• Coventry University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Cardiff University Featured Masters Courses
Middlesex University Featured Masters Courses
University of Reading Featured Masters Courses
Barcelona Executive Business School Featured Masters Courses
University of Worcester Featured Masters Courses
Bath Spa University Featured Masters Courses
0 miles
Engineering×

University of Bath, Full Time Masters Degrees in Engineering

  • Engineering×
  • University of Bath×
  • Full Time×
  • clear all
Showing 1 to 12 of 12
Order by 
The University of Bath Civil Engineering. Innovative Structural Materials MSc is a full-time, one-year taught postgraduate course. Read more

The University of Bath Civil Engineering: Innovative Structural Materials MSc is a full-time, one-year taught postgraduate course.

Students study a range of modules before carrying out an individual research dissertation project in order to complete their Master of Science degree.

The course produces graduates with an in-depth and practical understanding of the use of innovative structural engineering materials in the provision of sustainable and holistic construction solutions for the built environment.

The use of construction materials is key to infrastructural development globally. New approaches are now needed for innovative renewable and low carbon structural engineering materials.

This MSc course will not only help prepare you for an exciting career in the industry, but it will also help prepare you to continue your studies onto a Doctor of Philosophy research programme.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/structural-engineering/

Learning outcomes

The course is aimed at engineering and science graduates who wish to work in the construction industry.

As a student you will be provided with the practical knowledge and tools to support you in the use of innovative structural engineering materials in the context of sustainable and holistic construction. You will also learn how to harness that knowledge in a business environment. You will gain analytical and team working skills to enable you to deal with the open-ended problems typical of structural engineering practice.

The MSc is based on research expertise of the BRE Centre for Innovative Construction Materials (http://www.bath.ac.uk/ace/research/cicm/) and is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired a partial CEng accredited undergraduate first degree. Please visit the Joint Board of Moderators (http://www.jbm.org.uk/) for further information about accreditation.

Collaborative working

The course includes traditionally taught subject-specific units and business and group-orientated modular work. These offer you the chance to gain experience in design, project management and creativity, while working with students from other subjects.

Project Work

Group project work:

In semester 2 you undertake a cross-disciplinary group activity for your professional development, simulating a typical industrial work situation.

Individual project work:

In the final semester, you undertake an individual research project directly related to key current research at the University, often commissioned by industry.

Structure in detail

A full list of units can be found on the programme catalogue (http://www.bath.ac.uk/catalogues/2015-2016/ar/ar-proglist-pg.html#AC).

Semester 1 (October-January)

The first semester provides a foundation in the most significant issues relating to the sustainable use of innovative structural engineering materials in design and construction; and involves units in natural building materials, advanced timber engineering, advanced composites, sustainable concrete technology and architectural structures.

- Five taught compulsory units

- Includes coursework involving laboratory or small project sessions.

- Typically each unit consists of 22 hours of lectures and 11 hours of tutorials, and may additionally involve a number of hours of laboratory activity and field trips with approximately 65-70 hours of private study (report writing, laboratory results processing and revision for examinations).

Semester 2 (February-May)

Semester 2 consists of a further 30 credits comprising of five core 6 credit units. These units include:

- Materials engineering in construction

- Advanced timber engineering

- Engineering project management.

Students will undertake a group-based design activity and an individual project scoping and planning unit (Project Unit 1). The group-based activity involves application of project management techniques and provides the basis for an integrated approach to Engineering, but with the possibility of specialising in the chosen master's topic.

It is a feature of this programme that the project work proceeds as far as possible in a way typical of best industrial practice. The Semester 2 project activities have significant planning elements including the definition of milestones and deliverables according to a time-scale, defined by the student in consultation with his/her academic supervisor and (where appropriate) his/her industrial advisor.

Summer/Dissertation Period (June-September)

Individual project leading to MSc dissertation.

Depending on the chosen area of interest, the individual project may involve theoretical and/or experimental activities; for both such activities students can use the department computer suites and well-equipped and newly refurbished laboratories for experimental work. The individual projects are generally carried out under the supervision of a member of academic staff.

There may be an opportunity for some projects to be carried out with the Building Research Establishment (BRE).

Subjects covered

- Advanced structures

- Advanced composites in construction

- Advanced timber engineering

- Materials engineering in construction

- Natural building materials

- Sustainable concrete technology

About the department

The Department of Architecture and Civil Engineering brings together the related disciplines of Architecture and Civil Engineering. It has an interdisciplinary approach to research, encompassing the fields of Architectural History and Theory, Architectural and Structural Conservation, Lightweight Structures, Hydraulics and Earthquake Engineering and Dynamics.

Our Department was ranked equal first in the Research Excellence Framework 2014 for its research submission in the Architecture, Built Environment and Planning unit of assessment.

Half of our research achieved the top 4* rating, the highest percentage awarded to any submission; and an impressive 90% of our research was rated as either 4* or 3* (world leading/ internationally excellent in terms of originality, significance and rigour).

The dominant philosophy in the joint Department is to develop postgraduate programmes and engage in research where integration between the disciplines is likely to be most valuable. Research is carried out in collaboration with other departments in the University, particularly Management, Computer Science, Mechanical Engineering, and Psychology.

Find out how to apply here - http://www.bath.ac.uk/study/pg/apply/

Funding

The following postgraduate funding may be available to study the Civil Engineering: Innovative Structural Materials MSc at The University of Bath.

UK postgraduate loans:

Erasmus funding:

Funding from FindAMasters:

Fees

UK / EU: £9.500

International: £20,300



Read less
This MSc course produces graduates with the creative, technical and managerial skills and expertise that are highly sought after in the field of engineering design. Read more
This MSc course produces graduates with the creative, technical and managerial skills and expertise that are highly sought after in the field of engineering design.

Based on research expertise within the Department of Mechanical Engineering, the programme covers an extensive range of innovative design techniques and approaches, reflecting how design impacts across all sectors of industry, and broadening your career opportunities as much as possible.

It will not only help prepare you for an exciting career in the industry, but also help prepare you to continue your studies onto a Doctor of Philosophy research programme.

Many distinction-level graduates from this programme stay on for a PhD, often funded in part by the University of Bath.

Learning outcomes

By studying for our MSc in Engineering Design you will:

- understand the issues associated with creativity and innovation
- develop knowledge and experience of the global commercial environment
- gain the expertise needed to manage engineering design projects and teams.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/design/index.html

Collaborative working

Our course includes traditionally taught subject-specific units and business and group-orientated modular work.

These offer you the chance to gain experience in design, project management and creativity, while working with students from other subjects.

- Group project work
In semester 2 you undertake a cross-disciplinary group activity for your professional development, simulating a typical industrial work situation.

- Individual project work
In the final semester, you undertake an individual research project directly related to key current research at the University, often commissioned by industry.

Structure

See programme catalogue (http://www.bath.ac.uk/catalogues/2015-2016/me/TEME-AFM10.html) for more detail on individual units.

Semester 1 (October-January):
The first semester introduces the fundamental principles of new product design and development, advanced design and innovation techniques, and computer aid packages for design.

- Five taught units
- Includes coursework involving laboratory or small project sessions
- Typically each unit consists of 22 hours of lectures, may involve a number of hours of tutorials/exercises and laboratory activity and approximately 70 hours of private study (report writing, laboratory results processing and revision for examinations)

Semester 2 (February-May):
In Semester 2 you will study both technical specialist units and project-based units. You will develop your professional understanding of engineering in a research and design context. You will gain analytical and team working skills to enable you to deal with the open-ended tasks that typically arise in practice in present-day engineering.

- The semester aims to develop your professional understanding of engineering in a business environment and is taught by academic staff with extensive experience in industry
- Group projects in which students work in a multi-disciplinary team to solve a conceptual structural engineering design problem, just as an industrial design team would operate
- Individual project preliminary work and engineering project management units

Summer/Dissertation Period (June-September):
- Individual project leading to MSc dissertation
- Depending on the chosen area of interest, the individual project may involve theoretical and/or experimental activities; for both such activities students can use the department computer suites and well-equipped and newly refurbished laboratories for experimental work. The individual projects are generally carried out under the supervision of a member of academic staff. A number of industrially-based projects are available to students.

Subjects covered

- Professional skills for engineering practice
- Advanced computer-aided design
- Engineering systems simulation
- Innovation & advanced design
- Materials in engineering design
- Product design & development

Career Options

Previous graduates of the University of Bath MSc in Engineering Dynamics and Control have gone on to careers in the UK and overseas in areas such as environmental design and design consultancies.

Recent graduates have secured jobs at:

Garrad Hassan
ABB Research
Dyson

About the department

Bath has a strong tradition of achievement in mechanical engineering research and education.

We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

We offer taught MSc students the chance to carry out projects within outstanding research groupings.

Our research impact is wide and we are dedicated to working with industry to find innovative solutions to problems that affect all areas of society.

We are consistently ranked among the UK’s top 10 mechanical engineering departments in the annual league tables.

We believe in producing leaders, not just engineers.

We will give you the edge over your competitors by teaching you how technology fits into commercial settings. You will not only have access to cutting edge science and technology, we will also provide you with the skills you need to manage a workforce in demanding business environments.

For further information visit our departmental website (http://www.bath.ac.uk/mech-eng/pgt/).

Find out how to apply here - http://www.bath.ac.uk/study/pg/apply/

Read less
The MSc in Mechatronics is an integration of Electrical and Mechanical Engineering. It has been specifically designed to fulfil the needs of modern industry requiring knowledge in both fields and incorporates a significant input from industry to complement its academic foundations. Read more
The MSc in Mechatronics is an integration of Electrical and Mechanical Engineering. It has been specifically designed to fulfil the needs of modern industry requiring knowledge in both fields and incorporates a significant input from industry to complement its academic foundations.

The course specialises in enabling students to produce mechatronic components which increase performance and energy efficiency, as sought after by industries worldwide.

It will not only help prepare you for an exciting career in the industry, but it will also help prepare you to continue your studies onto a Doctor of Philosophy research programme.

Many distinction-level graduates from this programme stay on for a PhD, often funded in part by the University of Bath.

Learning outcomes

By studying for our MSc in Mechatronics you will learn to:

- implement the concepts of mechatronics design principles to the solution of complex multi-physics engineering systems
- apply artificial intelligence and modern control and computer engineering techniques to improve the performance of modern equipments and devices

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/mechatronics/index.html

Collaborative working

The programme includes traditionally taught subject-specific units and business and group-orientated modular work. These offer you the chance to gain experience in design, project management and creativity, while working with students from other subjects.

You will complete your MSc through an individual research project under the supervision of two supervisors; one from the Department of Electronic & Electrical Engineering (http://www.bath.ac.uk/elec-eng/) and one from Mechanical Engineering (http://www.bath.ac.uk/mech-eng/), assigned to one of our leading research centres (http://www.bath.ac.uk/engineering/research/index.html).

- Group project work
In semester 2 you undertake a cross-disciplinary group activity for your professional development, simulating a typical industrial work situation.

- Individual project work
In the final semester, you undertake an individual research project directly related to key current research at the University, often commissioned by industry.

Structure

See programme catalogue (http://www.bath.ac.uk/catalogues/2015-2016/me/me-proglist-pg.html#H) for more detail on individual units.

Semester 1 (October-January):
The first semester covers the fundamental principles of computational artificial intelligence, integrated engineering control techniques and mechatronic systems modelling and simulation.

- Five taught units
- Includes coursework involving laboratory or small project sessions
- Typically each unit consists of 22 hours of lectures, may involve a number of hours of tutorials/exercises and laboratory activity and approximately 70 hours of private study (report writing, laboratory results processing and revision for examinations)

Further advanced options will give you an in depth knowledge of how electrical and mechanical engineering can be integrated to effect state of the art technologies.

Semester 2 (February-May):
In Semester 2 you will study both technical specialist units and project-based units. You will develop your professional understanding of engineering in a research and design context. You will gain analytical and team working skills to enable you to deal with the open-ended tasks that typically arise in practice in present-day engineering.

- The semester aims to develop your professional understanding of engineering in a business environment and is taught by academic staff with extensive experience in industry
- Group projects in which students work in a multi-disciplinary team to solve a conceptual structural engineering design problem, just as an industrial design team would operate
- Individual project preliminary work and engineering project management units

Summer/Dissertation Period (June-September):
- Individual project leading to MSc dissertation, done under the supervision of two supervisors, one from the Department of Electronic & Electrical Engineering and one from Mechanical Engineering

- Depending on the chosen area of interest, the individual project may involve theoretical and/or experimental activities; for both such activities students can use the department computer suites and well-equipped and newly refurbished laboratories for experimental work. The individual projects are generally carried out under the supervision of a member of academic staff. A number of industrially-based projects are available to students

- Examples of typical projects include the design and control of autonomous robots; undersea tidal wave power generators; and the design and control of high speed mechanisms.

Subjects covered

- Computational intelligence
- Control engineering
- Engineering systems simulation
- Power systems control
- Professional skills for engineering practice
- Signals & information

Career Options

Graduates with knowledge and training in both electrical and mechanical engineering are very much in demand in aerospace, automotive and manufacturing industries.

More and more of the hydraulic and mechanical aspects of these industries are being replaced by mechatronics components to reduce weight and increase performance and energy efficiency.

The career opportunities in the UK and worldwide are very significant. Jobs our recent graduates have secured include:

Product Research Development Engineer, KTP Associate, University of Bath, UK
Project Manager, Guandong Best Control Technology, PR China
Software Engineer, DIAGNOS, UK
Engineer, MAN Diesel & Turbo, USA

About the department

Bath has a strong tradition of achievement in mechanical engineering research and education.

We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

We offer taught MSc students the chance to carry out projects within outstanding research groupings.

Our research impact is wide and we are dedicated to working with industry to find innovative solutions to problems that affect all areas of society.

We are consistently ranked among the UK’s top 10 mechanical engineering departments in the annual league tables.

We believe in producing leaders, not just engineers.

We will give you the edge over your competitors by teaching you how technology fits into commercial settings. You will not only have access to cutting edge science and technology, we will also provide you with the skills you need to manage a workforce in demanding business environments.

For further information visit our departmental website (http://www.bath.ac.uk/mech-eng/pgt/).

Find out how to apply here - http://www.bath.ac.uk/study/pg/apply/

Read less
This course is aimed at engineering graduates who wish to work in the automotive industry, with particular focus on the design, performance and operation of automotive powertrains and vehicle systems. Read more
This course is aimed at engineering graduates who wish to work in the automotive industry, with particular focus on the design, performance and operation of automotive powertrains and vehicle systems.

Our graduates have the technical and managerial skills and expertise that are highly sought after by the automotive industry.

Our course will not only help prepare you for an exciting career in the industry, but it will also help prepare you to continue your studies onto a Doctor of Philosophy research programme.

Many distinction-level graduates from this programme stay on for a PhD, often funded in part by the University of Bath.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/automotive/index.html

Learning outcomes

By studying our MSc in Automotive Engineering you will:

- Understand the vehicle design process and the operation and performance of important sub-systems
- Analyse current and projected future environmental legislation and the impact this has on the design, operation and performance of automotive powertrain systems
- Analyse in detail the operation and performance indicators of transmission systems, internal combustion engines and after treatment devices.

Collaborative working

The programme includes traditionally taught subject-specific units and business and group-orientated modular work. These offer you the chance to gain experience in design, project management and creativity, while working with students from other subjects.

- Group project work
In semester 2 you undertake a cross-disciplinary group activity for your professional development, simulating a typical industrial work situation.

- Individual project work
In the final semester, you undertake an individual research project directly related to key current research at the University, often commissioned by industry.

Structure

See programme catalogue (http://www.bath.ac.uk/catalogues/2015-2016/me/me-proglist-pg.html#B) for more detail on individual units.

Semester 1 (October-January):
The first semester of our course allows students to choose from a range of fundamental and more advanced lecture courses covering the analysis methods and modelling techniques that are used in the simulation, design and manufacture of modern vehicles and powertrains.

- Five taught units
- Includes coursework involving laboratory or small project sessions
- Typically each unit consists of 22 hours of lectures, may involve a number of hours of tutorials/exercises and laboratory activity and approximately 70 hours of private study (report writing, laboratory results processing and revision for examinations)

Semester 2 (February-May):
In Semester 2 you will study both technical specialist units and project-based units. You will develop your professional understanding of engineering in a research and design context. You will gain analytical and team working skills to enable you to deal with the open-ended tasks that typically arise in practice in present-day engineering.

- The semester aims to develop your professional understanding of engineering in a business environment and is taught by academic staff with extensive experience in industry
- Group projects in which students work in a multi-disciplinary team to solve a conceptual structural engineering design problem, just as an industrial design team would operate
- Individual project preliminary work and engineering project management units

Summer/Dissertation Period (June-September):
The full time summer project gives students the opportunity to develop their understanding of aspects of the automotive material covered in the first semester, through a detailed study related to the research interests and specialisations of a member of the academic staff. The students will often be working as part of a larger group of researchers including postgraduates, research officers and undergraduates and as such have access to the state of the art automotive test facilities within the department.

- Individual project leading to MSc dissertation
- Depending on the chosen area of interest, the individual project may involve theoretical and/or experimental activities; for both such activities students can use the department computer suites and well-equipped and newly refurbished laboratories for experimental work. The individual projects are generally carried out under the supervision of a member of academic staff. A number of industrially-based projects are available to students

Subjects covered

- Heat transfer
- Engineering systems simulation
- Engine & powertrain technologies
- Professional skills for engineering practice
- Vehicle engineering
- Vehicle dynamics & aerodynamics

Career Options

Our MSc graduates now work all over the world in various industries, while a number of them pursue their Doctorates in universities worldwide. Recent graduates have secured jobs as:

- Calibration Engineer, Ford Motor Company Ltd
- Product Engineer, Renault
- Engineering Consultant, D'Appolonia

Companies which have hired our recent graduates include:

British Aerospace
Airbus UK
Intel
Ricardo
Cambstion
Panama Canal Authority
Moog Controls Ltd

About the department

Bath has a strong tradition of achievement in mechanical engineering research and education.

We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

We offer taught MSc students the chance to carry out projects within outstanding research groupings.

Our research impact is wide and we are dedicated to working with industry to find innovative solutions to problems that affect all areas of society.

We are consistently ranked among the UK’s top 10 mechanical engineering departments in the annual league tables.

We believe in producing leaders, not just engineers.

We will give you the edge over your competitors by teaching you how technology fits into commercial settings. You will not only have access to cutting edge science and technology, we will also provide you with the skills you need to manage a workforce in demanding business environments.

For further information visit our departmental website (http://www.bath.ac.uk/mech-eng/pgt/).

Find out how to apply here - http://www.bath.ac.uk/study/pg/apply/

Read less
The MSc in Sustainable Chemical Engineering is designed for ambitious graduates who aspire to play leading roles in managing, innovating and delivering resource efficient products, processes and systems in a sustainable way. Read more
The MSc in Sustainable Chemical Engineering is designed for ambitious graduates who aspire to play leading roles in managing, innovating and delivering resource efficient products, processes and systems in a sustainable way. The process industry has a high dependence on material and energy resources. Because of this, there is a strong interest in improving resource efficiency to increase competitiveness and decrease environmental impact.

Resource efficiency is about 'doing more and/or better with less' and delivering this sustainably presents a major opportunity and challenge for engineers and scientists. Industry needs skilled graduates with the expertise to take up this challenge now.

This course benefits from the support of our multidisciplinary EPSRC Centres for Doctoral Training:

- Sustainable Chemical Technologies (University of Bath)
- Water Informatics: Science and Engineering (Universities of Bath, Exeter, Bristol, Cardiff)
- Catalysis (Universities of Bath, Cardiff, Bristol).

The three Centres for Doctoral Training offer excellent opportunities for cross-disciplinary projects in engineering and science as well as access to a lively programme of talks and other events throughout the year. At the start of the MSc programme you will be assigned a doctoral student who will act as your mentor in addition to an academic tutor and supervisor.

Make an Impact: Sustainability for Professionals

If you are interested in sustainability, you can sign up for our free MOOC (massive open online course) Make an Impact: Sustainability for Professionals (https://www.futurelearn.com/courses/sustainability-for-professionals). The course starts in April.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/sustainable-chemical-engineering/index.html

Learning Outcomes

This course teaches and builds on advanced concepts and technologies core to sustainable chemical engineering. It will train you how to integrate systems thinking and economic, environmental and social objectives in problem solving and decision making. You will graduate with the practical and interpersonal skills required by professionals to work in the emerging and expanding employment market in the green sector.

You will:

- gain a holistic understanding of the environmental, social, ethical, regulatory and economic dimensions of sustainable chemical engineering and how they interact

- apply methodologies and tools to design and evaluate alternative products, processes and systems based on sustainability criteria

- apply your knowledge of resource conservation to deal with complex scenarios, real-life problems and decision making in the face of incomplete or uncertain information

- develop 'big picture' thinking to evaluate alternative products, processes and systems using whole systems approaches, which consider the multiple criteria and stakeholders along the process industry value chain

- develop the skills to formulate and implement research and design projects independently and in professional multidisciplinary teams.

Structure

The programme creates many opportunities for interdisciplinary and active learning through authentic, industrially relevant case studies, games and project work. There are guest speakers from industry and other organisations, as well as opportunities for industrial visits. Transferable skills development, such as problem solving, teamwork, effective communication, networking and time and resource management, is embedded throughout the programme.

- Semester 1 (September to January):
The first semester consists of five taught compulsory units that provide you with a foundation in sustainability and systems analysis to apply throughout the programme.

The units advance your understanding of the concepts, technologies and issues in resource recovery, including the valorisation and the re-use of waste streams (waste2resource). You will examine in detail how resources can be conserved by transforming wastes and other feedstocks into high value products in the bioeconomy.

Each unit consists of lectures, tutorials and case studies, and is supplemented by private study and preparation for in-class activities.

Assessment is by a combination of coursework and examination.

- Semester 2 (February to May):
In the second semester you will take two further technical specialist units on resource conservation. These cover a range of advanced technologies and concepts, including process intensification and waste, water and energy integration.

You will also develop your understanding of Sustainable Chemical Engineering in a design, research and management context through three project-based units, focused on resource efficiency and conservation.

In the group activity, you will apply engineering and project management techniques to solve a design problem, just as an industry-based design team would.

Project unit 1 introduces you to research methods and project planning. You will then apply this to detailed background research in your discipline area to prepare for your individual summer dissertation project in Project unit 2.

Assessment is by a combination of coursework and examination.

- Semester 3 (June to September):
The final semester consists of an individual project leading to an MSc dissertation. Depending on your chosen area of interest, the project may involve theoretical, computational and/or experimental activities. You will conduct your individual project at Bath under the supervision of a member of academic staff, with opportunities for industrial co-supervision. You will have access to the state-of the-art facilities in the Department of Chemical Engineering.

Assessment is through a written dissertation and an oral presentation.


Facilities and equipment
The Department has a full range of research facilities with pilot plants for all major areas of research. Our analytical facilities include gas chromatography, mass spectrometry, high performance liquid chromatography (HPLC), UV-VIS, FTIR and Raman, photon correlation spectroscopy (PCS), microcalorimetry, adsorption measurement systems, surface and pore structure analysis systems and particle sizing equipment. Within the University, there is access to atomic force, scanning and transmission electron microscopes.

Research Excellence Framework 2014
We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

Careers information
We are committed to ensuring that postgraduate students acquire a range of subject-specific and generic skills during their research training including personal effectiveness, communication skills, networking and career management. Most of our graduates take up research, consultancy or process and product development and managerial appointments in the commercial sector, or in universities or research institutes.

Find out how to apply here - https://secure.bath.ac.uk/prospectus/cgi-bin/applications.pl?department=chem-eng

We have Elite MSc Scholarships for £2,000 towards your tuition fees available for this course - http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/funding/

Read less
As a joint Department of Architecture & Civil Engineering we engage in research and develop graduate courses where integration between the disciplines is likely to be most valuable. Read more

Our philosophy

As a joint Department of Architecture & Civil Engineering we engage in research and develop graduate courses where integration between the disciplines is likely to be most valuable.

Research is also carried out in collaboration with other departments in the University, particularly Mechanical Engineering, Electronic & Electrical Engineering, Chemical Engineering, Management, and Computer Science.

The dissemination of research findings is seen as a vital component of the research process and graduate students are encouraged to prepare papers for publication as part of their research training. We encourage a wide range of interests. Academic staff are always open to ideas which extend existing work or introduce new topics to their existing subject areas.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/research-programmes/acephd/index.html

Our applicants

The MPhil programmes is an integral part of the Department of Architecture & Civil Engineering. Successful applicants are welcomed as junior academic colleagues rather than students, and are expected to play a full and professional role in contributing to the Department’s objective of international academic excellence.

We seek applications from outstanding individuals from anywhere in the world who are strongly committed to and potentially capable of high-quality academic research in any of the disciplinary areas covered by our Research Centres.

Additional Entry Requirements

The minimum non-graduate qualifications* acceptable for admission to the University of Bath are passes at a satisfactory level in either of the following examinations:

- Institution of Chemical Engineers Part III or
- Membership of recognised professional institutions of at least graduate status or a relevant professional qualification acceptable to the Board of Studies
- Extended and responsible experience at an appropriate standard in a relevant field acceptable to the Board of Studies.

* Except where otherwise stated, these conditions refer to candidates for the Degree of Master's only.

International Students

See the International students website (http://www.bath.ac.uk/study/international/) for details of entry requirements based on qualifications from your country.

All non-native speakers of English are required to have passed English language tests.

If you need to develop your English language skills, the University’s Academic Skills Centre (http://www.bath.ac.uk/asc/) offers a number of courses.

About the Department

The Department of Architecture and Civil Engineering brings together the related disciplines of Architecture and Civil Engineering. It has an interdisciplinary approach to research, encompassing the fields of Architectural History and Theory, Architectural and Structural Conservation, Lightweight Structures, Hydraulics and Earthquake Engineering and Dynamics.

Our Department was ranked equal first in the Research Excellence Framework 2014 for its research submission in the Architecture, Built Environment and Planning unit of assessment.

Half of our research achieved the top 4* rating, the highest percentage awarded to any submission; and an impressive 90% of our research was rated as either 4* or 3* (world leading/ internationally excellent in terms of originality, significance and rigour).

The dominant philosophy in the joint Department is to develop postgraduate programmes and engage in research where integration between the disciplines is likely to be most valuable. Research is carried out in collaboration with other departments in the University, particularly Management, Computer Science, Mechanical Engineering, and Psychology.

Find out how to apply here - http://www.bath.ac.uk/engineering/graduate-school/research-programmes/how-to-apply/index.html

Read less
We offer research programmes in a variety of areas including Advanced Separations Engineering, Bioprocessing Research Unit, Reaction and Catalytic Engineering and Water and Wastewater engineering. Read more
We offer research programmes in a variety of areas including Advanced Separations Engineering, Bioprocessing Research Unit, Reaction and Catalytic Engineering and Water and Wastewater engineering.

Our philosophy

The Department of Chemical Engineering is a multidisciplinary centre focusing on research into future sustainable materials and technologies. Chemical engineering research is crucial and supports development and production of new materials, fuels, drugs, consumer products, health care products, foods and beverages, electronic components, medical implants, and more.

As the number and complexity of chemical, biochemical and biological materials used in consumer products and supporting technologies increases, this research will play an increasingly vital role in the development of modern societies across the world.

Our applicants

We seek applications from outstanding individuals from anywhere in the world who are strongly committed to and potentially capable of high-quality academic research in any of the disciplinary areas covered by our Research Centres. You can apply for one of our pre-defined research projects or develop your own proposal. Our academic staff are always open to ideas that extend existing work or introduce new topics to their subject areas.

The dissemination of research findings is seen as a vital component of the research process and graduate students are encouraged to prepare papers for publication as part of their research training.

Successful applicants are welcomed very much as junior academic colleagues rather than students, and are expected to play a full and professional role in contributing to the Department’s objective of international academic excellence.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/research-programmes/chemphd/index.html

Structure

The MPhil programme combines taught research training and applied research practice.

Candidates join the Department as a member of the Research Centre (http://www.bath.ac.uk/chem-eng/research/index.html) in which they initially have a broad research interest and that will have overseen their acceptance into the Department.

Candidates are expected to carry out supervised research at the leading edge of their chosen subject, which must then be written up as a substantial thesis.

International students

Please see the International students website (http://www.bath.ac.uk/study/international/) for details of entry requirements based on qualifications from your country.

In addition all non-native speakers of English are required to have passed English language tests as follows.

If you need to develop your English language skills, the University’s Academic Skills Centre (http://www.bath.ac.uk/asc/) offers a number of courses.

Only English language tests taken in the last two years are valid for entrance purposes.

About the department

This is a dynamic department, actively pursuing advanced research in many areas of chemical, biochemical and biomedical engineering, and also offering taught Masters courses. The Department is internationally recognised for its contributions to research, many of which are achieved in partnership with industry and prestigious research organisations. Our staff are highly skilled with excellent international reputations, and our facilities are amongst the best in the country.

Facilities and equipment
The Department has a full range of research facilities with pilot plants for all major areas of research. Our analytical facilities include gas chromatography, mass spectrometry, high performance liquid chromatography (HPLC), UV-VIS, FTIR and Raman, photon correlation spectroscopy (PCS), microcalorimetry, adsorption measurement systems, surface and pore structure analysis systems and particle sizing equipment. Within the University, there is access to atomic force, scanning and transmission electron microscopes.

International and industrial links
We have active links with UK universities - Bristol, Durham, Glasgow, Leeds, Imperial College, Liverpool, Oxford, Cambridge, Southampton, Edinburgh - and with European institutions including the CNRS laboratory at Toulouse and Lappeenranta University of Technology in Finland together with the Universities of Alicante, Delft, Oveido, Porto, Paris, Aachen and Wroclaw.

Research Excellence Framework 2014
We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

Careers information
We are committed to ensuring that postgraduate students acquire a range of subject-specific and generic skills during their research training including personal effectiveness, communication skills, networking and career management. Most of our graduates take up research, consultancy or process and product development and managerial appointments in the commercial sector, or in universities or research institutes.

Other resources
Postgraduate students are encouraged to become members of professional societies and to present the results of their research at national and international scientific meetings. The Department runs a vibrant weekly research seminar programme where students are given the opportunity to present their research.

Find out how to apply here - http://www.bath.ac.uk/engineering/graduate-school/research-programmes/how-to-apply/index.html

Read less
We offer research programmes in a variety of areas encompassing our Research Centres, Units and groups. The Department of Mechanical Engineering (http://www.bath.ac.uk/mech-eng/) has a proud record of achievement in education and research. Read more
We offer research programmes in a variety of areas encompassing our Research Centres, Units and groups.

Our research

The Department of Mechanical Engineering (http://www.bath.ac.uk/mech-eng/) has a proud record of achievement in education and research. Our research impact was officially recognised in the 2014 Research Excellence Framework (REF) (http://www.bath.ac.uk/research/performance/). 89% of our research was graded as either world-leading or internationally excellent, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

Our research activities cover the full spectrum extending from fundamental investigations to applied research. Many of these activities are carried out in conjunction with industry and other universities, both in the UK and overseas.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/research-programmes/mechphd/index.html

Our applicants

We seek applications from outstanding individuals from anywhere in the world who are strongly committed to and potentially capable of high-quality academic research in any of the disciplinary areas covered by our Research Centres (http://www.bath.ac.uk/mech-eng/research/).

We encourage a wide range of interests. Academic staff are always open to ideas which extend existing work or introduce new topics to their existing subject areas.

Working with us

Successful applicants are welcomed very much as junior academic colleagues rather than students, and are expected to play a full and professional role in contributing to the Department’s objective of international academic excellence.

In many cases postgraduate projects are linked to industrial companies and are often carried out in collaboration with other departments within the University and other institutions. Postgraduates thus have the opportunity to work on interdisciplinary projects with a strong industrial relevance as well as on more fundamental engineering topics.

The dissemination of research findings is seen as a vital component of the research process and graduate students are encouraged to prepare papers for publication as part of their research training.

Structure

The MPhil and PhD programmes combine taught research training and applied research practice. Candidates join the Department as a member of the Research Centre in which they initially have a broad research interest and that will have overseen their acceptance into the Department.

Most research students who ‘do a PhD’ register in the first instance as probationer for the programme of PhD. Confirmation of PhD registration is subject to your passing an assessment process, which normally involves submission of written work and an oral examination.

Candidates are expected to carry out supervised research at the leading edge of their chosen subject, which must then be written up as a substantial thesis.

The final stage of the PhD programme is the oral or viva voce examination, in which students are required to defend the thesis to a Board of Examiners.

International students

See the International students website (http://www.bath.ac.uk/study/pg/apply/qualifications/index.html) for details of entry requirements based on qualifications from your country.

All non-native speakers of English are required to have passed English language tests.

If you need to develop your English language skills, the University’s Academic Skills Centre (http://www.bath.ac.uk/asc/) offers a number of courses.

About the department

Bath has a strong tradition of achievement in mechanical engineering research and education.

We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

We offer taught MSc students the chance to carry out projects within outstanding research groupings.

Our research impact is wide and we are dedicated to working with industry to find innovative solutions to problems that affect all areas of society.

We are consistently ranked among the UK’s top 10 mechanical engineering departments in the annual league tables.

We believe in producing leaders, not just engineers.

We will give you the edge over your competitors by teaching you how technology fits into commercial settings. You will not only have access to cutting edge science and technology, we will also provide you with the skills you need to manage a workforce in demanding business environments.

For further information visit our departmental website (http://www.bath.ac.uk/mech-eng/pgt/).

Find out how to apply here - http://www.bath.ac.uk/engineering/graduate-school/research-programmes/how-to-apply/index.html

Read less
The MSc Electrical Power Systems will give you the skills and specialist experience required to significantly enhance your career in the electrical power industry. Read more
The MSc Electrical Power Systems will give you the skills and specialist experience required to significantly enhance your career in the electrical power industry.

The course builds on a long-term involvement with the power industry, the education of power engineers and extensive research work and expertise within the Department of Electronic & Electrical Engineering.

It will not only help prepare you for an exciting career in the industry, but it will also help prepare you to continue your studies onto a Doctor of Philosophy research programme.

Many distinction-level graduates from this programme stay on for a PhD, often funded in part by the University of Bath.

Learning outcomes

The MSc will equip you with the ability to make an immediate engineering contribution to industry in electrical power systems analysis, planning, operation and management.

You will be able to perform in-depth engineering work on defined tasks requiring research, personal project management and innovative thinking.

The course provides its graduates with the underpinning knowledge of business operation and project team working that leads to maximised impact within the industrial setting.

Collaborative working

The course includes traditionally taught subject-specific units and business and group-orientated modular work. These offer you the chance to gain experience in design, project management and creativity, while working with students from other subjects.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/power/index.html

- Group project work
In semester 2 you undertake a cross-disciplinary group activity for your professional development, simulating a typical industrial work situation.

- Individual project work
In the final semester, you undertake an individual research project directly related to key current research at the University, often commissioned by industry.

Structure

See programme catalogue (http://www.bath.ac.uk/catalogues/2015-2016/ee/ee-proglist-pg.html#C) for more detail on individual units.

Semester 1 (October-January):
- Five taught units
- Includes coursework involving laboratory or small project sessions
- Typically each unit consists of 22 hours of lectures, may involve a number of hours of tutorials/exercises and laboratory activity and approximately 70 hours of private study (report writing, laboratory results processing and revision for examinations)

Semester 2 (February-May):
In Semester 2 you will study both technical specialist units and project-based units. You will gain analytical and team working skills to enable you to deal with the open-ended tasks that typically arise in practice in present-day engineering.

- The semester aims to develop your professional understanding of engineering in a business environment and is taught by academic staff with extensive experience in industry
- Group projects in which students work in a multi-disciplinary team to solve a conceptual structural engineering design problem, just as an industrial design team would operate
- Individual project preliminary work and engineering project management units

Summer/Dissertation Period (June-September):
- Individual project leading to MSc dissertation
- Depending on the chosen area of interest, the individual project may involve theoretical and/or experimental activities; for both such activities students can use the department computer suites and well-equipped and newly refurbished laboratories for experimental work. The individual projects are generally carried out under the supervision of a member of academic staff. A number of industrially-based projects are available to students

Subjects Covered

Professional skills for engineering practice
Power system plant
Power quality
Electrical energy systems & analysis
Control of power systems
Power electronics & machines
Power system protection

Career Options

Recent recruiters include:

- Guam Power Authority
- Scottish and Southern Energy
- Central Electricity Board
- Barbados Light & Power Co. Ltd.
- First Hydro
- National Grid
- British Power International
- Buro Happold

We also encourage the best of our MSc students to continue their studies with us to PhD level.

Accreditation:
Our course is accredited by the Institution of Engineering and Technology (IET) (http://www.theiet.org/academics/accreditation/). Individuals with awards from accredited programmes will avoid some or all of the detailed assessment of the educational requirements necessary for Incorporated Engineer (IEng) or Chartered Engineer (CEng) registration, making the registration process more straightforward.

About the department

The Department of Electronic & Electrical Engineering offers a broad spectrum of research expertise supported by state-of-the-art facilities. Its international reputation reflects substantial levels of research income and journal publication, and it offers outstanding opportunities in postgraduate research.

91% of our research activity was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014 (http://www.bath.ac.uk/research/performance/).

Postgraduate facilities:
The postgraduate laboratories are well-equipped with state-of-the-art equipment and instrumentation. Postgraduate facilities include PCs and powerful workstations which also give direct and ready access to the University’s central computer system and the internet. Additional specialist research facilities are available within the department’s three research centres.

Find out how to apply here - http://www.bath.ac.uk/study/pg/apply/

Read less
We offer research programmes in a variety of areas based on the work being carried out by our Research Centres and groups (http://www.bath.ac.uk/elec-eng/research/index.html). Read more
We offer research programmes in a variety of areas based on the work being carried out by our Research Centres and groups (http://www.bath.ac.uk/elec-eng/research/index.html).

Our philosophy

The Department of Electronic & Electrical Engineering (http://www.bath.ac.uk/elec-eng/index.html) is in the vanguard of progress in a fast-moving discipline. It offers a broad spectrum of research expertise supported by state-of-the-art facilities.

Its international reputation reflects substantial levels of research income and journal publication, and it offers outstanding opportunities in postgraduate research.

The dissemination of research findings is seen as a vital component of the research process and graduate students are encouraged to prepare papers for publication as part of their research training.

Our applicants

We encourage a wide range of interests. Academic staff are always open to ideas which extend existing work or introduce new topics to their existing subject areas.

Successful applicants are welcomed very much as junior academic colleagues rather than students, and are expected to play a full and professional role in contributing to the Department’s objective of international academic excellence.

Visit the website http://www.bath.ac.uk/study/pg/programmes/elec-elec-engi-mphi/

Structure

The MPhil programme combines taught research training and applied research practice. Candidates join the Department as a member of the Research Centre in which they initially have a broad research interest and that will have overseen their acceptance into the Department.

Candidates are expected to carry out supervised research at the leading edge of their chosen subject, which must then be written up as a substantial thesis.

International students

Please see the International students website (http://www.bath.ac.uk/study/international/) for details of entry requirements based on qualifications from your country.

All non-native speakers of English are required to have passed English language tests.

If you need to develop your English language skills, the University’s Academic Skills Centre (http://www.bath.ac.uk/asc/) offers a number of courses.

About the department

The Department of Electronic & Electrical Engineering offers a broad spectrum of research expertise supported by state-of-the-art facilities. Its international reputation reflects substantial levels of research income and journal publication, and it offers outstanding opportunities in postgraduate research.

91% of our research activity was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014 (http://www.bath.ac.uk/research/performance/).

- Postgraduate facilities:
The postgraduate laboratories are well-equipped with state-of-the-art equipment and instrumentation. Postgraduate facilities include PCs and powerful workstations which also give direct and ready access to the University’s central computer system and the internet. Additional specialist research facilities are available within the department’s three research centres.

Main areas of research

Electronic and electrical engineering research is essential in the modern technological society and our department does much significant work in this area.

We collaborate proactively with other departments on many projects. We also collaborate extensively with leading industries and educational establishments around the world.

Research Centres:
Many internationally-recognised research activities are undertaken by our three interdisciplinary research centres: the Centre for Space Atmospheric & Oceanic Science (http://www.bath.ac.uk/elec-eng/research/csaos/), the Centre for Advanced Sensor Technology (http://www.bath.ac.uk/elec-eng/research/cast/) and the Centre for Sustainable Power Distribution (http://www.bath.ac.uk/elec-eng/research/cspd/). Other research work includes the EPSRC funded Invert Centre (http://www.bath.ac.uk/elec-eng/invert/) for Imaging Science and additional research units.

We actively promote translation of our research into our teaching, with all taught postgraduate programmes including a detailed research project.

Find out how to apply here - http://www.bath.ac.uk/engineering/graduate-school/research-programmes/how-to-apply/index.html

Read less
Our course gives you technical and managerial expertise in electronic systems design and engineering to meet the demands of industry. Read more
Our course gives you technical and managerial expertise in electronic systems design and engineering to meet the demands of industry.

You will learn how to research, design and develop electronic systems and engineering technologies, processes and products throughout the industry value chain. You will graduate with the skills needed to take a future lead role in electronic systems industries worldwide.

Semester-long placement

You will get to apply the knowledge and skills you learn to a placement in industry in the third semester. We have strong links with companies and businesses, many of which are placement partners with us.

We will do our best to help you find a placement in industry and support and guide you through the application process. However, we cannot guarantee you a position. If you are unable to secure a placement, you will transfer onto our 12-month alternative MSc course.

+++

We have Elite MSc Scholarships for £2,000 towards your tuition fees available for this course. Visit our website for information on Postgraduate taught funding - http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/funding/

Read less
This programme focuses in particular on modern research in developmental biology, stem cell biology and tissue engineering with its potential applications to medicine and is a collaborative programme within the Centre for Regenerative Medicine. Read more
This programme focuses in particular on modern research in developmental biology, stem cell biology and tissue engineering with its potential applications to medicine and is a collaborative programme within the Centre for Regenerative Medicine.

The MRes provides a unique mix of taught components, extended laboratory projects, literature reviews and preparation of a grant proposal based on a research dissertation.It gives students an insight into a range of state-of-the-art research activities and techniques, and provides generic, transferable skills training needed for all early stage researchers. The programmes also address the scientific, ethical and commercial context within which the research takes place.All of the MRes programmes can be studied as the first year of our Integrated PhD programme.

Visit the website http://www.bath.ac.uk/science/graduate-school/taught-programmes/mres-regen-medicine/

Why study Biology and Biochemistry with us?

- Biology & Biochemistry ranked 2nd in the Sunday Times University Guide 2013
- 90% of our research judged to be internationally recognised, excellent or world-leading
- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

What will I learn?

MRes degree programmes are designed for graduates who are contemplating a research career and who may go on to study for a PhD or to a position in industry involving interaction with research scientists.

If these do not apply, you might consider an MSc programme (http://www.bath.ac.uk/science/graduate-school/taught-programmes/).

For further information please visit our department pages (http://www.bath.ac.uk/bio-sci/)

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa.

Recent employers include:

Morvus-Technology Ltd
Janssen-Cilag
Royal United Hospital, Bath
Ministry of Defence
State Intellectual Property Office, Beijing
Wellcome Trust Centre for Human Genetics, Oxford University
AbCam
Salisbury Foundation Trust Hospital
BBSRC
Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X