• University of Surrey Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Ulster University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Manchester Featured Masters Courses
Staffordshire University Featured Masters Courses
FindA University Ltd Featured Masters Courses
0 miles
Engineering×

Masters Degrees in Electronic Engineering

We have 183 Masters Degrees in Electronic Engineering

Masters degrees in Electronic Engineering equip postgraduates with the skills to design, produce and develop devices which conduct electrons for various uses.

Taught MSc courses are typical for the field, though research oriented MRes and MPhil programs may be available at some institutions. Entry requirements normally include an undergraduate degree in a relevant subject such as Mathematics, Computing or Design Technology.

Why study a Masters in Electronic Engineering?

Read more...

  • Engineering×
  • Electronic Engineering×
  • clear all
Showing 1 to 15 of 183
Order by 
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Electronic and Electrical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Electronic and Electrical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

As a student on the Master's course in Electronic and Electrical Engineering, you will develop specialist skills aligned with the College of Engineering’s research interests and reflecting the needs of the electronics industry.

Key Features of MSc in Electronic and Electrical Engineering

The MSc Electronic and Electrical Engineering course covers the ability to apply the knowledge gained in the course creatively and effectively for the benefit of the profession, to plan and execute a programme of work efficiently, and to be able, on your own initiative, to enhance your skills and knowledge as required throughout your career in Electronic and Electrical Engineering.

Students on the Electronic and Electrical Engineering course benefit from the use of industry-standard equipment, such as a scanning tunnelling microscope for atomic scale probing or an hp4124 parameter analyzer for power devices, for simulation, implementation and communication.

During the Electronic and Electrical Engineering course there will be the opportunity to choose and apply suitable prototyping and production methods and components, gain knowledge in constructing and evaluating advanced models of various manufacturing techniques, and be able to differentiate, analyse and discuss various product lifetime management solutions and how they affect different sectors of Electronic and Electrical Engineering industry.

The MSc in Electronic and Electrical Engineering programme is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation in Electronic and Electrical Engineering. Students on the Electronic and Electrical Engineering course must successfully complete Part One before being allowed to progress to Part Two.

Part-time Delivery mode of MSc in Electronic and Electrical Engineering

The part-time scheme of the MSc in Electronic and Electrical Engineering is a version of the full-time equivalent MSc in Electronic and Electrical Engineering scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option in Electronic and Electrical Engineering.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Modules on Electronic and Electrical Engineering

Modules on the MSc Electronic and Electrical Engineering course can vary each year but you could expect to study:

Communication Skills for Research Engineers

Energy and Power Electronics Laboratory

Power Semiconductor Devices

Advanced Power Electronics and Drives

Wide Band-Gap Electronics

Power Generation Systems

Modern Control Systems

Advanced Power Systems

Signals and Systems

Digital Communications

Optical Communications

Probing at the Nanoscale

RF and Microwaves

Wireless Communications

Facilities for Electronic and Electrical Engineering

The new home of the Electronic and Electrical Engineering programme is at the innovative Bay Campus which provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching. In addition the University provides open access IT resources.

Find out more about the facilities used by Electronic and Electrical students at Swansea University, including the electronics lab on our website.

Links with Industry

At Swansea University, Electronic and Electrical Engineering has an active interface with industry and many of our activities are sponsored by companies such as Agilent, Auto Glass, BT and Siemens.

Electronic and Electrical Engineering has a good track record of working with industry both at research level and in linking industry-related work to our postgraduate courses. We also have an industrial advisory board that ensures our taught courses including the MSc in Electronic and Electrical Engineering maintain relevance.

Our research groups work with many major UK, Japanese, European and American multinational companies and numerous small and medium sized enterprises (SMEs) to pioneer research. This activity filters down and influences the project work that is undertaken by all our postgraduate students including those on the MSc in Electronic and Electrical Engineering.

Careers

Electronic and Electrical Engineering graduates find employment in industry, research centres, government or as entrepreneurs in a wide range of careers, from a design and development role for electronic and electrical equipment or as a technological specialist contributing to a multi-disciplinary team in a range of fields, including medicine, travel, business and education.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.

The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.

Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.



Read less
Why Surrey?. This degree mirrors the two-year Masters programme structure that is common in the USA, and is an ideal stepping stone to a PhD or a career in industry. Read more

Why Surrey?

This degree mirrors the two-year Masters programme structure that is common in the USA, and is an ideal stepping stone to a PhD or a career in industry.

The optional professional placement component gives you the opportunity to gain experience from working in industry, which cannot normally be offered by the standard technically-focused one-year Masters programme.

Programme overview

The Electronic Engineering Euromasters programme is designed for electronic engineering graduates and professionals with an interest in gaining further qualifications in advanced, cutting-edge techniques and technologies. Current pathways offered include:

  • Communications Networks and Software
  • RF and Microwave Engineering
  • Mobile Communications Systems
  • Mobile and Satellite Communications
  • Mobile Media Communications
  • Computer Vision, Robotics and Machine Learning
  • Satellite Communications Engineering
  • Electronic Engineering
  • Space Engineering
  • Nanotechnology and Renewable Energy
  • Medical Imaging

Please note that at applicant stage, it is necessary to apply for the Electronic Engineering (Euromasters). If you wish to specialise in one of the other pathways mentioned above, you can adjust your Euromaster programme accordingly on starting the course.

Programme structure

This programme is studied full-time over 24 months. It consists of eight taught modules, two modules based on experimental reflective learning and an extended project.

Please view the website for an example module listing.

Partners

The MSc Euromasters complies with the structure defined by the Bologna Agreement, and thus it is in harmony with the Masters programme formats adhered to in European universities. Consequently, it facilitates student exchanges with our partner universities in the Erasmus Exchange programme.

A number of bilateral partnerships exist with partner institutions at which students can undertake their project. Current partnerships held by the Department include the following:

  • Brno University of Technology, Czech Republic
  • University of Prague, Czech Republic
  • Universität di Bologna, Italy
  • Universität Politècnica de Catalunya, Barcelona, Spain
  • Universita' degli Studi di Napoli Federico II, Italy

Educational aims of the programme

The taught postgraduate degree programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in electronic engineering, physical sciences, mathematics, computing and communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

A graduate from this MSc programme should:

  • Know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin electronic engineering
  • Be able to analyse problems within the field of electronic engineering and find solutions
  • Be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within electronic engineering
  • Be aware of the societal and environmental context of his/her engineering activities
  • Be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
  • Be able to carry out research-and-development investigations
  • Be able to design electronic circuits and electronic/software products and systems

Enhanced capabilities of MSc (Euromasters) graduates:

  • Demonstrate transferable skills such as problem solving, analysis and critical interpretation of data, through the undertaking of the extended 90-credit project
  • Know how to take into account constraints such as environmental and sustainability limitations, health and safety and risk assessment
  • Have gained comprehensive understanding of design processes
  • Understand customer and user needs, including aesthetics, ergonomics and usability
  • Have acquired experience in producing an innovative design
  • Appreciate the need to identify and manage cost drivers
  • Have become familiar with the design process and the methodology of evaluating outcomes
  • Have acquired knowledge and understanding of management and business practices
  • Have gained the ability to evaluate risks, including commercial risks
  • Understand current engineering practice and some appreciation of likely developments
  • Have gained extensive understanding of a wide range of engineering materials/components
  • Understand appropriate codes of practice and industry standards
  • Have become aware of quality issues in the discipline

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Electronic and Electrical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Electronic and Electrical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

As a world-leader in the research areas of power semiconductor technology and devices, power electronics, nanotechnology and biometrics, and advanced numerical modelling of micro and nanoelectronic devices, Swansea University provides an excellent base for your research as a MSc by Research student in Electronic and Electrical Engineering.

Key Features of MSc by Research Electronic and Electrical Engineering

The Electronic Systems Design Centre (ESDC) is known for its ground-breaking research into Power IC technology, the key technology for more energy efficient electronics. The Centre is also a world-leader in semiconductor device modelling, FEM and compact modelling.

The MSc by Research Electronic and Electrical Engineering has a wide range of subject choice including areas such as:

- Parallel 3D Finite Element Monte Carlo Device Simulations Of Multigate Transistors

- Modelling of Metal-Semiconductor Contacts for the Next Generation of Nanoscale Transistors

- Novel GaN HEMT Switches for Power Management: Device Design, Optimization and Reliability Issues

MSc by Research in Electronic and Electrical Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Facilities

The new home of the Electronic and Electrical Engineering programme is at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching. In addition the University provides open access IT resources.

Students on the Electronic and Electrical Engineering research programme benefit from the Electronic Systems Design Centre (ESDC) facilities.

Links with industry

At Swansea University, Electronic and Electrical Engineering has an active interface with industry and many of our activities are sponsored by companies such as Agilent, Auto Glass, BT and Siemens.

Electronic and Electrical Engineering has a good track record of working with industry both at research level and in linking industry-related work to our postgraduate courses. We also have an industrial advisory board that ensures our taught courses maintain relevance.

Our research groups work with many major UK, Japanese, European and American multinational companies and numerous small and medium sized enterprises (SMEs) to pioneer research. This activity filters down and influences the project work that is undertaken by all our postgraduate students including those on the Electronic and Electrical Engineering.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK

With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.

The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.

Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.



Read less
Our MSc Euromasters programme is designed for electronic engineering students and professionals with an interest in gaining further qualifications in advanced, cutting-edge techniques and technologies in the selected pathway, with enhanced project, as well as training in transferable skills including business awareness and management. Read more

Our MSc Euromasters programme is designed for electronic engineering students and professionals with an interest in gaining further qualifications in advanced, cutting-edge techniques and technologies in the selected pathway, with enhanced project, as well as training in transferable skills including business awareness and management.

We offer numerous Electronic Engineering MScs in more specialised fields of study, from space engineering to mobile communications systems, and if you wish to specialise in one of these pathways you can adjust your course accordingly.

The advanced taught technical content is in sub-disciplines of electronic engineering closely aligned with the internationally-leading research conducted in the four research centres of the Department of Electrical and Electronic Engineering.

Programme structure

This programme is studied full time over 12 months or can be part-time over 48 months. It consists of eight taught modules and a standard project.

Please view the website for a module list

Educational aims of the programme

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

A graduate from this MSc Programme should:

  • Know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin electronic engineering
  • Be able to analyse problems within the field of electronic engineering and find solutions
  • Be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within electronic engineering
  • Be aware of the societal and environmental context of his/her engineering activities
  • Be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
  • Be able to carry out research-and-development investigations
  • Be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway

Students on the Programme may study (in the first two semesters) any four modules from the pool available to MSc students in semester 1 and any four modules from the pool available to MSc students in semester 2.

This enables the student to freely choose the combination of modules that will best suit their desired personal development and career aspirations.

With the aid of advice from a tutor they will also choose a combination of modules, which will typically be closely related to a specific discipline area being one of space systems, communication systems, wireless technologies, signal processing, integrated circuits or nanotechnology.

Additionally the project dissertation which the student will complete will be one which relates suitably to the area of the taught modules chosen by the student and as such it will be supervised by an academic from an appropriate research centre within the department.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
The program aims to form Master graduates with a comprehensive and solid scientific and technological background in Electronics Engineering, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged. Read more

Mission and goals

The program aims to form Master graduates with a comprehensive and solid scientific and technological background in Electronics Engineering, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged.
To meet these training needs, the Master of Science in Electronics Engineering bases its roots on a full spectrum of basic courses (mathematics, classical and modern physics, computer science, signal theory, control and communications, basic electronic circuits) that are prerequisites required from the Bachelor, and focuses on the most advanced disciplines in electronic design (analog and digital electronics, solid state physics and devices, microelectronics, optoelectronics, sensors and electronic instrumentation, communications and control systems) to provide a complete and updated preparation. Upon graduating, students will have developed a “design oriented” mindset and acquired a skill to use engineering tools to design solutions to advanced electronic challenges in scientific and technological fields.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

Career opportunities

Thanks to the deep and solid scientific and technological knowledge provided, Master of Science graduates in Electronics Engineering will be able to hold positions of great responsibility, both at technical and management level, in a wide variety of productive contexts:
- Scientific and technological research centers, national and international, public or private;
- Industries of semiconductors, integrated circuits and in general of electronic components;
- Industries of electronic systems and instrumentation, such as consumer electronics (audio, video, telephone, computers, etc.), optoelectronics, biomedical, etc.;
- Electromechanical industries with high technological content such as aeronautics, transportation, aerospace, energy, robotics and plant automation, etc.;
- Work as a freelance in the design and fabrication of custom electronic systems.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electronics_Engineering_01.pdf
The Master of Science in Electronics Engineering aims to form graduates with a comprehensive and solid scientific and technological knowledge in the field of Electronics, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged. The course focuses on the most advanced aspects of Electronics (analog and digital integrated circuits design, solid state devices, microelectronics, optoelectronic devices and sensors, electronic instrumentation, communications and control systems) to provide a complete and updated professional preparation. Upon graduating, students will have developed a “design oriented” mindset enabling them to successfully deal with the complex needs of today’s industrial system. They will have also acquired a skill to use engineering tools to design solutions to advanced electronic challenges in scientific and technological fields as well as a maturity to hold positions of great responsibility both at technical and management level. The programme is taught in English.

Required background from Bachelor studies

The Master of Science in Electronics Engineering bases its roots on a full spectrum of knowledge that students are expected to have successfully acquired in their Bachelor degree, like advanced mathematics, classical and modern physics, computer science, signal and communication theory, electric circuits and feedback control, basic electronic devices and analog & digital circuit analysis.

Subjects

- Analog & Digital Integrated Circuit Design
- MEMS and Microsensors
- Electronic Systems
- Electron Devices and Microelectronic Technologies
- Signal recovery and Feedback Control
- Optoelectronic Systems and Photonics Devices
- RF Circuit Design
- Power Electronics
- Semiconductor Radiation Detectors
- FPGA & Microcontroller System Design
- Biochip and Electronics Design for Biomedical Instrumentation

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The School of Electronic Engineering at Bangor is ranked as 2nd in the UK for research by the UK Government in its most recent Research Assessment Exercise and as such the School houses academics, researchers and students of international standing. Read more
The School of Electronic Engineering at Bangor is ranked as 2nd in the UK for research by the UK Government in its most recent Research Assessment Exercise and as such the School houses academics, researchers and students of international standing. The School offers an MRes programme in Electronic Engineering, with a variety of specialist areas of study available. Each programme is aligned to the research conducted within the School:

MRes Electronic Engineering Optoelectronics
MRes Electronic Engineering Optical Communications
MRes Electronic Engineering Organic Electronics
MRes Electronic Engineering Polymer Electronics
MRes Electronic Engineering Micromachining
MRes Electronic Engineering Nanotechnology
MRes Electronic Engineering VLSI Design
MRes Electronic Engineering Bio-Electronics

The MRes programme provides a dedicated route for high-calibre students who (may have a specific research aim in mind) are ready to carry out independent research leading to PhD level study or who are seeking a stand alone research based qualification suitable for a career in research with transferable skills for graduate employment.
It is the normal expectation that the independent research thesis (120 credits) should be of at a publishable standard in a high quality peer reviewed journal.
The MRes programme is a full-time one year course consisting of 60 taught credits at the beginning of the programme which lead on to the 120 credit thesis.
Each MRes shares the taught element of the course, after successful completion of the taught element students are then able to specialise in a specific subject for their thesis.
The taught provision has four distinct 15 credit modules that concentrate on specific generic skill.

Modelling and Design
Focuses on the simulation and design of electronic devices using an advanced software package – COMSOL. This powerful commercial software package is extremely adaptable and can be used to simulate and design a very wide range of physical systems.

Introduction to Nanotechnology and Microsystems
Focuses on the device fabrication techniques at the nano and micro scale, as well as introducing some of the diagnostic tools available to test the quality and characteristics of devices.

Project Planning
Focuses on the skills required to scope, plan, execute and report the
outcomes of a business and research project.

Mini Project
Focuses on applying the skills and techniques to a mini project, whose theme will form the basis of the substantive research project.
MRes Research Project: After the successful completions of the taught component of the programme, the major individual thesis will be undertaken within the world-leading research groups of the School.
Student Study Support
All students are assigned a designated supervisor, an academic member of staff who will provide formal supervision and support on a daily basis.
The School’s Director of Graduate Studies will ensure that the appropriate level of support and guidance is available for all postgraduate students, and each Course Director is available to help and advise their students as and when required.

Read less
This MSc course in Advanced Electronic and Electrical Engineering is specifically designed for students who wish to pursue a broad programme of advanced studies, whilst also offering a wide range of specialist modules which open a variety of career pathways on graduation. Read more

About the course

This MSc course in Advanced Electronic and Electrical Engineering is specifically designed for students who wish to pursue a broad programme of advanced studies, whilst also offering a wide range of specialist modules which open a variety of career pathways on graduation. The distinctive feature of the MSc is its flexible structure – you are able to customise the content of your programme to meet your academic interests and career aspirations. Core modules are used to ensure there is depth and breadth in key areas of electronic and electrical engineering – notably sensors and instrumentation, control, photonics, sustainable power systems, telecommunications, intelligent systems, medical systems, integrated circuits and embedded systems.

Aims

Having an advanced, broad level of engineering knowledge and skills is a prerequisite for improving your career options in a demanding and dynamic sector. The course allows graduates with an electronic and electrical engineering background to further develop their skills as well as allowing able students from other numerate degree backgrounds to build up strong expertise in this area to complement their original undergraduate studies.
On the MSC programme you will:
Gain the in-depth knowledge you need to resolve new, complex and unusual challenges across a range of electrical and electronics issues.
Develop imagination, initiative and creativity to allow you to problem solve effectively.
Become work ready for a career with leading engineering organisations.

Women in Engineering Scholarships

Both the Government and Brunel University are keen to promote women taking up degrees in Engineering, and we are offering exciting scholarships linked to a bespoke mentoring programme to eligible Home / EU applicants. Please read more about these Women in Engineering Scholarships. http://www.brunel.ac.uk/study/postgraduate-fees-and-funding/funding

Course Content

Core Modules

Project Management
Advanced Analogue Electronics & Photonics
Applied Sensors, Instrumentation and Control
AEEE Group Project
Power Electronics and FACTS

Optional Modules

Choose three modules with at least one from:
Analogue Integrated Circuit Design
Embedded Systems Engineering
DSP for Communications
Intelligent Systems
Project/Dissertation

Special Features

The Electronic and Computer Engineering discipline is one of the largest in the University, with a portfolio of research contracts totalling £7.5 million, and has strong links with industry.
We have a wide range of research groups, each with a complement of academics and research staff and students. The groups are:
Media Communications
Wireless Networks and Communications
Brunel Institute for Power Systems
Electronic Systems
Sensors and Instrumentation
Our laboratories are well equipped with an excellent range of facilities to support the research work and courses. We have comprehensive computing resources in addition to those offered centrally by the University. The discipline is particularly fortunate in having extensive gifts of software and hardware to enable it to undertake far-reaching design projects.
This course is accredited by the Institution of Engineering and Technology (IET).

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Teaching and Assessment

Teaching

This course in Advanced Electronic and Electrical Engineering blends lectures, tutorials, laboratories, individual and group projects with presentations and a major research based dissertation project.
External lectures and research seminars will be used to enhance the student experience and highlight the application of the technologies in industry.

Assessment

You will be assessed on your written assignments, presentations, examinations and a major dissertation project.
The course comprises a blend of lectures, tutorials, laboratories, individual and group projects, presentations and a major research-based dissertation project, with external lectures and research seminars used to enhance your experience and highlight the application of the technologies in industry.

Read less
Electrical and electronic engineering are the foundation of 21st century innovations. from digital communications to robotics systems, from sustainable energy to smart environments. Read more

Electrical and electronic engineering are the foundation of 21st century innovations: from digital communications to robotics systems, from sustainable energy to smart environments. With the MSc Electrical and Electronic Engineering from GCU, you'll develop the skills to work at the forefront of these exciting fields. Through discovery and invention, you can build a better future for humanity and contribute to the common good.

Accredited by the Institution of Engineering and Technology (IET), the programme also meets the Engineering Council's further learning requirements to become a Chartered Engineer. It offers advanced study and ideal preparation so you can enter the next stage of your career. You'll also find professional development opportunities for your continued growth as a successful engineer.

The curriculum offers a comprehensive exploration of electrical and electronic engineering, with particular emphasis on today's fast-growing fields of energy engineering and renewable technologies.

  • Expand your understanding of power systems and instrumentation systems
  • Investigate telecommunications systems and technologies
  • Solidify your personal skills and practise collaborating with a team
  • Connect your learning to the real world with industry case studies and on-the-ground assignments

The MSc Electrical and Electronic Engineering offers two options for specialisation.

  • Digital Systems and Telecommunications - Master communication technologies and systems
  • Mechatronics - Study the electronic control of mechanical and intelligent robotic systems

What you will study

In addition to the knowledge and understanding of electrical and electronic engineering the programme will provide an integrated understanding of power systems, instrumentation systems, telecommunications systems and business operations, reinforced with personal and inter-personal skills.

Electrical Power Systems

The module examines topics relating to electric power generation, transmission, distribution and utilisation. This will include examination of individual power system components such as generators, transformers, overhead lines, underground cables, switchgears and protection systems as well as analysis of load flow and system fault conditions which are required for power system design and operation.

Advanced Industrial Communication Systems

Aims to provide a comprehensive knowledge and understanding of modern industrial communications systems. The operation of a wide range of state-of-the-art advanced communications systems will be studied, e.g. SCADA, satellite systems, digital cellular mobile networks and wireless sensor networks.

Measurement Theories and Devices

The generalised approach to measurement theory and devices adopted in this module will allow students to become familiar with the characteristics of measurement systems in terms of the underlying principles. Students should find this methodology to be a considerable benefit to them when they apply their expertise to solving more complex industrial measurement problems.

Measurement Systems

A range of advanced measurement systems will be studied in depth. Sensors, signal processing, low-level signal measurements, noise reduction methods and appropriate measurement strategies will be applied to industrial and environmental applications. The influence of environmental factors and operation conditions will be considered in relation to the optimisation of the measurement system.

Energy, Audit and Asset Management

Focuses on techniques for auditing and managing the amount of energy used in a range of industrial processes. The module will provide an understanding of the strategies and procedures of energy audit and energy asset management. Using case studies throughout, the module will present energy audit, managing energy usage, factors affecting energy efficiency on plant, and cost benefit analysis of introducing alternative strategies and technologies.

Professional Practice

Focuses on two themes, the first aims to develop student moral autonomy within a professional technology framework. It will examine moral issues and moral decision processes through evaluative enquiry and application of professional codes of conduct specifically in relation to design, information technology and the Internet. The second theme enhances the student's knowledge of concepts, methods and application of technology and environmental management as applied to a new or existing venture.

Renewable Energy Technologies

Renewable energy is regarded as an integral part of a sustainable development strategy. This module concentrates on the renewable energy technologies most likely to succeed in the UK and other temperate countries, i.e. solar energy, energy from waste, wind, hydro and biomass.

Condition Monitoring

Aims to provide an understanding of both Mechanical and Electrical Condition monitoring and associated instrumentation requirements for successful condition monitoring. The main focus in Mechanical Condition Monitoring is vibration monitoring since this is the most popular method of determining the condition and diagnosing faults in rotational machines, although other techniques used in condition monitoring are also covered.

Accreditation

MSc Electrical and Electronic Engineering is accredited by the Institution of Engineering and Technology (IET) and its students meet the UK Engineering Council’s further learning requirements for registration as a Chartered Engineer.

Assessment methods

Students will be assessed via a combination of examinations, coursework, presentations,case study analysis, reports and the final dissertation.

Graduate prospects

Your degree and specialist knowledge will guarantee you excellent career opportunities around the world. You might find work in the electrical power industry, the renewable energy sector, the offshore industry, transport engineering, electronic engineering or telecommunications.



Read less
Our Masters in Electrical and Electronic Engineering is an advanced course designed for engineering graduates to enhance their skills in this area of high technology. Read more
Our Masters in Electrical and Electronic Engineering is an advanced course designed for engineering graduates to enhance their skills in this area of high technology. The ever increasing pace of developments in all areas of electrical and electronic engineering, (and in particular in the systems that are related to energy and the environment), requires engineers with a thorough understanding of operation principles and design methods for various modern electrical and electronic systems. As a graduate you'll be able to not only respond to the latest changes but also to look ahead and help in shaping future developments.

The unique features of this course are that the traditional electrical and electronic engineering subjects are supported by the more modern topics of computer control and machine learning techniques, which are at the forefront of modern electrical and electronic systems in the industry today. This course offers an integrated systems approach to engineering, incorporating modules in advanced power electronics and renewable energy systems, advanced instrumentation and control with signal processing, real-time systems and machine learning techniques.

There is an increasing demand for skilled engineers who are able to design and maintain electrical and electronic systems that are at the forefront of current technologies. These positions cover many industries, hence graduates from this course can expect significantly enhanced job prospects in electrical, electronic as well as systems engineering.

Modules

Digital signal processing
Pattern recognition and machine learning
Advanced Instrumentation and Design
Advanced power electronics and renewable energy systems
Technology evaluation and commercialization
Technical, research and professional skills
MSc engineering project

Professional links

The School has a strong culture of research and extensive research links with industry through consultancy works and Knowledge Transfer Partnerships (KTPs). Teaching content on our courses is closely related to the latest research work.

This course is accredited by the IET as meeting the further learning requirements for CEng registration. The IET is one of the world’s largest engineering institutions with over 167,000 members in 127 countries.

Employability

The acquired skills in computer control and AI techniques offer additional scope for jobs in the design of decision support systems that cross traditional boundaries between engineering and other disciplines. (i.e. medical, finance). Successful graduates will enjoy exciting career opportunities from a wide range of industries, such as electrical energy supply and control, electronics and instrumentation products and services, intelligent systems and automation to include: automotive, aerospace, electrical and electronic consumer products, telecommunications. The students can also pursue PhD studies after completing the course.

Engineering management skills

Engineering employers have expressed their need for engineers with a solid grasp of the business requirements that underpin real engineering projects. Our course incorporates a management-related module focused on entrepreneurship and project management. This management module develops our graduates' commercial awareness and ensures that they have the skill-set valued by industry employers.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

• Direct engagement from employers who come in to interview and talk to students
• Job Shop and on-campus recruitment agencies to help your job search
• Mentoring and work shadowing schemes.

Read less
Develop and enhance your understanding of electronic engineering to an advanced level, setting you apart in your career. You will engage with technology that goes beyond silicon based electronics to develop specialist knowledge and skills for emerging markets. Read more

Develop and enhance your understanding of electronic engineering to an advanced level, setting you apart in your career. You will engage with technology that goes beyond silicon based electronics to develop specialist knowledge and skills for emerging markets.

You may already have a firm grasp of the essentials of the discipline; however, this programme will provide you with a practical understanding of key areas of advanced electronic engineering. With links into a research portfolio that has been rated as internationally excellent, this programme is guided by leading experts, including industry specialists. You will work with familiar technology like WiFi, and explore new innovative landscapes such as micro and nanostructures in sensory equipment and self-healing electronics for safety critical systems.

The programme has been developed to meet the demands of the contemporary electronic engineering landscape. Emerging markets such as smart grid, healthcare and medicine, energy and environment are set to join established industrial sectors including security, transport and aerospace and as such, skilled Masters graduates are highly sought after.

Over the year you will explore a range of high-level topics, which will test your previous understanding while allowing you to develop a deeper understanding of electronics. The skills gained during these modules will be invaluable as you progress in your career.

The technical element of the degree will involve you engaging with a range of technologies and topics, such as: system-on-chip engineering; micro engineering; RF engineering; control and instrumentation; and communications and embedded systems. You will also benefit from the programme’s practical element, which will enable you to gain a wealth of valuable experience. You will become adept at digital design; the design of microstructures; programming of embedded microcontrollers; RF circuits; and methods of building control loops and associated software. The robust and comprehensive skill set and knowledge you gain will open up a range of opportunities and support your progression as a professional.

During the year, you will also complete a project provided by one of our industry partners. This will allow you to bring together everything you have learnt and gain valuable real-world experience of working as a professional electronic engineer. As part of this project, you will structure and break down a problem; develop team organisation, project management and technical skills; and use background sources and research. You will also gain career experience by presenting your results and writing a customer report. Examples of previous projects include:

  • Detection of living cells in a microfluidic system using electrochemical and RF technologies
  • Self-repairable electronics through unification of self-test and calibration technology
  • Solution-processed electronics over a large area: design and realisation of a fully computerised XY(Z) spray coater employing multiple pneumatic and/or ultrasonic airbrushes
  • Higher-order mode couplers in semiconducting RF cavities
  • Monolithic microwave integrated circuit (MMIC) design for wireless networks
  • Vision and robotic control interface system.

Course Structure

You will study a range of modules as part of your course, some examples of which are listed below.

Core

Information contained on the website with respect to modules is correct at the time of publication, but changes may be necessary, for example as a result of student feedback, Professional Statutory and Regulatory Bodies' (PSRB) requirements, staff changes, and new research.

Assessment

Engineering is more than just theory and, as a result, you will experience labs/practical sessions, workshops and group tutorials, alongside lectures. This contact is with academic staff that are internationally recognised and work alongside global electronics companies.

In addition, our technicians and admin support team are very approachable and have many years of experience in helping students achieve success.

Assessment varies between modules, allowing students to demonstrate their capabilities in a range of ways. Typically you can expect assignments such as coursework, presentations and formal examinations.

Community

As a department, we prioritise delivering high-quality, rigorous programmes that prepare and equip our graduates for a rewarding career. The Department provides an interdisciplinary approach that reflects the dynamic nature of professional engineering.

Our Department is an internationally recognised leader in research and innovation and, as such, you will join a thriving and supportive academic community. Staff and students alike will welcome and support you both academically and socially.

You will be encouraged throughout your programme in a friendly, vibrant environment that is conducive to excellent research and learning.

Career

Our MSc in Electronic Engineering is designed to support your career ambitions and progression. By enabling you to develop your technical and professional skills to an advanced level, and allowing you to apply what you have previously learnt to real-world problems, this programme equips you with the knowledge and experience for a range of electronic engineering careers, and will put you ahead of the competition.

There is a wide range of sectors where electronic engineering is relevant, such as Aerospace, Energy, Environment, Health, IT and Telecommunications, and Security. Roles in these sectors come with highly competitive starting salaries, and include, but are not limited to:

  • Aerospace Engineer
  • Broadcast Engineer
  • Control and Instrumentation Engineer
  • Electronics Engineer
  • IT Consultant
  • Network Engineer
  • Nuclear Engineer

In addition, studying at Masters level will further enhance your prospects, opening up opportunities to progress further in your career.

Alternatively, our programme will provide you with the skills, knowledge, and experience to take up further study at PhD level and begin a career in research, exploring innovative, cutting-edge areas of the engineering discipline.



Read less
This MSc in Systems Engineering (Electronic) and Engineering Management is an excellent opportunity to consolidate and advance your skills and knowledge in systems engineering, with an electronics emphasis. Read more

This MSc in Systems Engineering (Electronic) and Engineering Management is an excellent opportunity to consolidate and advance your skills and knowledge in systems engineering, with an electronics emphasis. Completing the course successfully should increase your employability, as well as your suitability for further research or training options.

What you will study

Almost every business or organisation uses some sort of system to keep things working efficiently and productively. This system might keep information moving securely and efficiently, or it might ensure product distribution or service availability. A systems engineer is the all-important link between complex programming and technology, and its users, customers and stakeholders. So, you’ll need a firm knowledge and understanding of both sides, and the ability to take a joined-up approach to ensuring systems meet a wide range of needs reliably, efficiently, and in user-friendly fashion.

That might sound like a tall order, but it’s a hugely rewarding career path, and this course is a great opportunity for you to develop a unique blend of practical engineering and management-orientated learning. We’re here to help you further specialise your systems engineering knowledge and skills, and completing this course successfully should make you highly employable in a range of sectors and settings.

The course meets professional institution standards in the UK and Europe, and addresses a range of contemporary issues in engineering and engineering management. If you’re looking to take a systems-based approach to engineering management, this course is could be ideal.

Course Highlights:

  • We’ll support you as you develop a systematic knowledge and understanding of how advanced engineering concepts and design methodologies apply in the design of electronics-based equipment.
  • We’ll encourage you to develop a mastery of digital signal processing for use in control applications.
  • You’ll have the chance to explore advanced artificial intelligence techniques used in the design and control of automated machinery.
  • We’ll work to help you develop a detailed understanding of how ‘total quality management’ applies to design, manufacture and project management.
  • You’ll have the opportunity to learn about the commercial side of project management, including contract negotiation, stakeholder management, quotations, procurement and a range of other financial and legal matters.

Key Features:

  • The course is designed to meet professional institution standards in the UK and Europe.
  • We’ll encourage you to undertake a work placement and/or an industry-based project.
  • You can also choose from two alternative pathways: Mechatronics or Mechanical Systems Engineering.
  • You can select common systems modules, whichever pathway you take.
  • This course is based at the University of Bolton’s campus in the North West of England.
  • It’s part of a well-established suite of Master’s programmes in Systems Engineering and Management that offers opportunities for study in Germany and dual award options.

For more information please visit http://www.bolton.ac.uk/postgrad



Read less
This programme is suitable for recent graduates and engineers with experience of microelectronics who have good mathematical ability. Read more
This programme is suitable for recent graduates and engineers with experience of microelectronics who have good mathematical ability. It provides a thorough knowledge of the principles and techniques of this exciting field and has been developed in consultation with industry advisors to ensure it is relevant to today’s workplace.

Modules are block taught so can also be studied separately by working engineers as continuous professional development either to enhance their knowledge in particular subject fields or to widen their portfolio.

Core study areas include ASIC engineering, sensors and actuators, technology and verification of VLSI systems, embedded software development and an individual project.

Optional study areas include communication networks, information theory and coding, solar power, wind power, systems architecture, advanced FPGAs, DSP for software radio, advanced photovoltaics, mobile network technologies and advanced applications.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/electronic-electrical-engineering/

Programme modules

Compulsory Modules:
• ASIC Engineering
• Sensors and Actuators for Control
• Embedded Software Development
• Individual Project

Optional Modules (Choose five):
• Communication Networks
• Fundamentals of Digital Signal Processing
• Solar Power 1
• Wind Power 1
• Communications Channels
• DSP for Software Radio
• Imagineering
• Mobile Networks
• Advanced FPGAs
• Engineering Applications
• Systems Modelling for Control Engineering – new for 2015
• Radio Frequency and Microwave Integrated Circuit Design – new for 2015

Block-taught, individual modules are also highly suitable as CPD for professional engineers needing to fill a skills gap.

How you will learn

Compulsory modules provide a comprehensive understanding of modern microelectronics, embedded electronic systems, emerging technologies and their uses while the individual research project offers the chance to pursue a specialism in-depth. You’ll have access to advanced research knowledge and state of the art laboratories using industry standard software (Altera, Cadence, Mentor, Xilinx) so that you are prepared to enter a wide range of industry sectors on graduation.

- Assessment
Examinations are held in January and May, with coursework and group work assessments throughout the programme. The high practical content of this course is reflected in the inclusion of laboratory assessments and practical examinations. The individual research project is assessed by written report and viva voce in September.

Facilities

You’ll have access to laboratories, industry standard software (Altera, Cadence, Mentor Graphics, Xilinx) and hardware including equipment provided by Texas Instruments.

Careers and further study

Consultation with industry to craft the syllabus ensures that you’ll have an advantage in the job market. The in-depth knowledge acquired can be applied wherever embedded electronic systems are found including mobile phones (4/5G), acoustics, defence, medical instrumentation, radio and satellite communication and networked systems, control engineering, instrumentation, signal processing and telecommunications engineering.

Scholarships and bursaries

Scholarships and bursaries are available each year for UK/EU and international students who meet the criteria for award.

Why choose electronic, electrical and systems engineering at Loughborough?

We develop and nurture the world’s top engineering talent to meet the challenges of an increasingly complex world. All of our Masters programmes are accredited by one or more of the following professional bodies: the IET, IMechE, InstMC, Royal Aeronautical Society and the Energy Institute.

We carefully integrate our research and education programmes in order to support the technical and commercial needs of society and to extend the boundaries of current knowledge.

Consequently, our graduates are highly sought after by industry and commerce worldwide, and our programmes are consistently ranked as excellent in student surveys, including the National Student Survey, and independent assessments.

- Facilities
Our facilities are flexible and serve to enable our research and teaching as well as modest preproduction testing for industry.
Our extensive laboratories allow you the opportunity to gain crucial practical skills and experience in some of the latest electrical and electronic experimental facilities and using industry standard software.

- Research
We are passionate about our research and continually strive to strengthen and stimulate our portfolio. We have traditionally built our expertise around the themes of communications, energy and systems, critical areas where technology and engineering impact on modern life.

- Career prospects
90% of our graduates were in employment and/or further study six months after graduating. They go on to work with companies such as Accenture, BAE Systems, E.ON, ESB International, Hewlett Packard, Mitsubishi, Renewable Energy Systems Ltd, Rolls Royce and Siemens AG.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/electronic-electrical-engineering/

Read less
This MSc in Systems Engineering (Electronic) and Engineering Management is an excellent opportunity to consolidate and advance your skills and knowledge in systems engineering, with an electronics emphasis. Read more

This MSc in Systems Engineering (Electronic) and Engineering Management is an excellent opportunity to consolidate and advance your skills and knowledge in systems engineering, with an electronics emphasis. Completing this double award course successfully should increase your employability, as well as your suitability for further research or training options.

What you will study

Almost every business or organisation uses some sort of system to keep things working efficiently and productively. This system might keep information moving securely and efficiently, or it might ensure product distribution or service availability. A systems engineer is the all-important link between complex programming and technology, and its users, customers and stakeholders. So, you’ll need a firm knowledge and understanding of both sides, and the ability to take a joined-up approach to ensuring systems meet a wide range of needs reliably, efficiently, and in user-friendly fashion.

That might sound like a tall order, but it’s a hugely rewarding career path, and this course is a great opportunity for you to develop a unique blend of practical engineering and management-orientated learning. We’re here to help you further specialise your systems engineering knowledge and skills, and completing this course successfully should make you highly employable in a range of sectors and settings.

The course meets professional institution standards in the UK and Europe, and addresses a range of contemporary issues in engineering and engineering management. If you’re looking to take a systems-based approach to engineering management, this course is could be ideal.

Course Highlights:

  • This programme is a collaboration between the University of Bolton and South Westphalia University of Applied Sciences in Germany. It allows you to spend one of your three semesters of study in the UK and receive two awards, one from each University.
  • We’ll support you as you develop a systematic knowledge and understanding of how advanced engineering concepts and design methodologies apply in the design of electronics-based equipment.
  • We’ll encourage you to develop a mastery of digital signal processing for use in control applications.
  • You’ll have the chance to explore advanced artificial intelligence techniques used in the design and control of automated machinery.
  • We’ll work to help you develop a detailed understanding of how ‘total quality management’ applies to design, manufacture and project management.
  • You’ll have the opportunity to learn about the commercial side of project management, including contract negotiation, stakeholder management, quotations, procurement and a range of other financial and legal matters.

Key Features:

  • The course is designed to meet professional institution standards in the UK and Europe.
  • We’ll encourage you to undertake a work placement and/or an industry-based project.
  • You can also choose from two alternative pathways: Mechatronics or Mechanical Systems Engineering.
  • You can select common systems modules, whichever pathway you take.
  • For this three semester programme, you’ll normally study semester 1 at South Westphalia University of Applied Sciences, Soest, Germany and semester 2 at the University of Bolton, UK. The third semester, which is largely devoted to project work, is normally undertaken at South Westphalia University of Applied Sciences.

To find out more information, please visit http://www.bolton.ac.uk/postgrad



Read less
The Electronic Engineering with Management MSc combines the development of advanced electronic engineering skills with a study of modern management techniques and their application to engineering projects. Read more

The Electronic Engineering with Management MSc combines the development of advanced electronic engineering skills with a study of modern management techniques and their application to engineering projects. The course will prepare you for a management pathway in a related industry.

Key benefits

  • Located in central London, giving access to major libraries and leading scientific societies including the BCS Chartered Institute for IT, the Institution of Engineering and Technology and the Institution of Mechanical Engineers (IMechE).
  • Opportunities to focus on advanced digital signal processing and communication principles as well as management skills while studying theoretical and practical electronic engineering and management topics.
  • Frequent access to speakers of international repute through seminars and external lectures, enabling you to keep abreast of emerging knowledge in electronic engineering and related fields.
  • The Department of Informatics has areputation for delivering research-led teachingand project supervision from leading experts in their field.

Description

The Electronic Engineering with Management MSc course will prepare you for work in the industry at a relatively advanced level in electronic engineering or management roles. You will study Project Management, Fundamentals of Digital Signal Processing, and Topics on data and signal analysis as well as the Principles of Management. There are also opportunities to explore a broad range of optional modules, allowing you the freedom to develop your study pathway to reflect your interests. You will complete the course in one year, studying September to September and taking a combination of required and optional modules totalling 180 credits, including 60 credits that will come from an individual project of 15000 words.

Course purpose

To provide practical and theoretical knowledge of modern electronic engineering techniques sufficient to prepare students for careers in the field of electronic engineering on a managerial level.

Course format and assessment

Teaching

We use lectures, seminars and group tutorials to deliver most of the modules on the programme. You will also be expected to undertake a significant amount of independent study.

During your work on the Individual Project you will have regular meetings with your project supervisor, but you are expected to spend the majority of your time in self-study to complete the project work.

 Assessment

The primary method of assessment for this course is a combination of written examinations, essays, coursework and individual or group projects and oral presentations. The research project will be assessed through dissertation of around 10,000 words.

Career destinations

Graduates of this programme are excellently placed to progress into management or technical leadership positions in industry.

Sign up for more information. Email now

Have a question about applying to King’s? Email now



Read less
Your programme of study. Renewable energy engineering is in high demand globally as we find alternate methods of energy harvesting to meet our future energy needs and future proof our reliance on hydrocarbons as much as it is possible to do. Read more

Your programme of study

Renewable energy engineering is in high demand globally as we find alternate methods of energy harvesting to meet our future energy needs and future proof our reliance on hydrocarbons as much as it is possible to do. Considerable innovation and improvements are continuous within this field as it is by no means at a stage where society can rely on it to fuel all needs. The sector is interdisciplinary and this programme provides you with a wide range of very useful skills and knowledge to problem solve and progress current renewables and work towards innovation whether that is in a renewables company or as a start up.

You study electrical and electronic engineering pertinent to smart grid, sensing energy use, developing energy harvesting techniques, and renewable energy exchange, plus ability to harvest energy from all of our natural resources including wind, solar, hydro, marine, geothermal, biomass and other newly developing areas.Renewables is definitely an employable sector as governments are now challenged by finite resources coming from traditional areas, climate change and societal concerns about how we harvest energy in the future and our ability to survive climatic issues, population increase and manage work and life.

Courses listed for the programme

Semester 1

  • Electrical Systems for Renewable Energy
  • Renewable Energy 1 (Solar and Geothermal)
  • Renewable Energy 2 (Biomass)
  • Fundamental Concepts in Safety Engineering

Semester 2

  • Renewable Energy 3 (Wind, Marine and Hydro)
  • Energy Conversion and Storage
  • Renewable Energy Integration to Grid
  • Legislation, Planning and Economics

Semester 3

  • Project

Find out more detail by visiting the programme web page

or online delivery

Why study at Aberdeen?

  • You study with industry professionals and industry lead projects to encourage and challenge you in practical application
  • The full supply of energy is covered in the programme from the initial harvesting to the conversion methods required to link to grid
  • You can study your degree at University of Aberdeen or online to fit flexibly with your needs
  • You learn within a lab setting with industry visits and events in a global sector community

Where you study

  • University of Aberdeen
  • 12 Months Full Time
  • September start

• Online option available

International Student Fees 2017/2018

Find out about international fees:

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

 Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs

Other engineering disciplines you may be interested in:



Read less

Show 10 15 30 per page



Cookie Policy    X