• University of Leeds Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of York Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
King’s College London Featured Masters Courses
Imperial College London Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Queen Mary University of London Featured Masters Courses
University of Leeds Featured Masters Courses
0 miles
Engineering×

London South Bank University, Full Time Masters Degrees in Engineering

  • Engineering×
  • London South Bank University×
  • Full Time×
  • clear all
Showing 1 to 15 of 19
Order by 
The MSc in Mechanical Engineering at LSBU is a broad-based course which will enable you to deepen your knowledge and understanding in core mechanical engineering disciplines, combined with research and business skills demanded by Industry and the Professional accrediting body (IMechE). Read more
The MSc in Mechanical Engineering at LSBU is a broad-based course which will enable you to deepen your knowledge and understanding in core mechanical engineering disciplines, combined with research and business skills demanded by Industry and the Professional accrediting body (IMechE). The modules studied are informed by applied research from within the department and close links with industry and enterprise organisations. This MSc course builds on LSBU's rich history in engineering, where it has been studied for over 100 years.

LSBU offers sophisticated practical facilities including a virtual reality suite, advanced CAD-CAM capability including multi-axis milling, turning, and coordinate-measuring machine (CMM). Laboratories are well equipped for experimentation in solids, solid-mechanics and thermofluids. In addition to structured sessions, you'll be encouraged to utilise the facilities for your major project.

Research and business skills are developed through specific modules, using engineering examples and case-studies and our course incorporates a management-related module focused on entrepreneurship and project management. This management module develops our graduates' commercial awareness and ensures that they have the skill-set valued by industry employers. The major project offers the opportunity to specialise in one area, which may be relevant to your future employment or further research aspirations. You'll be offered a wide range of projects supported by academics with expertise in the field, or you can propose your own project.

See the website http://www.lsbu.ac.uk/courses/course-finder/mechanical-engineering-msc

Modules

- Technical research and professional skills
This module develops the skills needed to gather relevant technical information, how to extract the essence from a piece of technical literature, how to carry out a critical review of a research paper, how to write a feasibility report, how to give presentations and put your thoughts across effectively, and how to manage a project in a group project environment.

- Technology evaluation and commercialisation
You'll be guided towards identifying a technology project idea and evaluate its business potential by conducting detailed research and analysis.The outcomes from this will serve as the basis for implementation of the selected technology in the business sense, developing the appropriate commercialisation strategy, and writing a business plan for your high-tech start-up company.

- Engineering design, analysis, and manufacture
This module broadens your knowledge base, and will involve case studies and practical work that demonstrate how advanced analysis is employed in the engineering design process. The module will involve the application of finite element analysis (FEA) and CAD-CAM, with an integrated approach to engineering design.

- Advanced solid mechanics and dynamics
This module covers the basic concepts of solid mechanics from a mathematical modelling perspective.The module incorporates engineering design and appreciation of sustainability issues as common themes running through the module.You'll need a good background in analytical techniques like linear algebra and differential equations. You'll use classical approaches to solid mechanics together with modern approaches and deal with complex problems in mechanics both systematically and creatively.

- Advanced instrumentation and control
This module develops advanced techniques in data acquisition and manipulation required for instrumentation and control applications, including structures of virtual instrumentation, data acquisition tools and wizards. You'll explore the theory behind modern control systems and consolidate lectures with experimental computer-based assignments using industry standard hardware and software (NI DAQ and LabView).

- Advanced thermofluids and energy analysis
This module provides you with an opportunity to study applied thermodynamics and fluid mechanics, with emphasis on power-producing devices, energy systems and renewable energy. You'll cover experimental techniques for measurement of performance of power-producing devices and fluid mechanic systems in both theory and practice. You'll analyse energy systems, including environmental impact, and develop the ability to critically appraise alternative power-producing devices to meet current and future energy needs.

- Major project
You'll undertake a major project in an area that is relevant to your MSc in Mechanical Engineering.You'll choose your project and carry it out under the guidance of a supervisor. At the end of the project, you'll present a dissertation, which forms a major element of the assessment.

Assessment is comprised of examinations, practical work, laboratory reports, log-books, formal reports, presentations and a spoken examination following competition of your major project.

Employability

This MSc will deepen and broaden your knowledge base in the mechanical engineering field, helping you to attain professional awards such as becoming a Chartered Engineer. Chartered Engineers typically earn more than their colleagues, and our broad-based masters has been designed in accordance with IMechE's guidelines to ensure you have a wide range of career opportunities open to you after graduation.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

The School has a strong culture of research and extensive research links with industry through consultancy works and Knowledge Transfer Partnerships. London South Bank University is based in central London, providing excellent access to the professional body head-quarters (IMechE) for attending extra-curricular lectures, and use of library resources.

Facilities

During your master's course you'll have access to up-to-date and large-scale workshops, laboratories and design studios which are highly in tune with leading technologies. LSBU has made considerable investment into it's engineering facilities, and thanks to our commitment to developing work-ready graduates, you'll be developing and producing your work in an industry standard environment.

- Virtual Engineering lab
Our virtual engineering laboratory allows engineering students to walk around their designs and view them in 3-D, as well as experiment and improve on them in real-time.

Read less
Our Masters in Electrical and Electronic Engineering is a specialist course designed for engineering graduates to enhance their skills in this area of high technology. Read more
Our Masters in Electrical and Electronic Engineering is a specialist course designed for engineering graduates to enhance their skills in this area of high technology. The ever increasing pace of developments in all areas of electrical and electronic engineering, (and in particular in the systems that are related to energy and the environment), requires engineers with a thorough understanding of operation principles and design methods for various modern electrical and electronic systems. As a graduate you'll be able to not only respond to the latest changes but also to look ahead and help in shaping future developments.

The unique features of this course are that the traditional electrical and electronic engineering subjects are supported by the more modern topics of computer control and machine learning techniques, which are at the forefront of modern electrical and electronic systems in the industry today. This course offers an integrated systems approach to engineering, incorporating modules in advanced power electronics and renewable energy systems, advanced instrumentation and control with signal processing, real-time systems and machine learning techniques.

There is an increasing demand for skilled engineers who are able to design and maintain electrical and electronic systems that are at the forefront of current technologies. These positions cover many industries, hence graduates from this course can expect significantly enhanced job prospects in electrical, electronic as well as systems engineering.

See the website http://www.lsbu.ac.uk/courses/course-finder/electrical-electronic-engineering-msc

Modules

- Digital signal processing
This module introduces the theory behind digital signal processing and how DSP can be implemented in real-time. You will gain an understanding of how to program hardware to perform fundamental DSP algorithms such as filtering and spectral analysis. You will gain a fundamental understanding of DSP algorithms and how to implement them in hardware for real-time applications.

- Pattern recognition and machine learning
This module introduces the fundamentals of both statistical learning theory and practical approaches for solving pattern recognition problems. Further, it consolidates lectures with experimental computer-based assignments to inculcate the basics of machine learning and classification. The module covers the fundamentals of pattern recognition and provides the essential background to machine learning and classification.

- Advanced instrumentation and control
This module develops advanced techniques in data acquisition and manipulation required for instrumentation and control applications. Further, it consolidates lectures with experimental computer-based assignments using industry standard hardware and software (NI DAQ and LabView). The module develops your knowledge and experience in data acquisition and virtual instrumentation used in Industry for control purposes.

- Advanced power electronics and renewable energy systems
The material in this module is divided into two parts. The first part covers the analysis and operation of power electronics and machines and their application in the areas of power conversion, power conditioners and electrical machine drives mostly, found on the 'load' side of the electrical power system but sometimes integrated into the supply network. This part will also include elements of computer control systems that are designed to produce non-sinusoidal waveforms and methods of dealing with undesirable harmonics and their effects on the power network. The second part of the module will focus on renewable energy and sustainability. This will include: solar cells, biomass, wind and wave power; intelligent environmental sensing and feedback (in areas of pollution, petroleum, energy consumption, etc.); and renewable design and effectiveness (solar, wind and wave).

- Technology evaluation and commercialization
In this module you will follow a prescribed algorithm in order to evaluate the business opportunity that can be created from a technology's unique advantages. You will be guided towards identifying a technology project idea that you will evaluate for its business potential. To do this you will conduct detailed research and analysis following a prescribed algorithmic model, in order to evaluate the business potential of this technology idea. The outcomes from this will serve as the basis for implementation of the selected technology in the business sense. Thus you will develop the appropriate commercialisation strategy and write the business plan for their high-tech start-up company.

- Technical, research and professional skills
This module provides training for the skills that are necessary for successful completion of the MSc studies in the near future and for professional development in the long-term future. More specifically, the module teaches how to search and gather relevant technical information, how to extract the essence from a piece of technical literature, how to carry out a critical review of a research paper, how to write a feasibility report, how to give presentations and put your thoughts across effectively, and how to manage a project in terms of time and progress in a group project environment. These are designed to enhance the technical and analytical background that is necessary for the respective MSc stream.

- MSc engineering project
This module requires you to undertake a major project in an area that is relevant to their MSc course. You will chose your project and carry it out under the guidance of your supervisor. At the end of the project, you are required to present a dissertation, which forms a major element of the assessment. The dissertation tests your ability to integrate information from various sources, to conduct an in-depth investigation, to critically analyse results and information obtained and to propose solutions. The other element of the assessment includes an oral presentation. The Individual Project carries 60 credits and is a major part of MSc program.

Employability

The acquired skills in computer control and AI techniques offer additional scope for jobs in the design of decision support systems that cross traditional boundaries between engineering and other disciplines. (i.e. medical, finance). Successful graduates will enjoy exciting career opportunities from a wide range of industries, such as electrical energy supply and control, electronics and instrumentation products and services, intelligent systems and automation to include: automotive, aerospace, electrical and electronic consumer products, telecommunications. The students can also pursue PhD studies after completing the course.

Engineering management skills

Engineering employers have expressed their need for engineers with a solid grasp of the business requirements that underpin real engineering projects. Our course incorporates a management-related module focused on entrepreneurship and project management. This management module develops our graduates' commercial awareness and ensures that they have the skill-set valued by industry employers.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

The School has a strong culture of research and extensive research links with industry through consultancy works and Knowledge Transfer Partnerships (KTPs). Teaching content on our courses is closely related to the latest research work.

Read less
The application of engineering in the field of biomedicine is gaining significant momentum with many emerging themes within the medical and healthcare communities. Read more
The application of engineering in the field of biomedicine is gaining significant momentum with many emerging themes within the medical and healthcare communities. Consequently there is an increasing demand to train science and engineering graduates to augment and extend their knowledge under the general umbrella of biomedical engineering.

The design and implementation of biomedical instrumentation in the form of monitoring, diagnostic or therapeutic devices is a growing specialist field and the demand for a suitably qualified workforce is set to expand rapidly as healthcare is increasingly devolved to smaller clinics and household devices.

London South Bank University is well placed to deliver first-rate professional education in this field because of the Division of Mechanical Engineering and Design's established work in telemedicine and signal processing, allied to our strong industry connections and reputation for developing innovative practical hardware solutions through knowledge transfer partnerships or other similar industrial collaborations. Together, with specialist input from the School of Health and Social Care, this programme enables graduate scientists and engineers to focus themselves towards a career in biomedical engineering.

The programme will cover a broad range of techniques for developing fundamental skills for medical applications of electronics and communications. Further, it will provide students with a thorough understanding of the field, specifically with practical knowledge and expertise sufficient to evaluate, design and build medical engineering systems using a wide range of tools and techniques.

See the website http://www.lsbu.ac.uk/courses/course-finder/biomedical-engineering-instrumentation-msc

Modules

- Technical, research and professional skills
This module introduces and develops the skills you'll need to make use of your technical knowledge as a professional engineer.

- Technology evaluation and commercialisation
This module will increase your awareness of the commercial aspects of your design embedded in your MSc project.

- Advanced instrumentation and control
You'll develop advanced techniques in data acquisition and manipulation that is required for instrumentation and control applications.

- Digital signal processing and real-time systems
You'll be introduced to the theory behind digital signal processing to including how it can be implemented in real-time and embedded systems.

- Applied biomedical sciences for engineers
This module introduces you to biological systems; from the organisational level of the molecular, to the organ and physiological functions of the whole body.

All modules have a number of assessment components. These can consist of assignments, mini tests, essays, laboratory reports and log books and examinations of various kinds.

Employability

This programme provides students with a thorough understanding of the field and with practical knowledge and expertise sufficient to evaluate, design and build medical engineering systems using a wide range of tools and techniques. This postgraduate programme aims to address the upsurge in interest in this field and the future need for highly skilled graduates in this area.

Graduate career opportunities

Jobs are widespread throughout the UK, particularly in NHS trusts. Manufacturing industries employ around 35 percent of all biomedical engineers, primarily in the pharmaceutical and medicine manufacturing and medical instruments and supplies industries. Many others work for hospitals. Some also worked for government agencies or as independent consultants. The workplace may be an office, laboratory, workshop, hospital, clinic or more likely a combination of the above.

After graduating from this course you'll acquire a broad range of techniques for developing basic skills for healthcare applications of electronic and instrumentation systems. You'll be able to design and build medical engineering systems using a large range of tools and techniques.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

The Department maintains active industry links through KTP schemes, spin-out companies, and industrial consultancy works. The industry requirements and needs are then fed back into the teaching to enhance the teaching quality and student learning experiences. This also improves personal development planning.

Established research expertise

This programme builds on the expertise of the research team established by the Biomedical Communications and Engineering (BiMEC) Research Group within the Department of Engineering and Design. This research group has diverse research interests broadly in the fields of telecommunications, computer networks, ultra wideband systems, opto-electronics, signal processing, embedded systems and software engineering.

Read less
This is a broad based civil engineering course covering the areas of structures, geotechnics, water engineering and water transportation. Read more
This is a broad based civil engineering course covering the areas of structures, geotechnics, water engineering and water transportation.

The technical modules of the course aim to develop the understanding and application of advanced theoretical contents of the specialist subject.

Structural topics are taught in the two modules of Finite Elements and Stress Analysis, and Advanced Structural Design. The interaction of geotechnics and structures is covered in the Soil-Structure Engineering module. The Water Resources Systems Management module looks into the water engineering aspects. The transportation field is studied in the Highway and Railway Engineering and Operations module. The final module, Asset Management and Project Appraisal of Infrastructures examines the methods, merits and economics of repairs of existing structures.

You'll be required to complete an individual project into a specific area of the programme studied, providing you with the opportunity of pursuing a programme of independent study. The work is to be of an investigative nature having an experimental, analytical, computer-based or fieldwork input.

If you'd like any further information, please contact the course administrator, Ms. Jo Hillman: or call 020 7815 7106.

- Accreditation:
Joint Board of Moderators (ICE, IStructE, IHE, CIHT)

See the website http://www.lsbu.ac.uk/courses/course-finder/civil-engineering-msc

Modules

Teaching techniques include lectures, workshops, tutorials, laboratories, field trips and IT based blended learning. Visiting lecturers from industry contribute in some modules.

- Advanced structural design
The module will use the European codes for safe and effective design of normal structural elements and structural systems. It will cover engineering principles and analytical techniques and using software.

- Soil-structure engineering
This module will acquaint the students with classical and modern methods for the analysis and design of structures which are embedded in the ground, specifically embedded retaining walls, piled foundations and tunnels.

- Finite elements and stress analysis
The module will equip the student with linear elastic analysis of thin-walled sections, 2D and 3D stress analysis and transformations. It will introduce the Finite Element method theory and use ANSYS software.

- Highway engineering and operation
The module covers the system characteristics and operations for highways before considering geometric alignment and construction of highways.

- Railway engineering and operation
This module will underpin understanding of railway system characteristics and operations, and provide skills in geometric design for railways.

- Water engineering
This module covers the concepts and theories of groundwater hydrology, the principles of groundwater flow, well hydraulics analysis and design, contaminants transport in the aquifer, and remediation technology of contaminated groundwater. There is an introduction to aspects of 3-dimensional groundwater flows using USGS MODFLOW and FEFLOW with practical.

- Project
This module is one third of the course and is an individually supervised piece of work that is typically either a research project or an innovative design exercise. The theme is related to topics covered on the course.

Employability

Employment prospects for graduates of these courses are very good, especially in view of the upturn in new infrastructure projects in the UK and overseas. Successful students enter into a variety of positions within the construction industry, ranging from working in a design office, with contractors and in local authorities.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

This degree is an accredited MSc (Technical) course by the Joint Board of Moderators as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Read less
This is an advanced postgraduate course specialising in structural engineering covering advanced structural analysis and design, structural computing simulation and also offering units linked with steel, concrete, timber and other structural designs. Read more
This is an advanced postgraduate course specialising in structural engineering covering advanced structural analysis and design, structural computing simulation and also offering units linked with steel, concrete, timber and other structural designs. It will also provide you with knowledge to design structures under dynamic and earthquake conditions.

The modules taught focus on learning advanced methods and techniques while developing analytic skills across a range of structural engineering topics.

Two modules, Finite Elements and Stress Analysis and Advanced Computing Structural Simulation, focus on learning advanced computing methods and commercial computing software for structures modelling and simulation.

Advanced Structural Analysis and Design and the Masonry and Timber Engineering modules will cover advanced structural theory and designing traditional structures, such as, steel, concrete, masonry and timbers. Earthquake Engineering will cover design of structures in seismic areas and analysis of structures under dynamic loading.

Soil-Structure Engineering will cover interaction of geotechnics and structures as well as foundation structures. Finally, you'll either conduct a structural related research project or a design project.

If you'd like any further information, please contact the course administrator, Ms. Jo Hillman: or call 020 7815 7106.

Accreditation:
Joint Board of Moderators (ICE, IStructE, IHE, CIHT)

See the website http://www.lsbu.ac.uk/courses/course-finder/structural-engineering-msc

Modules

Teaching techniques include: lectures, workshops, tutorials, laboratories, field trips and IT based blended learning. Visiting lecturers from industry contribute in some modules.

Module descriptions

- Advanced structural design
The module will deal with the design of structural elements and complex structural systems using the increasingly popular structural Eurocodes. It will cover engineering design principles and analytic techniques as well as the application of industrial standard software packages. There will also be an element of group and research work based on innovative design techniques.

- Soil-structure engineering
To acquaint the student with classical and modern methods for the analysis and design of structures that are embedded in the ground, specifically embedded retaining walls, piled foundations, and tunnels.

- Finite elements and stress analysis
The module will equip the student with linear elastic analysis of thin-walled sections, 2D and 3D stress analysis and transformations. It will introduce the Finite Element method theory and use ANSYS software.

- Masonry and timber engineering
This module introduces students to the materials, properties and design processes using timber and masonry construction. Eurocodes are used for the design of elements. Proprietary computer programmes are used alongside hand calculations. New techniques are introduced and discussed.

- Structural dynamics and earthquake engineering
The module aims to develop a thorough understanding of causes and nature of vibration in structures and to enable students to analyse the response of a structure under earthquake loadings.

- Advanced computing and structural simulation
The module will enable the students to use the advanced Finite Element Analysis (FEA) software (ANSYS) for modelling steel, reinforced concrete and composite structures. Both material and geometrical nonlinearities will be considered which link the complex structural system.

- Project / dissertation
This module is one third of the course and is an individually supervised piece of work that is typically either a research project or an innovative design exercise. The theme is related to topics covered on the course.

Employability

Employment prospects for graduates of Structural Engineering are strong. Successful students will enter into a variety of positions with employers which might include: structural engineer, consultant, project manager, government advisor and researcher.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

This degree is an accredited MSc (Technical) course by the Joint Board of Moderators as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Read less
Duration. MSc - 1 year (full-time) or 3 years (part-time). PgDip - 1 year (full-time) or 2 years (part-time). PgCert - 1 semester (full-time) or 1 year (part-time). Read more
Duration:
MSc - 1 year (full-time) or 3 years (part-time)
PgDip - 1 year (full-time) or 2 years (part-time)
PgCert - 1 semester (full-time) or 1 year (part-time)

Simple timetable information
Full-time: 2 days a week
Part-time: 1 day a week

Entry Requirements
An undergraduate Civil Engineering degree with a minimum of a BEng (Hons) - Lower Second (2.2) Classification, or a BSc (Hons) – Upper Second (2.1) Classification. Applicants with appropriate relevant professional experience will also be considered.

Course units
Civil Engineering course units:
– Coastal Engineering
– Computer Aided Structural Design
– Earthquake Engineering
– Finite Element Methods
– Research Methods
– Soil-Structure Engineering
– Steel-Concrete Design
– Transportation and Traffic
– Major Project
Structural Design course units:
– Advanced Structural Analysis
– Computer Aided Structural Design
– Earthquake Engineering
– Finite Element Methods
– Masonry and Timber Engineering
– Research Methods
– Soil-Structure Engineering
– Steel-Concrete Design
– Project

Course description
The postgraduate programmes follow a fixed selection of eight core taught units centred on research skills and relevant technical units. The Research Methods unit aims to equip the students with the necessary skills for planning a research programme, formulating a hypothesis, developing and extending their knowledge of qualitative and quantitative methods, and evaluating the outcome of the research project.

The project unit is an individual submission of an investigation into a specific area of the programme
studied, providing the student with the opportunity to pursue a programme of independent study. The work is to be of an investigative nature having an experimental, analytical, computer based or fieldwork input.

The technical units aim to develop the understanding and application of advanced theoretical contents of the specialist subject.

Career opportunities
Employment prospects for graduates of these courses are very good, especially in view of the upturn in new infrastructure projects in the UK (e.g. Olympics 2012). Successful students enter into a variety of positions within the construction industry, ranging from working in a design office to working
with contractors and in local authorities.

Typical background of applicant
The programme is designed primarily for engineers and other construction industry professionals who are seeking to enhance their understanding of advanced civil, structural and geotechnical engineering technology. It may also be of interest to graduates who are seeking to directly enhance their attractiveness to potential employers.

Professional contacts/industry links
The MSc course is approved by the Joint Board of Moderators as a programme of further learning, in
accordance with Engineering Council requirements.

Read less
The MSc in Petroleum Engineering programme aims at broadening, strengthening and integrating knowledge and understanding of the oil and gas industry processes. Read more
The MSc in Petroleum Engineering programme aims at broadening, strengthening and integrating knowledge and understanding of the oil and gas industry processes. You'll learn the mathematics, science, computer-based methods, design, and engineering practice to solve petroleum engineering problems of varying complexity, taking in consideration the economic, social and environmental context.

You'll gain a detailed knowledge of the integrated model of the oil reservoir, so that you'll be able to predict, maintain and improve oil and gas production processes. You'll benefit from the detailed instruction you receive on a suite of software packages that are used in the oil and gas industries to maximize costeffective production from the field, these include: PETREL, HYSYS, Eclipse, Prosper and GAP.

At the end of the programme you should have obtained a deep and broad knowledge of the integrated model of the oil reservoir in order to predict, improve, maintain and to innovate the processes of oil and gas production.

See the website http://www.lsbu.ac.uk/courses/course-finder/petroleum-engineering-msc

Modules

- Petroleum geoscience
- Petro physics
- Reservior engineering and simulation
- Drilling and production
- Advanced reservoir engineering
- Petroleum economics and oilfield management
- Group project (summer period)
- Dissertation (summer period)

Employability

The complexity of the oil and gas industry offers a wide variety of opportunities for career development to petroleum engineers.

In most oil companies worldwide the petroleum engineering team consists of a geologist, a reservoir engineer, a petro-physicist, a drilling engineer and a production engineer. With this Masters qualification you'll be qualified to apply for positions in all of these fields. Each member of this team will be concentrating on their own aspect of the larger task in hand, which is to maximise cost-effective production from the field.

As a graduate of the MSc in Petroleum Engineering your profile will match the needs in different areas of oil and gas production, and reservoir engineering in large companies, which offer attractive graduate programmes, and in medium and small operating and consulting companies.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

This Masters course is accredited by the Energy Institute.

The Energy Institute (EI) is the professional body for the energy industry delivering good practice and professionalism across the depth and breadth of the sector.

- Society of Petroleum Engineers
LSBU gained approval for the creation of the Society of Petroleum Engineers (SPE) Student Chapter in March 2007. The interaction with SPE-London allows our students to attend specialised conferences related to the oil industry, and also to have invited speakers from the industry, delivering presentations on relevant topics.

Read less
Transport engineering is about efficiently moving people and goods through the use of scientific principles. Journeys may be made by foot, bicycle, private motorised transport and public transport. Read more
Transport engineering is about efficiently moving people and goods through the use of scientific principles.

Journeys may be made by foot, bicycle, private motorised transport and public transport. The varied means of transport available require infrastructure comprising either of public rights of way or dedicated systems such as railways, which need to be sized, designed, built and maintained.

Taken together, transport and its infrastructure has significant impacts on society and the environment and these impacts need to be estimated.

The MSc Transport Engineering and Planning provides systematic knowledge and skills in the analysis and design of transport systems which are grounded in advanced engineering science, statistical modelling and planning theory and practice.

If you'd like any further information, please contact the course administrator, Ms. Jo Hillman: or call 020 7815 7106.

Accreditation:
Joint Board of Moderators (ICE, IStructE, IHE, CIHT)

See the website http://www.lsbu.ac.uk/courses/course-finder/transport-engineering-planning-msc

Modules

- Analysis and design of transport systems
- Asset management and project appraisal
- Railway engineering and operation
- Highway engineering and operation
- Safety, survey techniques and quantitative methods
- Transport society and planning
- Finite elements and stress analysis
- Project (masters)
- Property development and regeneration

Employability

Employment prospects for graduates of the MSc Transport Engineering and Planning remain very good in the long term. Transport infrastructure is one of the most significant assets which a country possesses and there will remain a strong need for skilled professionals working in transport engineering and planning.

Career paths in transport engineering

Successful students will enter into a variety of positions with employers which might include:

- Designing and constructing transport systems
- Procuring and maintaining transport systems, including central and local government agencies
- Financing transport systems who need specialist transport engineering and planning knowledge to assist in financial assessments of proposed schemes involving private sector finance
- Management of transport operations

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
-mentoring and work shadowing schemes.

Read less
Beautiful architecture. Solid structure. What else do buildings need?. Try living in one without any heating, cooling, electrical power, lighting, water or drainage. Read more
Beautiful architecture. Solid structure. What else do buildings need?

Try living in one without any heating, cooling, electrical power, lighting, water or drainage. What would it be like to work in a tower without lifts? How would you manage without telephones, an IT system or an internet connection? All of these systems and many more are designed by building services engineers. Building Service Engineers turn buildings from empty shells into spaces fit for people to use.

From the very start of the building design, Building Services Engineers are involved helping architects and other members of the design team to get the size, shape and configuration of the building right. They determine strategies for designing energy efficient buildings, making them sustainable in the long term. Buildings are responsible for a large chunk of carbon emissions so this work makes a critical contribution to reducing a building's impact on climate change.

Of all the disciplines working in the built environment today, the building services engineer has the broadest reach and the deepest impact, affecting virtually every aspect of building design. In short, they make buildings work.

This Masters course provides a broad basis of advanced understanding in the technological areas of building services and energy engineering, with particular emphasis on those areas that are relevant to the interaction between the built and natural environments, modern industry, and the analysis of developing technologies.

See the website http://www.lsbu.ac.uk/courses/course-finder/building-services-engineering-msc

Modules

The course provides a practitioner perspective with which we analyse building energy requirements in terms of the external environment and internal space, and the effect on energy resources. We consider the principles and analyse associated building engineering systems to understand control, simulation and modelling techniques.

As well as the core engineering skills, appropriate areas of management and research methods are studied to provide a balance foundation for the specialist units. The MSc dissertation provides an opportunity to develop further research skills by application to problems that require in-depth and innovative thinking.

Module descriptions

- Thermal environment, acoustics and lighting
The module provides an introduction to the processes and characteristics that determine the quality of the internal built thermal, acoustic and visual environment. The aims of this module are to examine the principal parameters that affect the thermal, acoustic and visual environment, and the theory and principles necessary for the design of the internal environment.

- Heating and energy in buildings
This module introduces the key components of building heating and cooling systems, and presents sizing methodologies of central plant and techniques for analysing energy consumption and carbon emissions. System configurations and controls are discussed that ensure optimum safe and efficient operation of the plant.

- Energy resource and use analysis
This module offers the opportunity to develop strategic and operational management skills in the fields of infrastructure asset management and project appraisal. It covers design life extensions, risk and asset management techniques for infrastructure, and techniques for physical appraisal of infrastructure, and their economic, environmental and social impacts.

- Electrical power
The module covers electrical power engineering as applied to the design of systems in buildings. In particular, this includes the connection of, and the effects of, small-scale embedded generation as might be employed to exploit renewable energy sources. The module aims to provide an appreciation and understanding of electrical services design in buildings with particular reference to safety requirements and the effects of embedded generation on the supplier and the consumer.

- Sustainable refrigeration
The module introduces the principles of thermodynamics, and applies them to the study and design of energy efficient refrigeration systems. Vapour compression, absorption and other novel cycles are analysed and modeled. Practical applications of sustainable refrigeration are investigated through case studies.

- Ventilation and air conditioning
This module introduces the theory and principles necessary for the evaluation of ventilation and cooling loads, the selection and design of ventilating and air conditioning systems. It examines the principles of operation and characteristics of contemporary systems and their associated controls and distribution systems with particular emphasis on energy use and heat recovery. It discusses the effect of system balancing and maintenance on the correct and energy efficient operation of the systems.

- Energy engineering project

Employability

Employment prospects are excellent. Construction and engineering activity is expected to accelerate in the UK, Europe and worldwide over the next 20 years and demand for building services engineers continues to outstrip supply.

Graduate success stories

Successful students enter various roles including building services design, management of construction projects, and operation of complex installations.

Professional accreditation

The course is fully accredited by Chartered Institution of Building Services Engineers (CIBSE) and the Energy Institute as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) undergraduate degree. Potential students are advised to check directly with the CIBSE or EI as to the validity of their first degree for a CEng route.

Accredited on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Read less
The Master of Research (MRes) Engineering programme provides specialist study for graduates intending to work in research and development environments in a variety of scientific and engineering disciplines. Read more
The Master of Research (MRes) Engineering programme provides specialist study for graduates intending to work in research and development environments in a variety of scientific and engineering disciplines.

You'll develop your ability to apply engineering knowledge, your understanding of engineering principles and skills and gain an understanding of commitment to quality and standards to the practice of science and engineering.

The course is designed to enable you organise and manage technologically advanced research, development and production and also interact effectively in a global market. You'll acquire and use a broad base of active knowledge in various research technologies, and gain a broad and systematic understanding of the fundamental principles of a specific scientific or engineering area and its related topics.

Read less
With the launch of 4G wireless networks (LTE), industry vendors are competing to recruit graduates with unique combination of skills and knowledge in both wireless and broadband networking fields. Read more
With the launch of 4G wireless networks (LTE), industry vendors are competing to recruit graduates with unique combination of skills and knowledge in both wireless and broadband networking fields. This course offers an integrated approach to transmission technologies, signal processing techniques, broadband network design, wireless networking techniques and modelling simulation skills.

The unique features of this course are the integration of latest wireless communications and broadband networking engineering which are at the forefront of modern telecommunication systems in the industry today.

Engineering employers have expressed their need for engineers with a solid grasp of the business requirements that underpin real engineering projects. Our course incorporates a management-related module focused on entrepreneurship and project management. This management module develops our graduates' commercial awareness and ensures that they have the skill-set valued by industry employers.

As a student here you'll benefit from well-equipped telecommunications lab and Cisco equipment.

See the website http://www.lsbu.ac.uk/courses/course-finder/telecommunication-wireless-engineering-msc

Modules

- Technical, research and professional skills
This module provides training for the skills that are necessary for successful completion of the MSc studies in the near future and for professional development in the long-term future. More specifically, the course teaches how to search and gather relevant technical information, how to extract the essence from a piece of technical literature, how to carry out a critical review of a research paper, how to write a feasibility report, how to give presentations and put your thoughts across effectively, and how to manage a project in terms of time and progress in a group project environment. These are designed to enhance the technical and analytical background that is necessary for the respective MSc stream.

- Computer network design
This module provides a broad understanding of the principles of computer networks and approaches of network design. It starts from standard layered protocol architecture and each layer of the TCP/IP model. Then it will focus on a top-down approach for designing computer networks for an enterprise.

- Wireless communication and satellite systems
This module provides understanding of main aspects of wireless communication technologies, various radio channel models, wireless communication networks and satellite communication systems. Particular emphasis will be given to current wireless technologies and architectures, design approaches and applications.

- Technology evaluation and commercialisation
In this module you'll follow a prescribed algorithm in order to evaluate the business opportunity that can be created from a technology's unique advantages. You will be guided towards identifying a technology project idea that you will evaluate for its business potential. To do this you'll conduct detailed research and analysis following a prescribed algorithmic model, in order to evaluate the business potential of this technology idea. The outcomes from this will serve as the basis for implementation of the selected technology in the business sense. Thus you'll develop the appropriate commercialisation strategy and write the business plan for your high-tech start-up company.

- Optical and microwave communications
This module provides a comprehensive approach to teach the system aspects of optical and microwave communications, with the emphasis on applications to Fibre-to-the Home (FTTH)/Fibre-to-the Business (FTTB) or Fibre-to-the Curb (FTTC), radio over fibre (RoF), optical-wireless integration, high-capacity photonic switching networks, wired and wireless broadband access systems, and high-speed solutions to last-mile access, respectively.

- Smart receivers and transmission techniques
This module provides a further in-depth study of some advanced transmission and receiver processing techniques in wireless communication systems. The module focuses on various current topics such as evolution and challenges in wireless and mobile technologies, smart transceivers, processing, coding and possible future evolutions in mobile communication systems. This module also aims to provide you with in-depth understanding and detailed learning objectives related the current mobile wireless industry trends and standards for key design considerations in related wireless products.

- Final project
This module requires you to undertake a major project in an area that is relevant to your course. You'll chose your projects and carry it out under the guidance of their supervisor. At the end of the project, you are required to present a dissertation, which forms a major element of the assessment. The dissertation tests the your ability to integrate information from various sources, to conduct an in-depth investigation, to critically analyse results and information obtained and to propose solutions. The other element of the assessment includes an oral presentation. The Individual Project carries 60 credits and is a major part of MSc program.

Employability

Engineers who keep abreast of new technologies in telecommunications, wireless and broadband networking are increasingly in demand.

There are diverse employment opportunities in this expanding field. Graduates could work for an equipment manufacturer, network infrastructure provider or a service provider, carrying out research, or working on the design and development projects, or production of data networks, broadband networking, optical fibre and microwave communications, wireless and mobile communications, cellular mobile networks or satellite systems. You could also pursue PhD studies after completing the course.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

The School of Engineering has a strong culture of research and extensive research links with industry through consultancy works and Knowledge Transfer Partnerships (KTPs). Teaching content on our courses is closely related to the latest research work.

Read less
This course builds on our world-class research work in electrical and electronic engineering, materials and devices, robotics, mechatronics, computer networks and telecommunications, big data, and informatics. Read more
This course builds on our world-class research work in electrical and electronic engineering, materials and devices, robotics, mechatronics, computer networks and telecommunications, big data, and informatics. It is funded by the European Union, Research Councils, Royal Society, Knowledge Transfer Programmes, and industrial companies.

The course provides knowledge, experience and skills that are essential for research and development work. It is research-oriented, with 80% of the time spent on a research project and the other 20% on taught modules. It is designed to develop key research skills, build up in-depth technical knowledge and understanding as well as project management skills, communications skills and presentation skills.

You can choose the project, either as a part of ongoing research work in our research laboratories or in our partner industrial companies. This course can also be tailored as an in-house course.

Example project topics (not exhaustive):
- Mobile Inspection Robots and Non-Destructive Testing Techniques, Design of Control and Embedded Systems, Elastic Waves Modelling

- Infrared and Electronic Sensing, Electronic Design, Data Analysis and Mathematical Modelling

- Instrumentation Programming, Software Engineering, Electromagnetics, Magnetic Materials and Devices

- Thin Film Materials and Devices, Photovoltaics, Low Loss Ceramic Resonators, Antenna Design, Broadband Technologies, Power Over Air

- Mobile and Wireless Communications, Ad-hoc Networks, MIMO, WiFi, WiMax, Zigbee, FPGAs, Linux Clustering, Mobile Programming, Network Programming.

- Big Data and Informatics

See the website http://www.lsbu.ac.uk/courses/course-finder/electrical-electronic-engineering-research-masters-mres

Modules

- Intellectual property development
- Project stage 1
- Project stage 2
- Project stage 3
- Technical, research and professional skills

Employability

On successful completion of the course, students can either continue to MPhil/ PhD studies or work in the research and development or technical support sections in industry such as electrical and electronic engineering, computer networks, telecommunications, and other engineering disciplines.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

We have extensive research links with over 15 UK and 20 European companies, for example: TWI Ltd, British Telecoms, Doosan Babcock Energy Ltd, CEA, BP, ISQ and through our own companies, for example Biox Systems Ltd.

Read less
This is an MSc course in Embedded Systems with contributions from the fields of mechatronics and robotics. Embedded systems are microprocessor-based systems within a larger mechanical or electrical system that performs a dedicated function or task. Read more
This is an MSc course in Embedded Systems with contributions from the fields of mechatronics and robotics.

Embedded systems are microprocessor-based systems within a larger mechanical or electrical system that performs a dedicated function or task. They encompass a wide variety of products ranging from small mobile phones to large process automation installations. A practicing engineer in the field of embedded systems needs to have a specialised expertise in more than one of the engineering subjects of this multi-discipline subject.

Our MSc is tailored to provide you with advanced learning in microprocessor systems that are at the heart of embedded systems, with additional contributions from the fields of mechatronics and robotics. This approach reflects the needs of the industry and is well supported by the range in expertise we have in our Department.

The Department of Engineering and Design covers the full gamete of teaching in electronic, telecommunication and computer networks engineering as well as mechanical engineering and product design.

Our academics are a cohesive group of highly skilled lecturers, practitioners and researchers. You'll benefit from your choice of supervisors to support a wide range of modern and multi-discipline Masters-level projects. Our teaching is supported by well-equipped laboratory workshops, using mostly the latest hardware and software available in universities.

- Robot Detectives
LSBU holds an international reputation as a world leader in the use of robotics in non-destructive testing and developing intelligent robotic systems. Groundbreaking projects have ranged from building wall climbing robots to robots that work under water and oil.

See the website http://www.lsbu.ac.uk/courses/course-finder/mechatronics-robotics-engineering-msc

Modules

- Embedded system design
This module shows you how to design and implement an Embedded System on a single IC. You will learn about the basics and the benefits of all programmable devices. The SOC (System on Chip) process flow is explained for FPGAs (Field Programmable Gate Arrays) stressing the role played by the Hardware Description Languages (HDL). The accompanying workshops demonstrate the use of tools and methodologies as well as the programming, verifying and protecting your designs. We use the commercial software Quartus II and QSYS and the hardware development platform DE2 by Altera.

- Individual project
The individual project is a major element of the course. It involves a wider spectrum of multidisciplinary research in design, manufacturing systems, quality management and IT, with due regard to the efficient exploitation of the technology, materials and marketing resources of industrial firms. Students are encouraged to work on industrial-based projects.

- Pattern recognition and machine learning
This module introduces the fundamentals of both statistical learning theory and practical approaches for solving pattern recognition problems. Further, it consolidates lectures with experimental computer-based workshops to inculcate the principles of machine learning and classification. The module covers: Bayesian decision theory, parametric density estimation, linear discriminant functions, perceptrons, support vector machines, neural networks and clustering.

- Microprocessor-based control and robotics
This module will provide information allowing you to critically evaluate and make the right choice of the microprocessor that will be at the heart of your embedded system. To this effect we provide a thorough discussion and qualitative comparison of the various microprocessor architectures and the methods of the software development available to you. The workshop assignments involve interfacing 8 and 32 bit microcontrollers to a wide range of devices, including robotic manipulators and control/measurement instrumentation.

- Electromechanical systems and manufacturing technology
This module consists of two parts. The first part covers the design of electromechanical components of the embedded system. The material presented here derives from the fields of Mechatronics and Robotics. The second part provides information on modern developments in the field of materials and the manufacturing. Examples of topics covered include applications of nano-technology, use of polymers and composites. Manufacturing techniques are described together with process modelling and control that is essential to produce the material to the required specification.

- Technology evaluation and commercialisation
This module includes: research product idea generation; product definition and value proposition; market research and assessment; functional assessment of product concepts; and strategic assessment of commercial viability.

- Technical, research and professional skills
This module includes: an introduction to project management, project planning, research project characteristics, ethics, feasibility analysis of requirements and resources; research methods; stages in project management; modelling and optimisation tools (PERT and CPM); technical report writing.

- Robotics
This module introduces you to the basic elements and principles of modern robotics. You'll gain a thorough theoretical and practical understanding of the fundamental concepts of this important and fast developing field. Essential geometric concepts will be introduced and these will be applied to the analysis and control of several different types of machines. A key feature of the module will be the wide range of robotic devices studied, from industrial serial manipulators, through mobile robots to quadcopters. The workshop for this modules includes various topics such as Robot Programming, Path Planning, Mapping and Localisation.

- MSc project
The individual project is a major element of the course. We offer a supervision of projects from a wide spectrum of either specialized or multi-disciplinary topics. There are opportunities for individual-centered projects as well for the student being allocated specific tasks within a larger research effort. Students are encouraged to work on industrial-based projects under joint supervision with their employer.

Employability

The course has been designed to help to meet the needs of industry. How much your employability will increase, will depend on your background and the personal contribution you make to your development whilst studying on the course.

Benefits for new graduates

If you are a new graduate in electronic or computer engineering then you benefit from the further advanced topics presented. You'll get an opportunity to cut your teeth on a challenging MSc Project, which will demonstrate your abilities to the potential employers. Alternatively, you could also pursue PhD studies after completing the course.

Benefits of returning to University after time working in industry

If you are returning to University after a period of working in industry, then you'll be able to update yourself with the recent technological progress in the field. You'll gain confidence in your ability to perform at your best and stand a better chance to seek challenging work opportunities. If you are already working in the field, the MSc qualification will enhance your status which will may help with your promotion.

Employment links

We are continually developing links with employers who are interested to provide internship to our students . Examples of this can include small VHDL and DSP designs, ARM based designs, industrial design or correlation research. These projects can be performed as part of the curriculum or as part of a research project.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

The School of Engineering at LSBU has a strong culture of research, extensive research links with industry through consultancy works and Knowledge Transfer Partnerships (KTPs), and teaching content is closely related to the latest research findings in the field.

History and expertise

A strong research tradition and our industrial links has helped shaped the course design, content selection, course delivery and project supervision.

The Department of Engineering and Design has a strong Mechatronics, Robotics and Non-destructive testing research group with a wide national and international profile. This is in addition to excellent research in many areas of mechanical engineering, electrical engineering, product design, computer network and telecommunications engineering.

Read less
Duration. 1 year (full-time) or 2 years (part-time). Simple timetable information. Part-time - 1 day per week. Course units. Year 1. Read more
Duration: 1 year (full-time) or 2 years (part-time).

Simple timetable information: Part-time - 1 day per week.

Course units
Year 1
Semester 1
– Introduction to Data Communications
– Introduction to Network Programming
– Multimedia Technologies
– Multimedia Authoring Techniques
Semester 2
– Distributed Systems and Internetworking
– Internet Protocols and Technologies
– Internet Management and Security
– Research Planning and Management
Summer Period
– Project

Course description
Internet, involving the world wide web-based technologies, is now an essential component for the functioning of all successful commercial and industrial organisations. This provides a rapidly expanding market for qualified personnel with skills to support and develop the complex web-based applications. Key roles exist for people with the artistic talent and an in-depth knowledge of the supporting internet technologies to exploit the full potential of the available resources and to be instrumental in specifying the next generation of tools, appropriate for the development of their organisations.

This course focuses on a balanced multidisciplinary approach to the development of multimedia contents and their distribution within a networked environment, using a combination of sophisticated computer tools and techniques. It provides a sound understanding of the underlying engineering principles that are applicable to the use of the software, network and computer systems. A special emphasis is given to the web-based applications and the key technical skills for developing interactive, database driven, multimedia web applications.

Students are given hands-on experience of various computer techniques, for example, the multimedia content generation for web and studio-based applications, web server configuration, firewalls/network configuration and management, routing and gateway configurations and Linux clustering etc, amongst others.

Career opportunities
Students successfully completing this course are expected to find jobs both as research and development staff and as technical support staff in areas such as website engineering, networking technologies, intranet server and database, Java networking programming, graphic user interface,
multimedia authoring, and video displays. The candidates with an artistic flair will particularly benefit from this course in developing careers for the media and related studio industries which require multidisciplinary skills and in enhancing support for their own hobby-based applications through keeping abreast of the relevant technologies.

Typical background of applicant
A good Honours degree in a Computing/IT/numerate subject, or an equivalent level CEng/Graduate diploma in an aspect of the relevant specialism, or an unclassified degree (or equivalent) together with further study/experience that is deemed equivalent. All applicants must have good written, interactive and social skills. Applicants may be asked to submit a written aptitude test before interview.

Professional contacts/industry links
MSc Internet and Multimedia Engineering is also offered in collaboration with Central China Normal University in Wuhan, China. Please note that this option is usually only appropriate for students of the Partner Institute.

Read less
Duration. 1 year (full-time) or 2 years (part-time). Course units. Semester 1. – Introduction to Data Communications. – Data Communications Theory. Read more
Duration: 1 year (full-time) or 2 years (part-time).

Course units
Semester 1
– Introduction to Data Communications
– Data Communications Theory
– Information Theory and Error Control Techniques
– Object-oriented Programming for Networking
Semester 2
– Research Planning and Management
– Distributed Systems and Internetworking
– Optical Fibre Communications
– Wireless Communications and Advanced Networks
Summer period
– Major project

Assessment methods
– The eight taught units are assessed by coursework and an end of unit examination
– The project is assessed by a project report and a viva.

Course description
Telecommunications and Computer Networks Engineering (TeCNE) is a specialist course designed for engineering graduates to enhance their skills in this area of high technology. Originally separate disciplines, telecommunications and computer networks have converged as communication systems have become more sophisticated. The fast pace of development requires people with thorough understanding of fundamental principles. Our aim is to produce graduates who will be able not just to respond to change but to look ahead and help shape future developments. This course also covers some CCNA and CCNP topics on computer networks.

Career opportunities
There are diverse employment opportunities in this expanding field. You could work for an equipment manufacturer, network infrastructure provider or a service provider, carrying out research, working on the design and development projects, or production of land or undersea communication systems, data networks, computer communication networks, optical fibre and microwave communications, wireless and mobile communications, cellular mobile networks or satellite systems.

Typical background of applicant
A degree equivalent to a minimum 2:2 Honours degree in Electronics, Communications or Computer Engineering. Professional qualifications (e.g. CEng) along with several years of relevant industrial experience (should include analytical work). The relevant industrial experience is to be assessed by the programme director. In addition, an overseas applicant will normally be required to have an English language qualification, e.g. IELTS with a minimum score of 6.5 (or equivalent). However, if an overseas applicant satisfies the academic entry requirements but has no IELTS, English proficiency may be assessed in an interview, or some documental evidence.

Professional contacts/industry links
Our close links with industry help us to stay at the leading edge of our subject area. The department works closely with British Telecom Research Laboratories and there are opportunities for students to carry out their major project within the BT/ London South Bank Communications Systems Research Centre. There are also opportunities for project work within other research groups. MSc TeCNE is also offered in collaboration with Beijing University of Posts and Telecommunications, China and Chongqing University of Posts and Telecommunications, China (please note that this option is usually only appropriate for Chinese-speaking students).

For more information on the MSc TeCNE, see: http://ecce3.lsbu.ac.uk/staff/baoyb/tecne/

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X