• St Mary’s University, Twickenham Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Coventry University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
De Montfort University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Imperial College London Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
FindA University Ltd Featured Masters Courses
0 miles
Engineering×

University of Bristol, Full Time Masters Degrees in Engineering

  • Engineering×
  • University of Bristol×
  • Full Time×
  • clear all
Showing 1 to 13 of 13
Order by 
Our aim is to produce the next generation of leaders in earthquake engineering and natural disaster risk management who want to make an impact on the design of the built environment, the mitigation of seismic loss and the protection of human life. Read more
Our aim is to produce the next generation of leaders in earthquake engineering and natural disaster risk management who want to make an impact on the design of the built environment, the mitigation of seismic loss and the protection of human life. This specialist MSc combines the training of earthquake, structural and geotechnical engineering with design, assessment and management of infrastructure.

This discipline demands world-class facilities and at Bristol you will benefit from studying in the UK’s flagship centre for earthquake engineering. Here, you will have access to the state-of-the-art BLADE/EQUALS laboratory, including one of the most advanced earthquake shaking tables in Europe.

Throughout the programme you will work together with expert staff and international partners, exposing you to real-world challenges engineers face. Industry links are integral to the programme and our graduates are highly sought after by major UK and international employers.

One of the many highlights of the year is a field trip to an earthquake affected area in south-east Europe. You will have the opportunity to visit structures designed with innovative methods to resist earthquake forces or inspect the damage of a recent aftermath by using modern tools for non-destructive material testing and remote imaging.

Programme structure

Subject areas are aligned with two main strands relevant to structural/geotechnical earthquake engineering and disaster risk reduction. A strong set of core units (structural dynamics, earthquake engineering, reliability for engineers, soil-structure interaction and engineering seismology) is followed by 10-credit specialist units, depending on the strand chosen.

Students following the structural/geotechnical earthquake engineering strand will take units relevant to the analysis and design to Eurocode 8, laboratory testing of structures and soils, foundation engineering and soil dynamics. Students who choose to pursue the disaster risk management strand will focus on engineering for international development, disaster risk reduction, hazards and infrastructure and environmental modelling.

Cross references are carefully designed among the units of the two strands to make sure that all graduates obtain a uniform level of background knowledge and appropriate specialisation.

You are also required, as part of your course, to attend a field trip to an earthquake affected region, typically in a Mediterranean country. You may visit recently damaged areas and/or major engineering projects designed to resist earthquake forces. A series of seminars will also give you the opportunity to learn, as part of a distinct unit, the most recent advances in earthquake engineering innovation from distinguished invited experts.

Having successfully completed these units, you will prepare a 60-credit MSc thesis during the summer term, to be submitted at the end of the academic year.

Read less
Engineering mathematics is the art of applying mathematical and engineering principles to complex, real-world problems across areas as wide-ranging as artificial intelligence, ecology, medicine, physics, social media and sustainability. Read more
Engineering mathematics is the art of applying mathematical and engineering principles to complex, real-world problems across areas as wide-ranging as artificial intelligence, ecology, medicine, physics, social media and sustainability.

With this MSc, students are fully embedded within an engineering faculty, benefiting from unrivalled access to a broad range of industrial collaborations and pioneering research.

Spanning engineering, mathematics and computer science, this programme would suit graduates from any related discipline who would like to become versatile at solving multi-disciplinary challenges.

Upon completion, you will meet the increasing demand from the industrial, government and service sectors for maths-savvy graduates who can work across traditional boundaries and drive high-tech innovation. From designing formula one cars, to biomedicine and development of renewable energy technologies, our engineering graduates go on to a wide range of exciting careers.

Programme structure

The units are organised around three key strands: engineering, computational science and mathematical and statistical training.

In order to tailor to the needs of the student, each strand is agreed based on previous experience and prior learning. Based on taught content, appropriate units are aligned with each strand.

Cross-references are carefully designed throughout the three stands to ensure that all graduates obtain a uniform level of background knowledge and appropriate specialisation.

Teaching consists of core units on:

- Applied statistics
- Artificial intelligence
- Engineering mathematics
- Nonlinear dynamics and chaos
- Numerical methods
- Optimisation theory and applications
- Partial differential equations

Real-world problem solving is integral to each unit and spans many different application areas - from robotics and social media to medicine and environmental modelling. Problems come from our industrial collaborators or address challenges in current research.

Having successfully completed the taught units, you will prepare a 60-credit MSc thesis during the summer term, to be submitted at the end of the academic year.

Careers

This programme provides a highly creative, challenging and enjoyable experience, which will be excellent preparation for your future career. It will give you the tools to be successful in a variety of careers, many of which enable you to apply your knowledge and skills.

Our extensive connections with industry, through collaborative research and consultancy, makes the MSc in Engineering Mathematics very relevant professionally. Many graduates from this department have gone on to work for companies that recruit mathematicians as well as engineers, such as Airbus, Goldman Sachs and Red Bull Racing.

Read less
Biomedical engineering is an emerging field in the UK that involves applying physical, chemical, mathematical, computer science and engineering principles to the analysis of biological, medical, behavioural and health-related problems. Read more
Biomedical engineering is an emerging field in the UK that involves applying physical, chemical, mathematical, computer science and engineering principles to the analysis of biological, medical, behavioural and health-related problems. Biomedical engineers develop innovative devices and procedures to help prevent, diagnose and treat diseases. It relies on an in-depth understanding of science and engineering fundamentals, combined with a broad knowledge of physiological and anatomical systems.

This programme allows you to gain expertise in this exciting field and covers both theory and practical applications. You will acquire the analytical tools and broad physical knowledge of modern engineering and science, as well as a fundamental understanding of the anatomical and physiological systems, and familiarity with recent technological breakthroughs.

Programme structure

Your course will cover the following core subjects:
-Physiology for biomedical engineering
-Biosensors
-Computational genomics and bioinformatics algorithms
-Anatomical science for engineering
-Computational neuroscience
-Biomedical imaging
-Research skills

You will be able to choose three optional subjects from the following:
-Mathematical modelling in physiology and medicine
-Digital filters and spectral analysis
-Biomechanics
-Wireless networking and sensing in e-healthcare

Project
You will carry out a substantial research project, which you will start during the second teaching block and complete during the summer.

Careers

Employment opportunities in the sector are excellent and varied. Biomedical engineers can be employed by companies working in the design, development and manufacture of medical devices; within the NHS, for example in hospitals to collaborate with clinicians in offering non-clinical services; in research institutes or academia; in governmental regulatory agencies; or as technical consultants within marketing departments.

Read less
The main objective of this programme is to produce graduates with the ability to plan, execute and produce reports on technical projects for industry and academia. Read more
The main objective of this programme is to produce graduates with the ability to plan, execute and produce reports on technical projects for industry and academia. The programme is composed of taught units, assessed by examination and coursework submission, and a major research project supervised by academic staff in the department.

The facilities and expertise in the Department of Mechanical Engineering have earned us consistently high rankings in university league tables and an internationally excellent rating for research.

Programme structure

Core units

Four mandatory units, each worth 10 credits, are designed to develop your skills of investigation, system analysis and project planning.

- Finite Element Analysis
- Literature Review
- Power Generation for the 22nd Century
- Research Project Proposal

You will be able to choose eight optional 10-credit units from the list below at the start of the programme. The current options list is as follows:

Design and Manufacture

- Virtual Product Development
- Robotic Systems
- Biomechanics

Engineering and the Environment

- Environmental Thermalhydraulics

Materials

- Ultrasonic Non-Destructive Testing
- Non-linear Behaviour of Materials
- Advanced Composites Analysis

Dynamics

- Advanced Dynamics
- Systems and Control Engineering 4
- Nonlinear Structural Dynamics
- Generic Propulsion

Research project (60 credits)

Each student is allocated an individual project, worth 60 credits, which is supported from within the department through the three main research groups:

- Dynamics and Control
- Design and Process Engineering
- Solid Mechanics

Provided that the content is academically rigorous, industrially-related projects are possible, through either your own contacts or the department's strong links with major companies such as Airbus UK, BAE Systems, Bechtel, British Energy, Nestlé, Qinetiq Ltd, Renishaw, Renold Chain and Rolls-Royce.

Careers

Several of our recent students have gone into research, including two recent PhD graduates from Bristol.

One further student is currently working towards an Engineering doctorate with the Systems Centre in Bristol and has been working closely with a local company, Vestas Wind Systems (his industrial sponsor). His research title is "Expanding the life cycle of wind turbine components through reverse engineering and repairing solutions".

Read less
This MSc delivers a solid grounding in the science and engineering principles that underpin the global nuclear industry. Throughout the programme you will benefit from a connection, via the South West Nuclear Hub, to the University of Bristol’s UK-leading industrial research. Read more
This MSc delivers a solid grounding in the science and engineering principles that underpin the global nuclear industry. Throughout the programme you will benefit from a connection, via the South West Nuclear Hub, to the University of Bristol’s UK-leading industrial research. This environment of collaboration with key industrial partners enriches your learning experience and exposes you to the scientific and engineering challenges facing nuclear energy today.

The programme offers you the opportunity to gain skills and experience highly sought after by the nuclear industry. As you learn about five key themes of nuclear science and engineering from experts in the field you will develop skills in problem-solving, team-building, communication and scientific writing.

During the challenge project element of the programme you will join a multi-disciplinary team in approaching a genuine industry problem. The challenge is set by industry partners, who will act as your industrial supervisors, provide guidance on your work and attend your final presentation. Previous industry partners include Sellafield, EDF Energy and the Culham Centre for Fusion Energy.

This area of scientific study demands state-of-the-art facilities, and the programme gives you access to a suite of multi-million pound, cutting-edge analytical equipment, supported by dedicated technicians. Facilities include profiling systems, x-ray microscopes, a 200-acre site focused on robotics and device sensor development, and the largest earthquake simulator in the UK.

Programme structure

The five key themes that run through the programme are: the nuclear cycle; nuclear reactor materials and design; nuclear structural integrity; nuclear professionalism and nuclear systems; infrastructure, hazards and risk.

Teaching consists of core lecture-based units in science and engineering:
-Fundamentals of Nuclear Science
-Nuclear Reactor Engineering
-Nuclear Material Behaviour
-Nuclear Reactor Physics
-Nuclear Fuel Cycle

The Research Skills and Group Project units help develop the skills needed to work in this area, including industry-focused workshops, an industry-set challenge and a major individual research project, for which the practical work takes place over the summer.

Careers

Graduates will leave equipped with a familiarity with the nuclear industry and its unique safety culture, and they will be prepared to enter the industry or continue towards further research in academia.

Read less
Bristol, and the surrounding area, hosts a thriving and world-leading semiconductor design industry. Read more
Bristol, and the surrounding area, hosts a thriving and world-leading semiconductor design industry. The Microelectronics group at the University of Bristol has many collaborative links with multinational companies in the microelectronics industry that have identified a shortfall in graduates with the necessary qualifications and professional skills to work in the sector. This programme has been designed to meet this need.

A range of taught subjects cover core topics such as advanced architectures and system design using FPGA and DSP platforms, before progressing into more specialised areas such as digital and analogue ASIC design, integrated sensors and actuators and mixed-signal design. Changes are made periodically to reflect important emerging disciplines, such as electronics for internet of things, bio-medical applications and neuromorphic computing.

The programme offers you the opportunity to learn from experts in micro- and nanoelectronics and computer science, to allow you to start working straight after your degree or continue your studies via a PhD. Special emphasis is put on providing you with a range of contemporary design skills to supplement theoretical knowledge. Lectures are accompanied by lab exercises in state-of-the-art industrial EDA software to give you experience of a professional environment.

Programme structure

The course consists of 120 credits of taught units and an individual research project worth 60 credits. The following core subjects, each worth 10 credit points (100 learning hours), are taken over autumn and spring:
-Design Verification
-Analogue Integrated Circuit Design
-Integrated Circuit Electronics
-Digital Filters and Spectral Analysis (M)
-Advanced DSP & FPGA Implementation
-VLSI Design M
-Embedded and Real-Time Systems
-Wireless Networking and Sensing in e-Healthcare

Additionally students are able to choose any two out of the following four 10-credit units (some combinations may not be possible due to timetabling constraints).

-Device Interconnect - Principles and Practice
-Advanced Computer Architecture
-Sustainability, Technology and Business
-Computational Neuroscience
-Bio Sensors

In the spring term, students also take Engineering Research Skills, a 20-credit unit designed to introduce the fundamental skills necessary to carry out the MSc project.

After completing the taught units satisfactorily, all students undertake a final project which involves researching, planning and implementing a major piece of work relating to microelectronics systems design. The project must have a significant scientific or technical component and may involve on-site collaboration with an industrial partner. The thesis is normally submitted by the end of September.

The programme structure is under continual discussion with the National Microelectronics Institute and our industrial advisory board in order that it remains at the cutting edge of the semiconductor industry. It is therefore subject to small changes on an ongoing basis to generally improve the programme and recognise important emerging disciplines.

Careers

This course gives graduating students the background to go on to a career in a variety of disciplines in the IT sector, due to the core and specialist units that cover key foundational concepts as well as advanced topics related to hardware design, programming and embedded systems and system-level integration.

Typical careers are in soft fabrication facilities and design houses in the semiconductor industry, electronic-design automation tool vendors, embedded systems specialists and software houses. The course also covers concepts and technologies related to emerging paradigms such as neuromorphic computing and the Internet of Things and prepares you for a career in academic research.

Read less
Composite materials are increasingly replacing traditional metallic components in several industrial applications, such as aerospace engineering, wind turbine blades and the automotive industry. Read more
Composite materials are increasingly replacing traditional metallic components in several industrial applications, such as aerospace engineering, wind turbine blades and the automotive industry. This MSc provides you with an in-depth theoretical understanding and practical knowledge of advanced composite materials.

The programme is based in the Advanced Composites Centre for Innovation and Science (ACCIS), one of the world's leading centres in composite materials, which houses a number of state-of-the-art composites manufacturing facilities.

ACCIS has strong industrial and research links with companies like Rolls-Royce, Airbus, BAE Systems and GE Aviation as well as government research labs such as the UK's Defence Science and Technology Laboratory, the European Space Agency and the US Army International Technology Centre.

Programme structure

Core subjects
-Composites Design and Manufacture
-Smart Materials
-Nanocomposites and Nano engineering
-Research Skills
-Elements of Polymer Composites

And either:
-Advanced Composites Analysis or
-Structures and Materials

after discussion with the programme director.

Optional units
You will select from a list of options which will include the following:
-Engineering Design for Wind and Marine Power
-Nonlinear Structural Dynamics
-Ultrasonic Non-Destructive Testing
-Structural Engineering 4
-Advanced Techniques in Multi-Disciplinary Design
-Nonlinear Behaviour of Materials
-Nature's Materials - Biomimetics, Biomaterials and Sustainability

Project
To complete the programme you will carry out a research project, which may be either academically or industrially led.

Careers

Graduates from this programme could enter a career in one of the rapidly growing composites-related industries, such as aerospace, marine, automotive and wind turbine, materials testing/manufacturing or in engineering consultancy sectors. Some of our MSc graduates continue to PhD study, either at Bristol or other relevant PhD programmes.

Read less
Audiovisual experiences are key drivers, not just for entertainment but also for business, security and technology development. Read more
Audiovisual experiences are key drivers, not just for entertainment but also for business, security and technology development. Video accounts for around 80 per cent of all internet traffic and some mobile network operators have predicted that wireless traffic will double every year for the next 10 years - driven primarily by video. Visual information processing also plays a major role underpinning other industries such as healthcare, security, robotics and autonomous systems.

This challenging, one-year taught Master’s degree covers a range of advanced topics drawn from the field of multimedia signal processing and communications. The programme covers the properties and limitations of modern communication channels and networks, alongside the coding and compression methods required for efficient and reliable wired and wireless audio-visual transmission. It provides students with an excellent opportunity to acquire the necessary skills to enter careers in one of the most dynamic and exciting fields in ICT.

The programme builds on the research strengths of the Visual Information Laboratory and the Communication Systems and Networks Group within the Faculty of Engineering at Bristol. Both groups are highly regarded for combining fundamental research with strong industrial collaboration and their innovative research has resulted in ground-breaking technology in the areas of image and video analysis, coding and communications. Both groups also offer extensive, state-of-the-art research facilities.

This MSc provides in-depth training in design, analysis and management skills relevant to the theory and practice of the communication networks industry. The programme is accredited by the Institution of Engineering and Technology until 2018, and is one of only a handful of accredited programmes in this field in the UK.

Programme structure

Your course will cover the following core subjects:
Semester One (50 credits)
-Coding theory
-Communication systems
-Digital filters and spectral analysis
-Mobile communications
-Networking protocol principles

Semester Two (70 credits)
-Digital signal processing systems
-Speech and audio processing
-Optimum signal processing
-Biomedical imaging
-Image and video coding
-Engineering research skills

Research project
You will complete a substantial research project, starting during Semester Two and completed during the summer. This may be based at the University or with industrial partners.

Careers

This one-year MSc programme covers all aspects of current and future image and video communications and associated signal processing technologies. It will prepare you for a diverse range of exciting careers, not only in the communications field, but also in other areas such as management consultancy, project management, finance and government agencies.

Our graduates have gone on to have rewarding careers in some of the leading multinational communications companies, such as Huawei, China Telecom, Toshiba, China Mobile and Intel. Some graduates follow a more research-oriented career path with a number of students going on to study for PhDs at leading universities.

Read less
This MSc covers a range of advanced topics drawn from wireless communications and communications-related signal processing, including associated enabling technologies. Read more
This MSc covers a range of advanced topics drawn from wireless communications and communications-related signal processing, including associated enabling technologies. It provides an excellent opportunity to develop the skills required for careers in some of the most dynamic fields in wireless communications.

This programme builds on the internationally recognised research strengths of the Communications Systems and Networks group within the Smart Internet Lab. This group conducts pioneering research in a number of key fundamental and experimental work areas, including spatial channel measurements and predictions, information theory, advanced wireless access (cellular and WLAN) and RF technologies. The group has well-equipped laboratories with state-of-the-art test and measurement equipment and first-class computational facilities.

The MSc provides in-depth training in design, analysis and management skills relevant to the theory and practice of the wireless communications industry. This degree is accredited by the Institute of Engineering and Technology (IET) until 2018, and is one of only a handful of accredited programmes in this field in the UK.

Programme structure

Your course will cover the following core subjects:
Semester One (60 credits)
-Coding theory
-Radio frequency engineering
-Communication systems
-Mobile communications
-Networking protocol principles
-Digital filters and spectral analysis

Semester Two (60 credits)
-Advanced mobile radio techniques
-Antennas and electromagnetic compatibility
-Broadband wireless communications
-Digital signal processing systems
-Engineering research skills
-Research project (60 credits)

You will carry out a substantial research project, starting during Semester Two and completing during the summer. This may be based at the University or with industrial partners.

Careers

This is a challenging one-year taught Master’s degree, covering all aspects of current and future wireless communication systems and associated signal processing technologies. It will prepare you for a diverse range of exciting careers - not only in the communications field, but also in other areas such as management consultancy, project management, finance and government agencies.

Our graduates have gone on to have rewarding careers in some of the leading multinational communications companies, such as Huawei, China Telecom, Toshiba, China Mobile and Intel. Some graduates follow a more research-oriented career path, with a number of students going on to study for PhDs at leading universities.

Read less
The MSc in Robotics will provide you with the ability to understand, design and implement modern robotic systems. Read more
The MSc in Robotics will provide you with the ability to understand, design and implement modern robotic systems. Robotics is increasingly prominent in a variety of sectors, from manufacturing and health to remote exploration of hostile environments such as space and the deep sea, and as autonomous and semi-autonomous systems that interact with people physically and socially.

This programme exposes you to a wide range of advanced engineering and computer science concepts, with the opportunity to carry out a practical robot project at the Bristol Robotics Laboratory, one of the UK's most comprehensive robotics innovation facilities and a leading centre of robotics research.

The programme is jointly awarded and jointly delivered by the University of Bristol and the University of the West of England, both based in Bristol, and therefore draws on the combined expertise, facilities and resources of the two universities. The Bristol Robotics Laboratory is a collaborative research partnership between the two universities with a vision to transform robotics by pioneering advances in autonomous robot systems that can behave intelligently with minimal human supervision.

Programme structure

Your course will cover the following core subjects:
-Robotics systems
-Robotic fundamentals
-Intelligent adaptive systems
-Robotics research preparation
-Image processing and computer vision
-Technology and context of robotics and autonomous systems
-Bio-inspired artificial intelligence

Typically you will be able to select from the following optional subjects:
-Computational neuroscience
-Uncertainty modelling for intelligent systems
-Introduction to artificial intelligence
-Learning in autonomous systems
-Design verification
-Animation production
-Advanced DSP and FPGA implementation
-Statistical pattern recognition
-Control theory
-Advanced techniques in multidisciplinary design
-Advanced dynamics
-Virtual product development
-Biomechanics
-Sensory ecology
-Transport modelling
-Electromechanical systems integration
-Advanced control and dynamics

Please note that your choice of optional units will be dependent on your academic background, agreement with the programme director and timetable availability.

Dissertation
During your second semester, you will start working on a substantial piece of research work that will make up one third of the overall MSc. It is possible to work on this project at Bristol Robotics Laboratory or in conjunction with one of our many industrial partners. Within the Bristol Robotics Laboratory, there are a number of themes from which projects may be chosen, including:
-Aerial robots
-Assisted living
-Bioenergy and self-sustainable systems
-Biomimetics and neuro-robotics
-Medical robotics
-Nonlinear robotics
-Robot vision
-Safe human-robot interaction
-Self-reparing robotic systems
-Smart automation
-Soft robotics
-Swarm robotics
-Tactile robotics
-Unconventional computation in robots
-Verification and validation for safety in robots

Further information is available from the Faculty of Engineering.

NB: Teaching for this programme is delivered at both the University of Bristol and the University of the West of England campuses. Students attending the programme will be given free transport passes to travel between the two universities.

Careers

Robotics is a huge field spanning areas such as electronics, mechanics, software engineering, mathematics, physics, chemistry, psychology and biology. Career opportunities include: automotive industry, aerospace industry, advanced manufacturing, deep sea exploration, space exploration, food manufacture, pharmaceutical production and industrial quality control.

Read less
This is a challenging one-year taught Master’s degree programme that provides students with a range of advanced topics drawn from communication networks (fixed and wireless) and related signal-processing, including associated enabling technologies. Read more
This is a challenging one-year taught Master’s degree programme that provides students with a range of advanced topics drawn from communication networks (fixed and wireless) and related signal-processing, including associated enabling technologies. It provides an excellent opportunity to develop the skills needed for careers in some of the most dynamic fields in communication networks.

This programme builds on the internationally recognised research strengths of the Communications Systems and Networks, High Performance Networks and Photonics research groups within the Smart Internet Lab. The groups conduct pioneering research in a number of key areas, including network architectures, cross-layer interaction, high-speed optical communications and advanced wireless access.

There are two taught units related to optical communications: Optical Networks and Data Centre Networks. Optical Networks will focus on Wavelength Division Multiplexed (WDM) networks, Time Division Multiplexed (TDM) networks including SDH/SONET and OTN, optical frequency division multiplexed networks, and optical sub-wavelength switched networks. Data Centre Networks will focus on networks for cloud computing, cloud-based networking, grid-computing and e-science. There is a further networking unit: Networked Systems and Applications, which provides a top-down study of networking system support for distributed applications, from classical web and email to telemetry for the Internet of Things.

The programme is accredited by the Institution of Engineering and Technology until 2018, one of only a handful of accredited programmes in this field in the UK.

Programme structure

Your course will cover the following core subjects:

Semester One (40 credits)
-Communication systems
-Digital filters and spectral analysis
-Mobile communications
-Networking protocol principles

Semester Two (80 credits)
-Data centre networking
-Advanced networks
-Broadband wireless communications
-Networked systems and applications
-Engineering research skills
-Optical communications systems and data networks
-Optical networks

Project (60 credits)
You will carry out a substantial research project, starting during Semester Two and completed during the summer. This may be based at the University or with industrial partners.

Careers

This one-year MSc programme gives you a world-class education in all aspects of current and future communication networks and signal processing. It will prepare you for a diverse range of exciting careers - not only in the communications field, but also in other areas such as management consultancy, project management, finance and government agencies.

Our graduates have gone on to have rewarding careers in some of the leading multinational communications companies, such as Huawei, China Telecom, Toshiba, China Mobile and Intel. Some graduates follow a more research-oriented career path, with a number of students going on to study for PhDs at leading universities.

Read less
This programme provides students with a challenging range of advanced topics drawn from optical communications systems and devices, and optics-related signal processing, including associated enabling technologies. Read more
This programme provides students with a challenging range of advanced topics drawn from optical communications systems and devices, and optics-related signal processing, including associated enabling technologies. It provides an excellent opportunity to acquire the skills needed for a career in the most dynamic fields in optical communications.

This programme builds on the internationally-recognised research strengths of the Photonics and High Performance Networks research groups within the Smart Internet Lab. Optical fibre communications form the backbone of all land-based communications and is the only viable means to support today's global information systems. Research at Bristol is contributing to the ever-increasing requirement for bandwidth and flexibility through research into optical switching technology, wavelength conversion, high-speed modulation, data regeneration and novel semiconductor lasers.

There are two taught units related to optical communications: Optical Networks and Data Centre Networks. Optical Networks focuses on Wavelength Division Multiplexed (WDM) networks, Time Division Multiplexed (TDM) networks including SDH/SONET and OTN, optical frequency division multiplexed networks, and optical sub-wavelength switched networks. Data Centre Networks focuses on networks for cloud computing, cloud-based networking, grid computing and e-science.

The group at Bristol is a world leader in the new field of quantum photonics, with key successes in developing photonic crystal fibre light sources, quantum secured optical communications and novel quantum gate technologies.

The programme is accredited by Institute of Engineering and Technology until 2018, one of only a handful of accredited programmes in the UK.

Programme structure

Your programme will cover the following core subjects:

Semester one (50 credits)
-Communication systems
-Digital filters and spectral analysis
-Mobile communications
-Networking protocol principles
-Optoelectronic devices and systems

Semester two (70 credits)
-Advanced optoelectronic devices
-Data centre networking
-Advanced networks
-Engineering research skills
-Optical communications systems and data networks
-Optical networks

Research project (60 credits)
A substantial research project is initiated during the second teaching block and completed during the summer. This may be based at the University or with industrial partners.

Careers

This one-year MSc programme gives you a world-class education in all aspects of current and future optical communication systems, along with associated signal processing technologies. It will prepare you for a diverse range of exciting careers - not only in the communications field, but also in other areas such as management consultancy, project management, finance and government agencies.

Our graduates have gone on to have rewarding careers in some of the leading multinational communications companies, such as Huawei, China Telecom, Toshiba, China Mobile and Intel. Some graduates follow a more research-oriented career path with a number of students going on to study for PhDs at leading universities.

Read less
This innovative distance-learning programme is taught online and will provide you with knowledge and understanding in the highly topical and exciting field of stem cell biology and regeneration. Read more
This innovative distance-learning programme is taught online and will provide you with knowledge and understanding in the highly topical and exciting field of stem cell biology and regeneration. You will be guided from the origins of this field through to its application (and potential applications) in treating human disease, covering the latest tools and technologies available for study in this area. Programme content is delivered by researchers active in the field, ensuring that the latest breakthroughs are communicated.

Using a creative distance-learning model, the programme delivers lectures, online discussions and assessments over the internet. This offers you more flexibility than traditional campus-based courses as you can study in your own environment. You will only be required to visit Bristol for your formal examinations at the end of the academic year. This distance-learning model, together with a part-time study option, makes the programme particularly appealing to those students who wish to combine full-time employment with study.

Programme structure

Core units
-Introduction to Stem Cells and Regeneration
-Neurodegeneration and Ophthalmic Disorders
-Molecular Tools in Stem Cells and Regeneration
-Peripheral Neuropathy and Spine
-Cell Signalling
-Biomaterials and their Use in the Skeletal System
-Stem Cells in Cardiac Systems
-Research Project/Dissertation

Careers

The programme can open up a number of different career opportunities. It can be used as a pathway to further studies (eg PhD) which in turn could lead to a research or academic career in the field. It can also open up opportunities in private industry, for example:
-Biotechnology sector research/sales
-Stem cell business development
-Stem cell banking
-Stem cell patents
-Stem cell clinical translation
-Charity research development
-Pharmaceutical industry
-Stem cell regulatory bodies

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X