

• MSc teaching complemented by guest lectures given by industrial professionals.

• A programme accredited as meeting requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate qualification.

• A unique opportunity to participate in the Alacrity Foundation Programme.

• A programme partially based on a successful and well-established course - Wireless and Microwave Communication Engineering (MSc).

• Specialist modules taught by the Cardiff Business School.

Structure

This course is presented as a one-year, full-time Master's level programme.

The programme takes place over two stages: In Part 1, you follow taught modules to the value of 120 credits, whilst Part 2 consists of a Dissertation or research project based module worth 60 credits.

In the full-time programme, you will undertake taught modules during the first seven months of the programme, and will then proceed to the new venture plan and dissertation stage. At this point, you will also then be able to apply to the Alacrity Foundation to take part in their “boot camp” which helps to equip you with the skills to set up your own business.

Core modules:

Innovation Management
Entrepreneurial Marketing
RF Circuits Design & CAD
Research Case Study
Advanced Communication Systems
Software Tools and Simulation
High Frequency Electronic Materials
HF and RF Engineering
Non-Linear RF Design and Concepts
Dissertation (Electronic)

Optional modules:

Fundamentals of Micro- and Nanotechnology
Optoelectronics
Advanced CAD, Fabrication and Test

Teaching

A wide range of teaching styles will be used to deliver the diverse material forming the curriculum of the programme, and you will be required to attend lectures and participate in examples classes.

A 10-credit module represents approximately 100 hours of study in total, which includes 24–36 hours of contact time with teaching staff. The remaining hours are intended to be for private study, coursework, revision and assessment.

At the dissertation stage, you will be allocated a supervisor in the relevant field of research whom you should expect to meet with regularly. Dissertation topics are presented via the Alacrity Foundation.

Learning Central, the Cardiff University virtual learning environment (VLE), will be used extensively to communicate, support lectures and provide general programme materials such as reading lists and module descriptions. It may also be used to provide self-testing assessment and give feedback.

Assessment

Achievement of learning outcomes in the majority of modules is assessed by a combination of coursework assignments, plus University examinations set in January and May. Examinations count for 60%–70% of assessment in Stage 1 of the programme, depending on the options chosen, the remainder being largely project work and pieces of coursework.

Award of an MSc requires successful completion of Stage 2, the Dissertation, with a mark of 50% or higher.

Career prospects

Career prospects are generally excellent with graduating students following paths either into research, business or related industry. After graduating, a number of students start their own businesses.

In terms of research, Cardiff University has many electrical, electronic and microwave related research areas that require PhD students if you wish to undertake further postgraduate study.

Placements

Applicants to the MSc programme will have the opportunity to make an additional application to the Alacrity Foundation. If successful, the five-month industrial project will be based within the Foundation in Newport and attract a tax-free stipend of £13,800 from month nine of their MSc programme.

Participants will then be required to commit to the Alacrity programme for an additional fifteen months.

Read less
Climate change, the global consumption of energy and the use of fossil fuels to provide us with heat, power and transportation are all engineering challenges which need addressing now and in the future. Read more
Climate change, the global consumption of energy and the use of fossil fuels to provide us with heat, power and transportation are all engineering challenges which need addressing now and in the future. It is clear that solutions to these long-term problems ­– ensuring the best use of resources, and developing new more sustainable ways to produce and use energy – will require graduates who can work in an increasingly multidisciplinary environment.

This course will offer you the knowledge and expertise you will need in relation to sustainable energy and the environmental impact of energy systems.

The distinctive features of the programme include:

• The opportunity for students to learn in a research-led teaching institution serviced by staff rated in the highest possible category by independent Government assessment.

• The opportunity to work in facilities commensurate with a top-class research unit.

• The opportunity for students to undertake project work in a successful, research-based environment.

• The programme has been designed to provide technical and managerial skills needed by industry, academia and the public sector.

• The substantial industrial input to the programme through invited lecturers and where appropriate offer industrially-based projects.

• A variety of specialist modules on offer.

• An open and engaging culture between students and staff, with student representatives as full members on School committees.

Structure

The programme is presented as a two-year part-time Master's level programme, and is also available in full-time mode over one year.

The programme is presented in two stages: In Stage 1 students follow taught modules to the value of 120 credits, with a limited amount of choice between optional modules. Stage 2 consists of a Dissertation module worth 60 credits.

Core modules:

Risk and Hazard Management in the Energy Sector
Energy Management
Energy Studies
Fuels and Energy Systems
Sustainable Energy and Environment Case Study
Dissertation: Sustainable Energy and Environment

Optional modules:

Earth and Society
Low Carbon Footprint
Environmental Fluid Mechanics
Advanced Power Systems & High Voltage Technology
Condition Monitoring, Systems Modelling and Forecasting
Alternative Energy Systems
Thermodynamics and Heat Transfer 1
Thermodynamics and Heat Transfer 2
Waste Management and Recycling

Teaching

A wide range of teaching styles are used to deliver the diverse material forming the curriculum of the programme. You will be required to attend lecture-, lab- and tutorial-based study during the semesters, and later undertake an individual research project.

While a 10-credit module represents 100 hours of study in total, typically this will involve 24–36 hours of contact time with teaching staff. The remaining hours are intended to be for private study, coursework, revision and assessment. Therefore all students are expected to spend a significant amount of time (typically 20 hours each week) studying independently.

At the beginning of Stage 2, you will be allocated a project supervisor. Dissertation topics are normally chosen from a range of project titles proposed by academic staff in consultation with industrial partners, usually in areas of current research or industrial interest. You are also encouraged to put forward your own project ideas.

Learning Central, the Cardiff University virtual learning environment (VLE), will be used extensively to communicate with students, support lectures and provide general programme materials such as reading lists and module descriptions. It may also be used to provide self-testing assessment and give feedback.

Assessment

Achievement of learning outcomes in the majority of modules is assessed by a combination of coursework assignments, plus University examinations set in January or May. Examinations count for a third to a half of assessment in Stage 1 of the programme, depending on the options chosen, the remainder being largely project work and pieces of coursework.

Award of an MSc requires successful completion of Stage 2, the Dissertation, with a mark of 50% or higher. Candidates achieving 60% may be awarded a Merit and for those achieving a 70% average a Distinction may be awarded. Candidates failing to qualify for an MSc may be awarded a Postgraduate Diploma of Higher Education for 120 credits in Stage 1. Candidates failing to complete the 120 credits required for Stage 1 may still be eligible for the award of a Postgraduate Certificate of Higher Education for the achievement of at least 60 credits.

Career prospects

Graduates typically gain employment in large energy-focussed companies, the public sector, consultancies, research and development, or set up their own companies. A number also go on to undertake PhD study.

Read less
This course meets an urgent need for specialists in advanced electrical energy systems that are needed to design and build secure, reliable, low-carbon and affordable energy systems in developed and developing countries around the world. Read more
This course meets an urgent need for specialists in advanced electrical energy systems that are needed to design and build secure, reliable, low-carbon and affordable energy systems in developed and developing countries around the world. The programme maintains a particular focus on the integration of renewable generation in to electricity transmission and distribution networks and will prepare you for a new era of truly ‘smart’ grids.

Distinctive features:

• The opportunity to learn in a research-led teaching institution in one of the highest ranked university units in the 2014 Research Excellence Framework (REF).

• You will undertake project work in a research environment where staff were top in the UK for Research Impact in terms of their research’s reach and significance.

• The participation of research-active staff in programme design and delivery, many of whom are Chartered Engineers or have experience of working in industry.

• The variety of advanced level modules on offer.

• The emphasis on progression towards independent learning in preparation for lifelong learning.

• The emphasis on acquisition of practical skills through industrially based final year group projects.

• The approval as Further Learning by the Institution of Engineering and Technology (IET).

• An open and engaging culture between students and staff.

Structure

This course is presented as a one-year, full time Masters level programme.

The programme takes place over two stages: In Stage 1 students follow taught modules to the value of 120 credits, whilst Stage 2 consists of a Dissertation module worth 60 credits.

Core modules:

Research Study
Advanced Power Systems & High Voltage Technology
Advanced Power Electronics and Drives
Alternative Energy Systems
Magnetic Devices: Transducers, Sensors and Actuators
Management in Industry
Distributed Generation, System Design and Regulation
Power System Protection
Power Systems Analysis
Smart Grids and Active Network Devices
Dissertation [Electrical Energy Systems]

Optional modules:

Condition Monitoring, Systems Modelling and Forecasting
Energy Management
Energy Studies

Teaching

A wide range of teaching styles will be used to deliver the diverse material forming the curriculum of the programme, and you will be required to attend lectures and participate in examples classes.

A 10-credit module represents approximately 100 hours of study in total, which includes 24–36 hours of contact time with teaching staff. The remaining hours are intended to be for private study, coursework, revision and assessment. Therefore you are expected to spend a significant amount of time (typically 20 hours each week) studying independently.

At the dissertation stage, you will be allocated a supervisor in the relevant field of research whom you should expect to meet with regularly.

Learning Central, the Cardiff University virtual learning environment (VLE), will be used extensively to communicate, support lectures and provide general programme materials such as reading lists and module descriptions. It may also be used to provide self-testing assessment and give feedback.

Assessment

Achievement of learning outcomes in the majority of modules is assessed by a combination of coursework assignments, plus University examinations set in January or May. Examinations count for 60%–70% of assessment in Stage 1 of the programme, depending on the options chosen, the remainder being largely project work and pieces of coursework.

Award of an MSc requires successful completion of Stage 2, the Dissertation, with a mark of 50% or higher.

Candidates achieving a 70% average may be awarded a Distinction. Candidates failing to qualify for an MSc may be awarded a Postgraduate Diploma for 120 credits in Stage 1. Candidates failing to complete the 120 credits required for Stage 1 may still be eligible for the award of a Postgraduate Certificate for the achievement of at least 60 credits

Career prospects

Graduates from courses such as these are in high demand and are expected to gain employment in large electrical energy utilities, electricity distribution companies, consulting companies, the public sector, eg energy agencies and the Carbon Trust, and in research and development. A number of graduates set up their own companies.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X