• University of Bristol Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Northumbria University Featured Masters Courses
King’s College London Featured Masters Courses
Cranfield University Featured Masters Courses
Southampton Solent University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Nottingham Featured Masters Courses
0 miles
Materials Science×

Masters Degrees in Engineering Materials

We have 82 Masters Degrees in Engineering Materials

Masters degrees in Engineering Materials equip students with the skills to produce, process, develop and store materials for various engineering purposes.

Related postgraduate specialisms include Advanced Engineering Materials and Materials Research. Entry requirements normally involve an undergraduate degree in a relevant subject such as Materials Science or Chemical Engineering.

Why study a Masters in Engineering Materials?

Read more...

  • Materials Science×
  • Engineering Materials×
  • clear all
Showing 1 to 15 of 82
Order by 
The programme is co-organised by Vrije Universiteit Brussel (VUB) and Universite Libre de Bruxelles (ULB), offering students the possibility to obtain a double master's degree at the end of the programme. Read more

About the programme

The programme is co-organised by Vrije Universiteit Brussel (VUB) and Universite Libre de Bruxelles (ULB), offering students the possibility to obtain a double master's degree at the end of the programme. The first year of courses is taught at the ULB Engineering Campus in Brussels, while the second year is taught at VUB.

The Master of Chemical and Materials Engineering educates students to become innovative engineers who will contribute to their profession and to society. Engineers in chemistry and materials play a unique role in sustainable development, where they must manage resources, energy and the environment in order to develop and produce novel materials and chemical commodities. Our graduates are prepared to face the demands of the modern technological employment field and for an international career with English as their professional language.

Course content

The Master in Chemical and Material Engineering (120 ECTS) offers a solid core of courses in both of these engineering fields. The integrated and the multidisciplinary approach provides students up-to-date knowledge enabling them to propose innovative engineering solutions in numerous modern technological sectors. Students have the possibility to specialize in Process technology or Material Science.

The Master of Chemical and Materials Engineering program consists of two profiles: Process Technology and Materials.

Profile: Process Technology:
The Process Technology orientation trains students to become engineers who are employable and innovative both in production units (operation and optimization of production facilities) and in engineering groups (develop new production units that meet desired performance specifications). An emphasis is placed on the biotechnology and food industries. Students are also trained to identify, solve and avoid environmental problems including waste management, water, air and soil pollution.

Profile: Materials:
The Materials orientation prepares students for the materials and materials technology sectors (metals, polymers, ceramics and composites). Students are trained to become creative engineers capable of designing sustainable multi-functional materials which meet specific applications. Students also have the capacity to contribute to the whole life-cycle of materials from their processing into semi or full end products using environmentally friendly and safe production processes to their recycling.

Become a skilled scientific engineer

This Master offers:
- a unique interdisciplinary programme which prepares you for employment in a professional field related to chemical engineering, materials or environmental technology.
- a high level scientific education that prepares you to a wide range of job profiles.
- the possibility to work in close contact with professors who are internationally recognized in their own disciplines and favor interactive learning.

Curriculum

http://www.vub.ac.be/en/study/chemical-and-materials-engineering/programme

The programme is built up modularly:
1) the Common Core Chemical and Materials Engineering (56 ECTS)
2) the Specific Profile Courses (30 ECTS)
3) the master thesis (24 ECTS)
4) electives (10 ECTS) from 1 out of 3 options.
Each of the modules should be succesfully completed to obtain the master degree. The student must respect the specified registration requirements. The educational board strongly suggests the student to follow the standard learning track. Only this model track can guarantee a timeschedule without overlaps of the compulsory course units.

Common Core Chemical and Materials Engineering:
The Common Core Chemical and Materials Engineering (56 ECTS) is spread over 2 years: 46 ECTS in the first and 10 ECTS in the second year. The Common Core emphasizes the interaction between process- and materials technology by a chemical (molecular) approach. The Common Core consists out of courses related to chemistry, process technology and materials and is the basis for the Process Technology and the Materials profiles.

Specific Courses Profile Materials:
The profile 'Materials' (30 ECTS) consists out of 2 parts, spread over the 1st and the 2nd year of the model learning track: Materials I - 14 ECTS in MA1 and Materials II - 16 ECTS in MA2. The profile adds material-technological courses to the common core.

Specific Courses Profile Process Technology:
The profile 'Process Technology' (30 ECTS) consists out of 2 parts, spread over the 1st and the 2nd year of the model learning track: Process Technology I - 14 ECTS in MA1 and Process Technology II - 16 ECTS in MA2. The profile adds process technological courses to the common core.

Elective Courses:
The elective courses are divided into 3 options:
- Option 1: Internship (10 ECTS)
- Option 2: Elective courses (incl. internship of 6 ECTS)
- Option 3: Entrepreneurship
The student has to select one option and at least 10 ECTS within that option. All options belong to the 2nd year of the model learning track.

Read less
This Master of Science programme is taught entirely in English to stimulate the student in acquiring greater familiarity with the terminology used internationally. Read more

Mission and Goals

This Master of Science programme is taught entirely in English to stimulate the student in acquiring greater familiarity with the terminology used internationally. The objective of the programme is to prepare a professional figure expert in materials and in the design of processes and manufactured goods. Within the scope of the study plan a number of specific specialisations are foreseen:
- Surface Engineering
- Polymer Engineering
- Nanomaterials and Nanotechnology
- Engineering Applications
- Micromechanical Engineering

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/materials-engineering-and-nanotechnology/

Career Opportunities

The Master of Science graduate in Materials and Nanotechnology Engineering has the ability to devise and manage innovation in the materials industry; he/she finds employment mainly in companies specialised in producing, processing and design various materials and components, as well as in the area of the development of new applications in the mechanical, chemical, electronics, energy, telecommunications, construction, transport, biomedical, environmental and restoration industries as well as in research and development centres of companies and public bodies.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Materials_Engineering_and_Nanotechnology_04.pdf
The Master of science programme aims at preparing specialists with strong technical skills for innovation of processes and applications of new materials and nanotechnologies. One of the major focuses of the MSc is on sustainable technologies and nanotechnologies for advanced applications. The city of Milan and its surroundings are fertile ground for social and technical culture, with a variety of small enterprises open to innovation and new technologies and working in niche fields, where non-traditional materials are key to future developments. The job market welcomes Material Engineers as professionals capable of handling complex problems directly related to the production, treatment and applications of materials, acknowledging the high level of education obtained at the Politecnico di Milano through original methodologies and new technologies.
The programme is taught in English.

Subjects

- Mathematical methods for materials engineering
- Advanced materials chemistry
- Polymer science and engineering
- Principles of polymer chemistry + Fundamentals of polymer mechanics
- Solid state physics
- Mechanical behavior of materials
- Cementitous and ceramic materials engineering
- Advanced Materials
- Functional materials + nanostructured materials
- Durability of materials
- Failure and control of Materials
- Surface engineering
- Thesis work

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/materials-engineering-and-nanotechnology/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/materials-engineering-and-nanotechnology/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Materials Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

With our main research strengths of aerospace materials, environmental materials and steel technology, Swansea University provides an excellent base for your research as a MSc by Research student in Materials Engineering.

Key Features of MSc by Research in Materials Engineering

Swansea is one of the UK’s leading centres for Materials Engineering in teaching and research. The internationally leading materials research conducted at Swansea is funded by prestigious organisations. These industrial research links provide excellent research opportunities.

Key research areas within Materials Engineering include:

Design against failure by creep, fatigue and environmental damage

Structural metals and ceramics for gas turbine applications

Grain boundary engineering

Recycling of polymers and composites

Corrosion mechanisms in new generation magnesium alloys

Development of novel strip steel grades (IF, HSLA, Dual Phase, TRIP)

Functional coatings for energy generation, storage and release

MSc by research in Materials Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Within Engineering at Swansea University there are state-of-the-art facilities specific to Materials Engineering.

- Comprehensive computer systems for specialist and general purposes.

- World-leading equipment for characterisation of the mechanical properties of metallic, ceramic, polymeric and composite materials.

- Extensive range of laboratories housing scanning electron microscopes with full microanalysis and electron backscatter diffraction capabilities.

Links with industry

The internationally leading materials research conducted at Swansea is funded by prestigious organisations including:

Rolls-Royce

Airbus

Tata Steel

Rolls-Royce

The Institute of Structural Materials at Swansea is a core member of the Rolls-Royce University Technology Centre in Materials.

This venture supports a wide ranging research portfolio with a rolling value of £6.5 million per annum addressing longer term materials issues.

Airbus

Over £1m funding has been received from Airbus and the Welsh Government in the last three years to support structural composites research and development in the aerospace industry and to support composites activity across Wales.

Tata Steel

Funding of over £6 million to continue our very successful postgraduate programmes with Tata Steel.

Other companies sponsoring research projects include Akzo Nobel, Axion Recycling, BAE Systems, Bayer, Cognet, Ford, HBM nCode, Jaguar Land Rover, Novelis, QinetiQ, RWE Innogy, Timet, TWI (Wales), as well as many smaller companies across the UK.

These industrial research links provide excellent opportunities for great research and employment opportunities.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK



Read less
The Department of Materials Engineering. The Department of Materials Engineering at Ben-Gurion University of the Negev was established in 1971. Read more

The Department of Materials Engineering

The Department of Materials Engineering at Ben-Gurion University of the Negev was established in 1971. It was the first department in the field in Israel. The Department of Materials Engineering provides a young and vibrant atmosphere for innovative research, and is deeply dedicated to exceptional education at all levels.

Our research is led by an outstanding team of faculty members; all are leading researchers in their areas of expertise. The Department provides access to exceptional facilities and state-of-the-art equipment. Areas of research encompass both practical and theoretical aspects of materials engineering, including metals, ceramicmetal composites, polymers, electronic materials, thermoelectric materials, semiconductor materials and devices, biomaterials, nanomaterials, magnetic materials, and modern methods of materials characterization.

The Department encourages interdisciplinary research, and part of the students’ research can be carried out in cooperation with specialist researchers from other disciplines, such as physics, chemistry, electro-optical engineering and mechanical engineering. Advanced facilities for materials research are readily available at the Ilse Katz Institute for Nanoscale Science and Technology in BGU. For further details see: http://www.bgu.ac.il/iki

M.Sc. Degree in Materials Engineering

The aim of the M.Sc. Program in Materials Engineering is to provide students with expertise and advanced knowledge in their selected field of specialization. M.Sc. students carry out advanced research supervised by an expert faculty member. Students graduating with a M.Sc. degree are equipped to assume senior research and development positions in industry, and may continue towards Ph.D. studies. M.Sc. studies in Materials Engineering at BGU can be extended into a combined Ph.D. track, such that the M.Sc. thesis exam serves also as the Ph.D. candidacy exam. The M.Sc. degree is typically completed within 2 academic years (4 semesters).

Application Requirements

Applicants to the M.Sc. Program should hold a B.Sc. degree in Materials Engineering or in closely related fields from an accredited institution at a minimum GPA of 80/100, as well as have a TOEFL score of at least 85/120 or an equivalent score in an internationally recognized English proficiency exam. The English proficiency requirement is waived for applicants who received their B.Sc. degree in a program taught in English. GRE is recommended but not required. Additionally, prior to applying to the M.Sc. Program, the applicant is expected to contact a potential advisor among the Department faculty.

M.Sc. Thesis

The research leading to the M.Sc. thesis is conducted throughout the two years of studies. The student is expected to publish and present the research results in leading international journals and conferences. The thesis is evaluated through a written report and an oral examination.

How to Apply

Please visit our online application site at: https://apps4cloud.bgu.ac.il/engrg/

Applications are accepted on a rolling basis. Please check website for the scholarships application deadline.

Tuition Fees

Tuition is approximately $ 5,000 (US) per year. Outstanding students may be eligible for scholarships, which cover tuition fees and provide living expenses.

Further Details

The Department of Materials Engineering at BGU: http://in.bgu.ac.il/en/engn/mater/Pages/default.aspx

M.sc Program at the Department of Materials Engineering: http://in.bgu.ac.il/en/engn/mater/Pages/Prospective-Students.aspx

Director of Graduate Studies:

Prof. Yuval Golan, email:

BGU International - http://www.bgu.ac.il/international



Read less
A Masters course providing the foundation for 21st century technologies - from fuel cells to aeroengines. Read more

A Masters course providing the foundation for 21st century technologies - from fuel cells to aeroengines

The complete masters (MSc) course in Advanced Engineering Materials provides you with an in-depth understanding of the key factors that govern the design and selection of materials for use in advanced engineering applications, as well as their processing, properties and stability.

Aims

The programme aims to convey detailed knowledge of state-of-the-art materials systems, with a focus on composites, advanced alloys and functional and engineering ceramics. The students explore the technologies used in the manufacture and processing of advanced materials and develop an understanding of the relationships between composition, microstructure, processing and performance. The student learn how to assess materials performance in service and develop an understanding of the processes of degradation in hostile conditions. They are also trained in the essential skills needed to design and develop the next generation of high performance engineering materials, establishing a strong foundation for a future career in industry or research.

Course unit details

The taught units cover the structure and design of advanced engineering materials and provide graduates with an increased depth and breadth of knowledge of materials science, technology and engineering.

Taught units include:

  • Introduction to Materials Science
  • Advanced Research Methods
  • Principles of Advanced Engineering Materials
  • Superalloys and High Performance Materials
  • Advanced Metals Processing
  • Advanced Composites
  • Graphene and Nanomaterials

Overseas students will require and ATAS certificate for this course. The ATAS certificate will expire after 6 months so please wait until May before applying. For a full list of the course units, please contact  . The JACS code for this course is J511 or J5.

Scholarships and bursaries

Unfortunately, The University of Manchester does not have any funding opportunities at present. There may be external funding opportunities, please see the link for more information:http://www.manchester.ac.uk/study/masters/funding/

Facilities

To underpin the research and teaching activities at the School, we have established state-of-the-art laboratories, which allow comprehensive characterisation and development of materials. These facilities range from synthetic/textile fibre chemistry to materials processing and materials testing.

To complement our teaching resources, there is a comprehensive range of electrochemical, electronoptical imaging and surface and bulk analytical facilities and techniques.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

Our graduates of this programme have gone on to fill key posts as materials scientists, engineers, managers and consultants in academia, industry and research and development. You may also be able to advance to PhD programmes within the School.

Accrediting organisations

The MSc in Advanced Engineering Materials is accredited by the Institute of Materials, Minerals and Mining (IoM3) with the award of Further Learning. For more information, visit http://www.iom3.org  



Read less
This challenging inter-disciplinary programme spans the major classes of engineering materials used in modern high technology manufacturing and industry. Read more

This challenging inter-disciplinary programme spans the major classes of engineering materials used in modern high technology manufacturing and industry. The course has considerable variety and offers career opportunities across a wide range of industry sectors, where qualified materials scientists and engineers are highly sought after.

This course is accredited by the Institute of Materials, Minerals and Mining (IOM3), allowing progression towards professional chartered status (CEng) after a period of relevant graduate-level employment.

Core study areas include advanced characterisation techniques, surface engineering, processing and properties of ceramics and metals, design with engineering materials, sustainability and a project.

Optional study areas include plastics processing technology, industrial case studies, materials modelling, adhesive bonding, rubber compounding and processing, and polymer properties.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/materials/materials-science-tech/

Programme modules

Full-time Modules:

Core Modules

- Advanced Characterisation Techniques (SL)

- Surface Engineering (SL)

- Ceramics: Processing and Properties (SL)

- Design with Engineering Materials (SL)

- Sustainable Use of Materials (OW)

- Metals: Processing and Properties (SL)

- MSc Project

Optional Modules

- Plastics Processing Technology (OW)

- Industrial Case Studies (OW)

- Materials Modelling (SL)

Part-time Modules:

Core Modules

- Ceramics: Processing and Properties (DL)

- Design with Engineering Materials (DL)

- Sustainable Use of Materials (OW or DL)

- Metals: Processing and Properties (DL)

- Surface Engineering (DL)

- Plastics Processing Technology (OW)

- MSc Project

Optional Modules

- Industrial Case Studies (OW)

- Adhesive Bonding (OW)

- Rubber Compounding and Processing (OW or DL)

Alternative modules:*

- Polymer Properties (DL)

- Advanced Characterisation Techniques (SL)

- Materials Modelling (SL)

Key: SL = Semester-long, OW = One week, DL = Distance-learning

Alternative modules* are only available under certain circumstances by agreement with the Programme Director.

Selection

Interviews may be held on consideration of a prospective student’s application form. Overseas students are often accepted on their grades and strong recommendation from suitable referees.

Course structure, assessment and accreditation

The MSc comprises a combination of semester-long and one week modules for full-time students, whilst part-time students study a mix of one week and distance-learning modules.

MSc students undertake a major project many of which are sponsored by our industrial partners. Part-time student projects are often specified in conjunction with their sponsoring company and undertaken at their place of work.

All modules are 15 credits. The MSc project is 60 credits.

MSc: 180 credits – six core and two optional modules, plus the MSc project.

PG Diploma: 120 credits – six core and two optional modules.

PG Certificate: 60 credits – four core modules.

- Assessment

Modules are assessed by a combination of written examination, set coursework exercises and laboratory reports. The project is assessed by a dissertation, literature review and oral presentation.

- Accreditation

Both MSc programmes are accredited by the Institute of Materials, Minerals and Mining (IOM3), allowing progression towards professional chartered status (CEng) after a period of relevant graduate-level employment.

Careers and further Study

Typical careers span many industrial sectors, including aerospace, power generation, automotive, construction and transport. Possible roles include technical and project management, R&D, technical support to manufacturing as well as sales and marketing.

Many of our best masters students continue their studies with us, joining our thriving community of PhD students engaged in materials projects of real-world significance

Bursaries and Scholarships

Bursaries are available for both UK / EU and international students, and scholarships are available for good overseas applicants.

Why Choose Materials at Loughborough?

The Department has contributed to the advancement and application of knowledge for well over 40 years. With 21 academics and a large support team, we have about 85 full and part-time MSc students, 70 PhD students and 20 research associates.

Our philosophy is based on the engineering application and use of materials which, when processed, are altered in structure and properties.

Our approach includes materials selection and design considerations as well as business and environmental implications.

- Facilities

We are also home to the Loughborough Materials Characterisation Centre – its state of-the-art equipment makes it one of the best suites of its kind in Europe used by academia and our industrial partners.

The Centre supports our research and teaching activities developing understanding of the interactions of structure and properties with processing and product performance.

- Research

Our research activity is organised into 4 main research groups; energy materials, advanced ceramics, surface engineering and advanced polymers. These cover a broad span of research areas working on today’s global challenges, including sustainability, nanomaterials, composites and processing. However, we adopt an interdisciplinary approach to our research and frequently interact with other departments and Research Schools.

- Career prospects

Over **% of our graduates were in employment and / or further study six months after graduating. Our unrivalled links with industry are hugely beneficial to our students. We also tailor our courses according to industrial feedback and needs, ensuring our graduates are well prepared

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/materials/materials-science-tech/



Read less
Develop a specialised knowledge of materials engineering in this course which is fully accredited by the Institute of Materials, Minerals and Mining. Read more
Develop a specialised knowledge of materials engineering in this course which is fully accredited by the Institute of Materials, Minerals and Mining.

One of very few such courses offered at masters level in the UK. It's information rich but also provides a significant degree of hands-on practical work that utilises a wide range of manufacturing, testing and characterisation equipment. The limited number of graduates in this area, combined with the knowledge, expertise and practical skills developed in this specialised field, gives you a major advantage over other engineering graduates as you seek employment within the materials-related industries.

We have been successfully teaching a masters programme in materials engineering for more than 20 years, leading the way in the study of this field. Staff are very experienced and undertake both academic research and commercial projects, both of which support students’ learning experience.

See the website http://www.napier.ac.uk/en/Courses/MSc-Advanced-Materials-Engineering-Postgraduate-FullTime

What you'll learn

Gain exposure to the latest trends in design, materials, manufacturing processes, testing and advanced applications by taking full advantage of our modern technology and computing facilities.

You'll benefit from our first class research and knowledge transfer partnerships with local, national and international companies. Accredited by the Institute of Materials, Minerals and Mining, we have excellent industry links and encourage you to interact with industry too.

All projects are practically focused, with an emphasis on using industry standard manufacturing and testing equipment. Many projects are live, meaning you'll be working for real clients.

Modules

• Metallic Materials
• Plastics Materials
• Ceramics and Composites
• Smart Materials and Surfaces
• Forensic Materials Engineering and Energy Materials
• MSc Project – a focused piece of industrially relevant research, normally carried out on placement

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

You'll have excellent job prospects with this pedigree of materials engineering skills, expertise and knowledge.

This will give you enhanced employment prospects in almost all engineering, science, design and manufacturing disciplines. In particular, you may find roles in:
• manufacturing
• design, energy engineering and renewables
• chemical engineering
• offshore engineering, materials testing
• advising and assuring companies
• regulatory authorities and automotive
• aerospace and defence industries

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
What's the Master of Materials Engineering about? .  The structure of the program consists of a core of 60 credits, four options of 12 credits, three fixed elective packages of 12 credits, engineering and general interest electives of 12 credits and the Master's thesis of 24 credits. Read more

What's the Master of Materials Engineering about? 

 The structure of the program consists of a core of 60 credits, four options of 12 credits, three fixed elective packages of 12 credits, engineering and general interest electives of 12 credits and the Master's thesis of 24 credits. The four options focus on materials families or on application domains: Metals and Ceramics, Polymers and Composites, Materials for Nanotechnology, and Materials for Biomedical Applications. The three fixed elective packages have been designed to help the students in imagining themselves in their future professional environment and thus in developing a career profile: research, production and management. The two latter packages include industrial internships.

The programme is crowned with the 24 credits Master's thesis where the student will apply his/her knowledge to a research topic of choice. These topics are usually embedded in a cutting-edge research project in cooperation with other institutions and/or industrial companies.

Spotlight 

  • The hosting Department of Materials Engineering (MTM) is a world player in production, characterization, modelling and development of new materials to solve material challenges in sectors such as transport, energy or health. MTM has close ties with industrial partners through a broad variety of national and international projects which is reflected in the program through plant visits, practical exercises, internships and the master thesis topics.
  • Thanks to the diversity of the research profile of the host department MTM, the programme is able to cover a broad gamut of materials families and applications. Concerning structural materials, MTM is one of the few materials departments where both metals and composites are strongly represented in both research and teaching. Concerning functional materials, the close links with imec and KU Leuven's biomedical group position the programme in addressing upcoming application domains.
  • Scarcity, closed materials loops ('cradle to cradle') and recycling processes are core research topics and are taught in several engineering courses as well as in a dedicated core course on Sustainable Materials Management. The efforts in this domain have recently been rewarded with the grant of an EIT-KIC 'Raw Materials'.
  • At MTM, students in classes, exercises and practical sessions meet fellow-students, assistants (68% non-Belgian) , lecturers (26% non-Belgian) from all over the world. In terms of outgoing mobility, participation in the Erasmus+ programme is encouraged for the Belgian students. The concentration of core courses in the first Master year has considerably simplified Erasmus exchanges.
  • In terms of gender, Materials Engineering is doing pretty well among the engineering disciplines: in the Dutch-language programme, 21% of the students are female, in the English-language programme 41% and among the incoming Erasmus students 37%.

This programme is an initial Master's programme and can be followed on a full-time of part-time basis.

Career perspectives

Graduates have access to a wide range of engineering sectors. Prominent technical industries such as the automotive, aerospace, energy, microelectronics, and chemical industries and emerging sectors such as nanotechnology, biomaterials and recycling are keen to hire qualified and talented materials engineers. Materials engineers are also well suited for functions as process engineers, materials or product developers, design specialists, quality control engineers or consultants. Graduates with an interest in research can apply for an R&D position or start a PhD. Several alumni have also gone on to start their own companies.



Read less
This programme. brings together the latest developments in materials science and their application into new technology, providing you with specialist knowledge and skills which will enhance your engineering career. Read more

This programme brings together the latest developments in materials science and their application into new technology, providing you with specialist knowledge and skills which will enhance your engineering career.

It focusses on the theory and computational simulation of material structures for application into automotive, aerospace, technology and energy sectors. You will gain a strong understanding of the properties and behaviours of different substances, from raw materials to finished products, identifying their strengths and limitations, enabling you to find solutions to complex contemporary problems.

Our particular research strengths are drawn into the masters programme, in areas including functional materials (those with extra functionality such as electro-magnetic screening, self-sensing and active materials, and materials with negative thermal expansion and Poisson’s ratios), polymers, composites and bio-materials.

The programme will prepare you for an exciting and rewarding career in materials engineering.

Programme Structure

This programme is modular and consists of eight core engineering, modules totalling 165 credits, and one 15-credit option module.

Core modules

The core modules can include;

  • Mechanics of Materials;
  • Software Modelling;
  • Advanced Materials Engineering;
  • Computer Aided Engineering Design;
  • Research Methodology;
  • Sustainable Engineering;
  • New Developments in Materials Engineering
  • Engineering MSc Project

Optional modules

Some examples of the optional modules are

  • Contemporary Advanced Materials Research
  • Functional Materials.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand.

Teaching and assessment

The programme is delivered through a mix of lectures, seminars, tutorials, industrial presentations, case studies, industry visits, computer simulations, project work and a dissertation. It has particular value in developing transferable skills development including management skills, communication skills, computational techniques, data handling and analysis, problem solving, decision making and research methodology. Many of these skills will be addressed within an industrial and commercial context.



Read less
This exciting programme brings together the latest developments in materials science and their application into new technology, providing you with specialist knowledge and skills which will enhance your engineering career. Read more

This exciting programme brings together the latest developments in materials science and their application into new technology, providing you with specialist knowledge and skills which will enhance your engineering career.

Alongside the core engineering modules, you will also study three management modules taught by the Business School which will help you develop transferable professional management skills that will enhance your study experience and improve your career prospects.

It focusses on the theory and computational simulation of material structures for application into automotive, aerospace, technology and energy sectors. You will gain a strong understanding of the properties and behaviours of different substances, from raw materials to finished products, identifying their strengths and limitations, enabling you to find solutions to complex contemporary problems.

Our particular research strengths are drawn into the programmes, in areas including functional materials (those with extra functionality such as electro-magnetic screening, self-sensing and active materials, and materials with negative thermal expansion and Poisson’s ratios), polymers, composites and bio-materials.

MSc Materials Engineering with Management will prepare you for an exciting and rewarding career, whether you have a desire to lead and manage teams, or wish to progress in a technical materials engineering role.

Programme Structure

This programme is modular and consists of seven core modules totalling 150 credits, and two 15-credit option modules.

Core modules

The core modules can include;

  • Mechanics of Materials;
  • Software Modelling;
  • Advanced Materials Engineering;
  • Computer Aided Engineering Design;
  • Management Concepts;
  • Professional Skills;
  • Engineering MSc Project

Optional modules

Some examples of the optional modules are

  • Contemporary Advanced Materials Research;
  • Functional Materials.
  • Strategic Innovation Management
  • Strategy.

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Teaching and assessment

The programme is delivered through a mix of lectures, seminars, tutorials, industrial presentations, case studies, industry visits, computer simulations, project work and a dissertation. It has particular value in developing transferable skills development including management skills, communication skills, computational techniques, data handling and analysis, problem solving, decision making and research methodology. Many of these skills will be addressed within an industrial and commercial context.



Read less
The master of science degree in materials science and engineering, offered jointly by the College of Science and the Kate Gleason College of Engineering, is designed with a variety of options to satisfy individual and industry needs in the rapidly growing field of materials. Read more
The master of science degree in materials science and engineering, offered jointly by the College of Science and the Kate Gleason College of Engineering, is designed with a variety of options to satisfy individual and industry needs in the rapidly growing field of materials.

The objectives of the program are threefold:

- With the advent of new classes of materials and instruments, the traditional practice of empiricism in the search for and selection of materials is rapidly becoming obsolete. Therefore, the program offers a serious interdisciplinary learning experience in materials studies, crossing over the traditional boundaries of such classical disciplines as chemistry, physics, and electrical, mechanical, and microelectronic engineering.

- The program provides extensive experimental courses in diverse areas of materials-related studies.

- The program explores avenues for introducing greater harmony between industrial expansion and academic training.

Plan of study

A minimum of 30 semester credit hours is required for the completion of the program. This includes five required core courses, graduate electives, and either a thesis or project. The core courses are specially designed to establish a common base of materials-oriented knowledge for students with baccalaureate degrees in chemistry, chemical engineering, electrical engineering, mechanical engineering, physics, and related disciplines, providing a new intellectual identity to those involved in the study of materials.

The program has an emphasis on experimental techniques, with one required experimental course as part of the core. Additional experimental courses are available for students who wish to pursue course work in this area. These courses are organized into appropriate units covering many aspects of the analysis of materials. This aspect of the program enhances a student’s confidence when dealing with materials-related problems.

- Electives

Elective courses may be selected from advanced courses offered by the School of Chemistry and Materials Science or, upon approval, from courses offered by other RIT graduate programs. Elective courses are scheduled on a periodic basis. Transfer credit may be awarded based on academic background beyond the bachelor’s degree or by examination, based on experience.

- Thesis/Project

Students may choose to complete a thesis or a project as the conclusion to their program. Students who pursue the thesis option take two graduate electives, complete nine semester credit hours of research, and produce a thesis paper. The project option includes four graduate electives and a 3 credit hour project.

Admission requirements

To be considered for admission to the MS program in materials science and engineering, candidates must fulfill the following requirements:

- Hold a baccalaureate degree in chemistry, physics, chemical engineering, electrical engineering, mechanical engineering, or a related field from an accredited college or university,

- Submit official transcripts (in English) from all previously completed undergraduate and graduate course work,

- Submit two letters of recommendation, and

- Complete a graduate application.

- International applicants whose native language is not English must submit scores from the Test of English as a Foreign Language (TOEFL) and the Test of Written English (TWE). A minimum TOEFL score of 575 (paper-based) or 88-89 (Internet-based) is required. A 4.0 is required on the TWE. International English Language Testing System (IELTS) scores are accepted in place of the TOEFL exam. Minimum scores will vary; however, the absolute minimum score required for unconditional acceptance is 6.5. For additional information about the IELTS, please visit http://www.ielts.org. In addition, upon arrival at RIT, international students are required to take the English language exams, administered by the English Language Center. Individuals scoring below an established minimum will be referred to the center for further evaluation and assistance. These students are required to follow the center’s recommendations regarding language course work. It is important to note that this additional course work may require additional time and financial resources to complete the degree requirements. Successful completion of this course work is a requirement for the program.

Candidates not meeting the general requirements may petition for admission to the program. In such cases, it may be suggested that the necessary background courses be taken at the undergraduate level. However, undergraduate credits that make up deficiencies may not be counted toward the master’s degree.

Any student who wishes to study at the graduate level must first be admitted to the program. However, an applicant may be permitted to take graduate courses as a nonmatriculated student if they meet the general requirements mentioned above.

Additional information

- Part-time study

The program offers courses in the late afternoon and evenings to encourage practicing scientists and engineers to pursue the degree program without interrupting their employment. (This may not apply to courses offered off campus at selected industrial sites.) Students employed full time are normally limited to a maximum of two courses, or 6 semester credit hours, each semester. A student who wishes to register for more than 6 semester credit hours must obtain the permission of his or her adviser.

- Maximum limit on time

University policy requires that graduate programs be completed within seven years of the student's initial registration for courses in the program. Bridge courses are excluded.

Read less
Materials underpin nearly all engineering applications. Materials engineering plays a significant role in a range of applications from developing new biomedical engineering devices, to creating sustainable energy solutions and better manufacturing processes and products. Read more

Materials underpin nearly all engineering applications. Materials engineering plays a significant role in a range of applications from developing new biomedical engineering devices, to creating sustainable energy solutions and better manufacturing processes and products.

By creating new materials or improving existing ones, materials engineers make a valuable contribution to the design of new products and devices and the improvement of existing ones. You will gain insight into the processing-structure-property relationships of a range of materials, such as metals, polymers, ceramics, electronic materials and composites.

You will learn the fundamental concepts of atomic bonding, atomic scale structure, phase equilibria and methods of characterisation from materials engineering experts who are conducting world leading research in areas such as biomaterials, tissue engineering, nanomaterials, polymers, ceramics, materials modelling and characterisation.

CAREER OUTCOMES

The Master of Engineering (Materials) will equip graduates for careers as metallurgists, plastics engineers, ceramists, adhesive scientists, process and quality control engineers and corrosion engineers. You will work in industrial design, manufacturing, processing and recycling, and select and design materials for: aerospace vehicles; ground transportation systems; automotive industry; solar energy and battery devices; tissue engineering and drug delivery; information and communication systems; electronic and magnetic devices and systems; and optical and opto-electronic components.

You will conduct failure analysis of materials in a variety of applications including those mentioned above.

Employment opportunities exist working in research and development, academia, national laboratories including the Defence Science and Technology Group and industry for companies such as: AECOM, Deloitte, Ford, GlaxoSmithKline, KPMG, Orica, BlueScope Steel, Morgan Advanced Ceramics, Austral Bricks and Qenos. Materials engineers are in demand and receive some of the highest salaries in the engineering industry.



Read less
The Department of Materials Engineering offers opportunities for study in the following fields. Read more

Program Overview

The Department of Materials Engineering offers opportunities for study in the following fields: casting and solidification of metals; ceramic processing and properties; refractories; corrosion; composites; high temperature coatings; biomaterials; extractive metallurgy including hydrometallurgy, bio-hydrometallurgy, electrometallurgy, and pyrometallurgy; physical metallurgy; thermo-mechanical processing related to materials production; environmental issues related to materials productions; electronic materials; nanofibers; textile structural composites.

Materials Engineers are experts on the entire life cycle of materials, including recovery of materials from minerals, making engineered materials, manufacturing materials into products, understanding and evaluating materials performance, proper disposal and recycling of materials, and evaluating societal and economic benefits.

Quick Facts

- Degree: Master of Applied Science
- Specialization: Materials Engineering
- Subject: Engineering
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Registration options: Full-time
- Faculty: Faculty of Applied Science

Research focus

Composites, Microstructure Engineering, Extractive Metallurgy, Solidification, Biomaterials & Ceramics

Research highlights

In our research, we work closely with industry partners internationally. We have faculty with world-renowned expertise in hydrometallurgy, sustainability, nanomaterials, biomaterials and ceramics. Recent research developments in the department are helping to reduce environmental impact in the mining industry and enabling new possibilities in medical treatments. We also have a leading role in MagNet, an initiative that aims to achieve significant reductions in carbon dioxide emissions in the transportation sector. We have a long history of providing excellence in education and offer one of the top-rated materials programs in North America. Graduates of our program are enjoying rewarding careers locally and internationally in a wide range of industries from mining to advanced electronics, health care and aerospace.

Related Study Areas

Biomaterials, Ceramics, Composites, Hydrometallurgy, Microstructure Engineering, Corrosion

Facilities

Research is carried out in both the Frank Forward Building and the Brimacombe Building (AMPEL) on UBC campus.

Read less
New materials underpin development and progress across a wide variety of sectors. New technologies, from planes to batteries, from hip implants to electronic devices, are made possible, and often limited by, the materials we currently know and use. Read more

New materials underpin development and progress across a wide variety of sectors. New technologies, from planes to batteries, from hip implants to electronic devices, are made possible, and often limited by, the materials we currently know and use.

Materials Scientists and Engineers work hard to understand how and why materials behave the way they do, and exploit this knowledge to develop new materials with amazing properties.

This one-year master course comprises 12 taught modules (two-thirds of the year) taken in Semesters I and II and an individual research project (one-third of the year) carried out in Semester III and summer in a broad range of topics related to Materials Science and Engineering in any of the Research Groups within the School of Metallurgy and Materials.

Course details

Studying Materials Science and Engineering, you will develop a fundamental understanding of how the properties of a material, such as strength, electronic properties and biocompatibility, are affected by the material’s structure, such as its crystal structure or microstructure.

This knowledge can then be used to formulate strategies to develop new materials, such as alloys able to operate at higher temperatures for jet engine blades or high-toughness ceramics for armour applications. This programme will equip you with the skills required to join a wide variety of industries in the capacity of materials specialist, or continue your education at a PhD level.

This one-year master course comprises 12 taught modules (two-thirds of the year) taken in Semesters I and II and an individual research project (one-third of the year) carried out in Semester III & summer. In addition to technical modules, the course also provides training for transferable skills such as Communiation Skills and Effective Project Management.

Research projects can be carried out in a broad range of topics related to Materials Science and Engineering in any of the Research Groups within the School of Metallurgy and Materials or in industry. The project involves full-time research for one third of the academic year.

Related links

Learning and teaching

All students take twelve modules for a total 120 credits, plus a research project.

The programme is currently delivered through a combination of lectures, seminars, tutorials, project-based and laboratory-based teaching and learning methods.

Employability

Our graduates go on to become engineers and scientists at a wide variety of industrial partners, or opt to continue their studies at PhD level.

Typical employers:

  • BAE Systems
  • Rolls-Royce
  • Royal Air Force
  • British Petroleum

University Careers Network

Preparation for your career should be one of the first things you think about as you start university. Whether you have a clear idea of where your future aspirations lie or want to consider the broad range of opportunities available once you have a Birmingham degree, our Careers Network can help you achieve your goal.

Our unique careers guidance service is tailored to your academic subject area, offering a specialised team (in each of the five academic colleges) who can give you expert advice. Our team source exclusive work experience opportunities to help you stand out amongst the competition, with mentoring, global internships and placements available to you. Once you have a career in your sights, one-to-one support with CVs and job applications will help give you the edge.

If you make the most of the wide range of services you will be able to develop your career from the moment you arrive.



Read less
This MSc will suit engineering, mathematics and physical sciences graduates who wish to specialise in the maritime engineering science sector. Read more

This MSc will suit engineering, mathematics and physical sciences graduates who wish to specialise in the maritime engineering science sector. The core modules are particularly relevant to the Advanced Materials theme of this course.

Introducing your degree

Maritime Engineering Science is an MSc course designed for graduates, or similarly qualified, with an engineering, scientific or mathematical background, who desire to pursue a career in maritime sector. An introductory module is provided at the start to give students the fundamental knowledge necessary for them to succeed in the course. The masters course in Maritime Engineering Science / Advanced Materials enables the students to specialise in the in-depth study of engineering materials in addition to core naval architecture subject areas.

Overview

This course will enable you to develop a fundamental understanding of maritime engineering. Core modules are particularly relevant to the advanced materials theme where you will explore composites, titanium and aluminium and understand their selection and engineering for maritime applications.

The year is divided into two semesters. Each semester, in addition to a set of specialist modules, you will also have opportunity to select from a range of option modules including marine structures, finite element analysis and composite engineering design. You will also learn the broader principles of marine safety, environmental engineering and management.

The last four months will put your newly developed knowledge into practice. You will complete a major research project and take advantage of our many facilities, including a state-of-the-art Transportation Systems Research Laboratory and wind tunnel complex to support your experimental work.

View the specification document for this course

Career Opportunities

The maritime sector provides many and varied career opportunities in engineering and project management related roles. Maritime Engineering Science graduates are in strong demand with good starting salaries and excellent career progression opportunities.

Our graduates work across many different organisations. The Solent region around Southampton is the main UK hub for the maritime sector with organisations such as Lloyd’s Register, Carnival, BMT Nigel Gee, Maritime and Coastguard agency and many others based nearby. Organisations such BAE Systems, QinetiQ and Babcock support primarily the defence sector and employ a good number of our graduates. The offshore and marine renewable developments are offering excellent prospects both to work in the UK (locally, London or Aberdeen) or worldwide in places such as Singapore, Houston or Perth, etc.



Read less

Show 10 15 30 per page



Cookie Policy    X