• University of Southampton Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Leeds Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

Cranfield University Featured Masters Courses
University of Cambridge Featured Masters Courses
OCAD University Featured Masters Courses
Vlerick Business School Featured Masters Courses
Bath Spa University Featured Masters Courses
0 miles
Engineering×

Masters Degrees in Electronic Engineering

We have 181 Masters Degrees in Electronic Engineering

Masters degrees in Electronic Engineering equip postgraduates with the skills to design, produce and develop devices which conduct electrons for various uses.

Taught MSc courses are typical for the field, though research oriented MRes and MPhil programs may be available at some institutions. Entry requirements normally include an undergraduate degree in a relevant subject such as Mathematics, Computing or Design Technology.

Why study a Masters in Electronic Engineering?

Read more...

  • Engineering×
  • Electronic Engineering×
  • clear all
Showing 1 to 15 of 181
Order by 
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Electronic and Electrical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Electronic and Electrical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

As a student on the Master's course in Electronic and Electrical Engineering, you will develop specialist skills aligned with the College of Engineering’s research interests and reflecting the needs of the electronics industry.

Key Features of MSc in Electronic and Electrical Engineering

The MSc Electronic and Electrical Engineering course covers the ability to apply the knowledge gained in the course creatively and effectively for the benefit of the profession, to plan and execute a programme of work efficiently, and to be able, on your own initiative, to enhance your skills and knowledge as required throughout your career in Electronic and Electrical Engineering.

Students on the Electronic and Electrical Engineering course benefit from the use of industry-standard equipment, such as a scanning tunnelling microscope for atomic scale probing or an hp4124 parameter analyzer for power devices, for simulation, implementation and communication.

During the Electronic and Electrical Engineering course there will be the opportunity to choose and apply suitable prototyping and production methods and components, gain knowledge in constructing and evaluating advanced models of various manufacturing techniques, and be able to differentiate, analyse and discuss various product lifetime management solutions and how they affect different sectors of Electronic and Electrical Engineering industry.

The MSc in Electronic and Electrical Engineering programme is modular in structure. Students must obtain a total of 180 credits to qualify for the degree. This is made up of 120 credits in the taught element (Part One) and a project (Part Two) that is worth 60 credits and culminates in a written dissertation in Electronic and Electrical Engineering. Students on the Electronic and Electrical Engineering course must successfully complete Part One before being allowed to progress to Part Two.

Part-time Delivery mode of MSc in Electronic and Electrical Engineering

The part-time scheme of the MSc in Electronic and Electrical Engineering is a version of the full-time equivalent MSc in Electronic and Electrical Engineering scheme, and as such it means lectures are spread right across each week and you may have lectures across every day. Due to this timetabling format, the College advises that the scheme is likely to suit individuals who are looking to combine this with other commitments (typically family/caring) and who are looking for a less than full-time study option in Electronic and Electrical Engineering.

Those candidates seeking to combine the part-time option with full-time work are unlikely to find the timetable suitable, unless their job is extremely flexible and local to the Bay Campus.

Modules on Electronic and Electrical Engineering

Modules on the MSc Electronic and Electrical Engineering course can vary each year but you could expect to study:

Communication Skills for Research Engineers

Energy and Power Electronics Laboratory

Power Semiconductor Devices

Advanced Power Electronics and Drives

Wide Band-Gap Electronics

Power Generation Systems

Modern Control Systems

Advanced Power Systems

Signals and Systems

Digital Communications

Optical Communications

Probing at the Nanoscale

RF and Microwaves

Wireless Communications

Facilities for Electronic and Electrical Engineering

The new home of the Electronic and Electrical Engineering programme is at the innovative Bay Campus which provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching. In addition the University provides open access IT resources.

Find out more about the facilities used by Electronic and Electrical students at Swansea University, including the electronics lab on our website.

Links with Industry

At Swansea University, Electronic and Electrical Engineering has an active interface with industry and many of our activities are sponsored by companies such as Agilent, Auto Glass, BT and Siemens.

Electronic and Electrical Engineering has a good track record of working with industry both at research level and in linking industry-related work to our postgraduate courses. We also have an industrial advisory board that ensures our taught courses including the MSc in Electronic and Electrical Engineering maintain relevance.

Our research groups work with many major UK, Japanese, European and American multinational companies and numerous small and medium sized enterprises (SMEs) to pioneer research. This activity filters down and influences the project work that is undertaken by all our postgraduate students including those on the MSc in Electronic and Electrical Engineering.

Careers

Electronic and Electrical Engineering graduates find employment in industry, research centres, government or as entrepreneurs in a wide range of careers, from a design and development role for electronic and electrical equipment or as a technological specialist contributing to a multi-disciplinary team in a range of fields, including medicine, travel, business and education.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.

The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.

Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.



Read less
Why Surrey?. This degree mirrors the two-year Masters programme structure that is common in the USA, and is an ideal stepping stone to a PhD or a career in industry. Read more

Why Surrey?

This degree mirrors the two-year Masters programme structure that is common in the USA, and is an ideal stepping stone to a PhD or a career in industry.

The optional professional placement component gives you the opportunity to gain experience from working in industry, which cannot normally be offered by the standard technically-focused one-year Masters programme.

Programme overview

The Electronic Engineering Euromasters programme is designed for electronic engineering graduates and professionals with an interest in gaining further qualifications in advanced, cutting-edge techniques and technologies. Current pathways offered include:

  • Communications Networks and Software
  • RF and Microwave Engineering
  • Mobile Communications Systems
  • Mobile and Satellite Communications
  • Mobile Media Communications
  • Computer Vision, Robotics and Machine Learning
  • Satellite Communications Engineering
  • Electronic Engineering
  • Space Engineering
  • Nanotechnology and Renewable Energy
  • Medical Imaging

Please note that at applicant stage, it is necessary to apply for the Electronic Engineering (Euromasters). If you wish to specialise in one of the other pathways mentioned above, you can adjust your Euromaster programme accordingly on starting the course.

Programme structure

This programme is studied full-time over 24 months. It consists of eight taught modules, two modules based on experimental reflective learning and an extended project.

Please view the website for an example module listing.

Partners

The MSc Euromasters complies with the structure defined by the Bologna Agreement, and thus it is in harmony with the Masters programme formats adhered to in European universities. Consequently, it facilitates student exchanges with our partner universities in the Erasmus Exchange programme.

A number of bilateral partnerships exist with partner institutions at which students can undertake their project. Current partnerships held by the Department include the following:

  • Brno University of Technology, Czech Republic
  • University of Prague, Czech Republic
  • Universität di Bologna, Italy
  • Universität Politècnica de Catalunya, Barcelona, Spain
  • Universita' degli Studi di Napoli Federico II, Italy

Educational aims of the programme

The taught postgraduate degree programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in electronic engineering, physical sciences, mathematics, computing and communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

A graduate from this MSc programme should:

  • Know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin electronic engineering
  • Be able to analyse problems within the field of electronic engineering and find solutions
  • Be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within electronic engineering
  • Be aware of the societal and environmental context of his/her engineering activities
  • Be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
  • Be able to carry out research-and-development investigations
  • Be able to design electronic circuits and electronic/software products and systems

Enhanced capabilities of MSc (Euromasters) graduates:

  • Demonstrate transferable skills such as problem solving, analysis and critical interpretation of data, through the undertaking of the extended 90-credit project
  • Know how to take into account constraints such as environmental and sustainability limitations, health and safety and risk assessment
  • Have gained comprehensive understanding of design processes
  • Understand customer and user needs, including aesthetics, ergonomics and usability
  • Have acquired experience in producing an innovative design
  • Appreciate the need to identify and manage cost drivers
  • Have become familiar with the design process and the methodology of evaluating outcomes
  • Have acquired knowledge and understanding of management and business practices
  • Have gained the ability to evaluate risks, including commercial risks
  • Understand current engineering practice and some appreciation of likely developments
  • Have gained extensive understanding of a wide range of engineering materials/components
  • Understand appropriate codes of practice and industry standards
  • Have become aware of quality issues in the discipline

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Electronic and Electrical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017). Read more

Visit our website for more information on fees, scholarships, postgraduate loans and other funding options to study Electronic and Electrical Engineering at Swansea University - 'Welsh University of the Year 2017' (Times and Sunday Times Good University Guide 2017).

As a world-leader in the research areas of power semiconductor technology and devices, power electronics, nanotechnology and biometrics, and advanced numerical modelling of micro and nanoelectronic devices, Swansea University provides an excellent base for your research as a MSc by Research student in Electronic and Electrical Engineering.

Key Features of MSc by Research Electronic and Electrical Engineering

The Electronic Systems Design Centre (ESDC) is known for its ground-breaking research into Power IC technology, the key technology for more energy efficient electronics. The Centre is also a world-leader in semiconductor device modelling, FEM and compact modelling.

The MSc by Research Electronic and Electrical Engineering has a wide range of subject choice including areas such as:

- Parallel 3D Finite Element Monte Carlo Device Simulations Of Multigate Transistors

- Modelling of Metal-Semiconductor Contacts for the Next Generation of Nanoscale Transistors

- Novel GaN HEMT Switches for Power Management: Device Design, Optimization and Reliability Issues

MSc by Research in Electronic and Electrical Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Facilities

The new home of the Electronic and Electrical Engineering programme is at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Engineering at Swansea University has extensive IT facilities and provides extensive software licenses and packages to support teaching. In addition the University provides open access IT resources.

Students on the Electronic and Electrical Engineering research programme benefit from the Electronic Systems Design Centre (ESDC) facilities.

Links with industry

At Swansea University, Electronic and Electrical Engineering has an active interface with industry and many of our activities are sponsored by companies such as Agilent, Auto Glass, BT and Siemens.

Electronic and Electrical Engineering has a good track record of working with industry both at research level and in linking industry-related work to our postgraduate courses. We also have an industrial advisory board that ensures our taught courses maintain relevance.

Our research groups work with many major UK, Japanese, European and American multinational companies and numerous small and medium sized enterprises (SMEs) to pioneer research. This activity filters down and influences the project work that is undertaken by all our postgraduate students including those on the Electronic and Electrical Engineering.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK

Research Impact ranked 10th in the UK

Research Power (3*/4* Equivalent staff) ranked 10th in the UK

With recent academic appointments strengthening electronics research at the College, the Electronic Systems Design Centre (ESDC) has been re-launched to support these activities.

The Centre aims to represent all major electronics research within the College and to promote the Electrical and Electronics Engineering degree.

Best known for its research in ground-breaking Power IC technology, the key technology for more energy efficient electronics, the Centre is also a world leader in semiconductor device modelling, FEM and compact modelling.



Read less
Our MSc Euromasters programme is designed for electronic engineering students and professionals with an interest in gaining further qualifications in advanced, cutting-edge techniques and technologies in the selected pathway, with enhanced project, as well as training in transferable skills including business awareness and management. Read more

Our MSc Euromasters programme is designed for electronic engineering students and professionals with an interest in gaining further qualifications in advanced, cutting-edge techniques and technologies in the selected pathway, with enhanced project, as well as training in transferable skills including business awareness and management.

We offer numerous Electronic Engineering MScs in more specialised fields of study, from space engineering to mobile communications systems, and if you wish to specialise in one of these pathways you can adjust your course accordingly.

The advanced taught technical content is in sub-disciplines of electronic engineering closely aligned with the internationally-leading research conducted in the four research centres of the Department of Electrical and Electronic Engineering.

Programme structure

This programme is studied full time over 12 months or can be part-time over 48 months. It consists of eight taught modules and a standard project.

Please view the website for a module list

Educational aims of the programme

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant). To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

A graduate from this MSc Programme should:

  • Know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin electronic engineering
  • Be able to analyse problems within the field of electronic engineering and find solutions
  • Be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within electronic engineering
  • Be aware of the societal and environmental context of his/her engineering activities
  • Be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
  • Be able to carry out research-and-development investigations
  • Be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway

Students on the Programme may study (in the first two semesters) any four modules from the pool available to MSc students in semester 1 and any four modules from the pool available to MSc students in semester 2.

This enables the student to freely choose the combination of modules that will best suit their desired personal development and career aspirations.

With the aid of advice from a tutor they will also choose a combination of modules, which will typically be closely related to a specific discipline area being one of space systems, communication systems, wireless technologies, signal processing, integrated circuits or nanotechnology.

Additionally the project dissertation which the student will complete will be one which relates suitably to the area of the taught modules chosen by the student and as such it will be supervised by an academic from an appropriate research centre within the department.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Our MSc in Electronic Engineering offers content that is different to many other similarly-titled courses. It equips you with a skill set that is in demand by industry worldwide, allowing you to maximise your employability by taking a course that is broad in scope but challenging in detail. Read more

About the course

Our MSc in Electronic Engineering offers content that is different to many other similarly-titled courses. It equips you with a skill set that is in demand by industry worldwide, allowing you to maximise your employability by taking a course that is broad in scope but challenging in detail.

Electronic Engineering provides a broad master’s-level study of some of the most important aspects of electronic engineering today. It builds on your undergraduate knowledge of core aspects of electronics, supported by a module in Engineering Business Environment and Energy Policies, which provides you with an understanding of the context of engineering in the early 21st Century.

The course embraces a number of themes in areas identified as being generally under-represented in many other courses, such as power electronics and electromagnetic compatibility, providing you with as wide a range of employment opportunities as possible – whether this is in industry or continuing in research at university.

The course has achieved accreditation by the Institution of Engineering and Technology (IET) to CEng level for the full five year period.

Reasons to study

• Accredited by the Institution of Engineering and Technology (IET) to CEng level
offering a streamlined route to professional registration

• Industry placement opportunity
you can chose to undertake a year-long work placement, gaining valuable experience to enhance your practical and professional skills further

• Graduate employability
Our graduates have gone on to work in a variety of specialist roles in diverse industries, including; embedded systems, electronic design and biomedical monitoring

• Access to superb professional facilities
such as general electronics and assembly, digital electronics and microprocessor engineering, power electronics, control systems and communications engineering

• Study a wide range of specialist modules
course content is regularly reviewed and modules have been specifically developed to address skills gaps in the industry

• Academic and research expertise
benefit from teaching by experienced academic and research-based staff, including those from DMU’s dedicated Centre for Electronic and Communications Engineering, who are actively involved in international leadership roles in the sector.Programme

Course Structure

First semester (September to January)

• Digital Signal Processing
• Physics of Semiconductor Devices
• Engineering Business Environment and Energy Policies
• Control and Instrumentation

Second semester (February to May)

• Embedded Systems
• Research Methods
• Electromagnetic Compatibility and Signal Integrity
• Power Electronics

Third semester (June to September)

This is a major research-based individual project

Optional placement
We offer a great opportunity to boost your career prospects through an optional one year placement as part of your postgraduate studies. We have a dedicated Placement Unit which will help you obtain this. Once on your placement you will be supported by your Visiting Tutor to ensure that you gain maximum benefit from the experience. Placements begin after the taught component of the course has been completed - usually around June - and last for one year. When you return from your work placement you will begin your dissertation.

Teaching and Assessment

Modules are delivered through a mixture of lectures, tutorials and laboratories. The methodology ensures a good balance between theory and practice so that real engineering problems are better understood, using strong theoretical and analytical knowledge translated into practical skills.

Contact and learning hours

You will normally attend 4 hours of timetabled taught sessions each week for each module undertaken during term time, for full time study this would be 16 hours per week during term time. You are expected to undertake around 212 further hours of independent study per 30 credit modules. Alternate study modes and entry points may change the timetabled session available, please contact us for details.

Industry Accreditation

he course is fully accredited by the Institution of Engineering and Technology (IET) which is one of the world’s leading professional societies for the engineering and technology community, with more than 150,000 members in 127 countries.

IET accreditation recognises the high standard of the course and confirms the relevance of its content. In order to achieve IET accreditation the course has had to reach a certain standard in areas such as the course structure, staffing, resourcing, quality assurance, student support and technical depth.

The benefits of an IET accredited course include increased opportunities, being looked on favourably by employers and completing the first step in your journey to achieving professional Chartered Engineer (CEng) status which can be applied for following a period of suitable industrial experience after graduation.

This degree has been accredited by IET under licence from the UK regulator, the Engineering Council. Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

You will have flexible access to our laboratories and workshops which include: electrical and electronic experimental facilities in general electronics and assembly, digital electronics and microprocessor engineering, power electronics, control systems and communications engineering. Each area is equipped with the latest experimental equipment appropriate to the corresponding areas of study and research. An additional CAD design suite provides access to computing facilities with specialist electronics CAD tools including OrCAD and PSpice. A specialised area incorporating a spacious radio frequency reverberation chamber and Faraday cage allows for experimentation in radio frequency engineering and electromagnetics, while our digital design suite is equipped with the latest 8 and 32-bit embedded microprocessor platforms together with high-speed programmable logic development environments. Power generation and conversion, industrial process control and embedded drives are provided while our communications laboratory is additionally equipped for RF engineering.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students:
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
The Masters in Electronics & Electrical Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen speciality of electronics and electrical engineering. Read more
The Masters in Electronics & Electrical Engineering & Management introduces you to contemporary business and management issues while increasing your depth of knowledge in your chosen speciality of electronics and electrical engineering.

Why this programme

◾Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
◾You will be taught jointly by staff from the School of Engineering and the Adam Smith Business School. You will benefit from their combined resources and expertise and from an industry-focused curriculum.
◾If you have an engineering background, but with little management experience and are wanting to develop your knowledge of management while also furthering your knowledge of electronics and electrical engineering, this programme is designed for you.
◾You will gain first-hand experience of managing an engineering project through the integrated system design module, allowing development of skills in project management, quality management and accountancy.
◾You will benefit from access to our outstanding laboratory facilities and interaction with staff at the forefront of research in electronics and electrical engineering.
◾With a 92% overall student satisfaction in the National Student Survey 2015, Electronic and Electrical Engineering at the School of Engineering combines both teaching excellence and a supportive learning environment.
◾This programme has a September and January intake.

Programme structure

There are two semesters of taught material and a summer session working on a project or dissertation. September entry students start with management courses and January entry students with engineering courses.

Semester 1

You will be based in the Business School, developing knowledge and skills of management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.

Core courses

◾Contemporary issues in human resource management
◾Managing creativity and innovation
◾Managing innovative change
◾Marketing management
◾Operations management
◾Project management.

Semester 2

You will study engineering courses, which aim to enhance your group working and project management capability at the same time as improving your depth of knowledge in chosen electronics and electrical engineering subjects.

Core course

◾Integrated systems design project

Optional courses

(a choice of two)
◾Computer communications
◾Electrical energy systems
◾Micro- and nano-technology
◾Microwave and millimetre wave circuit design
◾Microwave electronic and optoelectronic devices
◾Optical communications
◾Real-time embedded programming.

Project or dissertation

You will undertake an individual project or dissertation work in the summer period (May - August). This will give you an opportunity to apply and consolidate your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry. Project and dissertation options are closely linked to staff research interests. September entry students have a choice of management dissertation topics in addition to electronics and electrical engineering projects, and January entry students have a choice of electronics and electrical engineering projects.

Projects

◾To complete the MSc degree you must undertake a project worth 60 credits. This is an integral part of the MSc programme and many have a technical or business focus.
◾The project will integrate subject knowledge and skills that you acquire during the MSc programme.
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Electronic and Electrical Engineering or the Management portion of your degree.
◾Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.
◾Students who start in January must choose an engineering focussed project.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾The programme makes use of the combined resources and complementary expertise of the electronic and electrical engineering and business school staff to deliver a curriculum which is relevant to the needs of industry.
◾If you are looking to advance to a senior position in industry and to perform well at this level, knowledge and understanding of management principles will give you a competitive edge in the jobs market.
◾You, as a graduate of this programme, will be capable of applying the extremely important aspect of management to engineering projects allowing you to gain an advantage in today’s competitive job market and advance to the most senior positions within an engineering organisation.
◾The School of Engineering has extensive contacts with industrial partners who contribute to several of their taught courses, through active teaching, curriculum development, and panel discussion. Recent contributions in Electronic and Electrical Engineering include Freescale.
◾During the programme students have an opportunity to develop and practice relevant professional and transferrable skills, and to meet and learn from employers about working in the electronic and electrical engineering industry.

Career prospects

Career opportunities include software development, chip design, embedded system design, telecommunications, video systems, automation and control, aerospace, development of PC peripherals and FPGA programming, defence, services for the heavy industries, for example electricity generation equipment and renewables plant, etc.

Graduates of this programme have gone on to positions such as:
Project Engineer at TOTAL
Schedule Officer at OSCO SDN BHD
Control and Automation Engineer at an oil and gas company.

Read less
The program aims to form Master graduates with a comprehensive and solid scientific and technological background in Electronics Engineering, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged. Read more

Mission and goals

The program aims to form Master graduates with a comprehensive and solid scientific and technological background in Electronics Engineering, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged.
To meet these training needs, the Master of Science in Electronics Engineering bases its roots on a full spectrum of basic courses (mathematics, classical and modern physics, computer science, signal theory, control and communications, basic electronic circuits) that are prerequisites required from the Bachelor, and focuses on the most advanced disciplines in electronic design (analog and digital electronics, solid state physics and devices, microelectronics, optoelectronics, sensors and electronic instrumentation, communications and control systems) to provide a complete and updated preparation. Upon graduating, students will have developed a “design oriented” mindset and acquired a skill to use engineering tools to design solutions to advanced electronic challenges in scientific and technological fields.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

Career opportunities

Thanks to the deep and solid scientific and technological knowledge provided, Master of Science graduates in Electronics Engineering will be able to hold positions of great responsibility, both at technical and management level, in a wide variety of productive contexts:
- Scientific and technological research centers, national and international, public or private;
- Industries of semiconductors, integrated circuits and in general of electronic components;
- Industries of electronic systems and instrumentation, such as consumer electronics (audio, video, telephone, computers, etc.), optoelectronics, biomedical, etc.;
- Electromechanical industries with high technological content such as aeronautics, transportation, aerospace, energy, robotics and plant automation, etc.;
- Work as a freelance in the design and fabrication of custom electronic systems.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Electronics_Engineering_01.pdf
The Master of Science in Electronics Engineering aims to form graduates with a comprehensive and solid scientific and technological knowledge in the field of Electronics, able to design and to use electronic devices, electronic circuits and electronic systems of any complexity as well as to promote the diffusion of electronic technologies in the fields of human activity where benefits can be envisaged. The course focuses on the most advanced aspects of Electronics (analog and digital integrated circuits design, solid state devices, microelectronics, optoelectronic devices and sensors, electronic instrumentation, communications and control systems) to provide a complete and updated professional preparation. Upon graduating, students will have developed a “design oriented” mindset enabling them to successfully deal with the complex needs of today’s industrial system. They will have also acquired a skill to use engineering tools to design solutions to advanced electronic challenges in scientific and technological fields as well as a maturity to hold positions of great responsibility both at technical and management level. The programme is taught in English.

Required background from Bachelor studies

The Master of Science in Electronics Engineering bases its roots on a full spectrum of knowledge that students are expected to have successfully acquired in their Bachelor degree, like advanced mathematics, classical and modern physics, computer science, signal and communication theory, electric circuits and feedback control, basic electronic devices and analog & digital circuit analysis.

Subjects

- Analog & Digital Integrated Circuit Design
- MEMS and Microsensors
- Electronic Systems
- Electron Devices and Microelectronic Technologies
- Signal recovery and Feedback Control
- Optoelectronic Systems and Photonics Devices
- RF Circuit Design
- Power Electronics
- Semiconductor Radiation Detectors
- FPGA & Microcontroller System Design
- Biochip and Electronics Design for Biomedical Instrumentation

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/electronics-engineering/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The School of Electronic Engineering at Bangor is ranked as 2nd in the UK for research by the UK Government in its most recent Research Assessment Exercise and as such the School houses academics, researchers and students of international standing. Read more
The School of Electronic Engineering at Bangor is ranked as 2nd in the UK for research by the UK Government in its most recent Research Assessment Exercise and as such the School houses academics, researchers and students of international standing. The School offers an MRes programme in Electronic Engineering, with a variety of specialist areas of study available. Each programme is aligned to the research conducted within the School:

MRes Electronic Engineering Optoelectronics
MRes Electronic Engineering Optical Communications
MRes Electronic Engineering Organic Electronics
MRes Electronic Engineering Polymer Electronics
MRes Electronic Engineering Micromachining
MRes Electronic Engineering Nanotechnology
MRes Electronic Engineering VLSI Design
MRes Electronic Engineering Bio-Electronics

The MRes programme provides a dedicated route for high-calibre students who (may have a specific research aim in mind) are ready to carry out independent research leading to PhD level study or who are seeking a stand alone research based qualification suitable for a career in research with transferable skills for graduate employment.
It is the normal expectation that the independent research thesis (120 credits) should be of at a publishable standard in a high quality peer reviewed journal.
The MRes programme is a full-time one year course consisting of 60 taught credits at the beginning of the programme which lead on to the 120 credit thesis.
Each MRes shares the taught element of the course, after successful completion of the taught element students are then able to specialise in a specific subject for their thesis.
The taught provision has four distinct 15 credit modules that concentrate on specific generic skill.

Modelling and Design
Focuses on the simulation and design of electronic devices using an advanced software package – COMSOL. This powerful commercial software package is extremely adaptable and can be used to simulate and design a very wide range of physical systems.

Introduction to Nanotechnology and Microsystems
Focuses on the device fabrication techniques at the nano and micro scale, as well as introducing some of the diagnostic tools available to test the quality and characteristics of devices.

Project Planning
Focuses on the skills required to scope, plan, execute and report the
outcomes of a business and research project.

Mini Project
Focuses on applying the skills and techniques to a mini project, whose theme will form the basis of the substantive research project.
MRes Research Project: After the successful completions of the taught component of the programme, the major individual thesis will be undertaken within the world-leading research groups of the School.
Student Study Support
All students are assigned a designated supervisor, an academic member of staff who will provide formal supervision and support on a daily basis.
The School’s Director of Graduate Studies will ensure that the appropriate level of support and guidance is available for all postgraduate students, and each Course Director is available to help and advise their students as and when required.

Read less
This MSc course in Advanced Electronic and Electrical Engineering is specifically designed for students who wish to pursue a broad programme of advanced studies, whilst also offering a wide range of specialist modules which open a variety of career pathways on graduation. Read more

About the course

This MSc course in Advanced Electronic and Electrical Engineering is specifically designed for students who wish to pursue a broad programme of advanced studies, whilst also offering a wide range of specialist modules which open a variety of career pathways on graduation. The distinctive feature of the MSc is its flexible structure – you are able to customise the content of your programme to meet your academic interests and career aspirations. Core modules are used to ensure there is depth and breadth in key areas of electronic and electrical engineering – notably sensors and instrumentation, control, photonics, sustainable power systems, telecommunications, intelligent systems, medical systems, integrated circuits and embedded systems.

Aims

Having an advanced, broad level of engineering knowledge and skills is a prerequisite for improving your career options in a demanding and dynamic sector. The course allows graduates with an electronic and electrical engineering background to further develop their skills as well as allowing able students from other numerate degree backgrounds to build up strong expertise in this area to complement their original undergraduate studies.
On the MSC programme you will:
Gain the in-depth knowledge you need to resolve new, complex and unusual challenges across a range of electrical and electronics issues.
Develop imagination, initiative and creativity to allow you to problem solve effectively.
Become work ready for a career with leading engineering organisations.

Women in Engineering Scholarships

Both the Government and Brunel University are keen to promote women taking up degrees in Engineering, and we are offering exciting scholarships linked to a bespoke mentoring programme to eligible Home / EU applicants. Please read more about these Women in Engineering Scholarships. http://www.brunel.ac.uk/study/postgraduate-fees-and-funding/funding

Course Content

Core Modules

Project Management
Advanced Analogue Electronics & Photonics
Applied Sensors, Instrumentation and Control
AEEE Group Project
Power Electronics and FACTS

Optional Modules

Choose three modules with at least one from:
Analogue Integrated Circuit Design
Embedded Systems Engineering
DSP for Communications
Intelligent Systems
Project/Dissertation

Special Features

The Electronic and Computer Engineering discipline is one of the largest in the University, with a portfolio of research contracts totalling £7.5 million, and has strong links with industry.
We have a wide range of research groups, each with a complement of academics and research staff and students. The groups are:
Media Communications
Wireless Networks and Communications
Brunel Institute for Power Systems
Electronic Systems
Sensors and Instrumentation
Our laboratories are well equipped with an excellent range of facilities to support the research work and courses. We have comprehensive computing resources in addition to those offered centrally by the University. The discipline is particularly fortunate in having extensive gifts of software and hardware to enable it to undertake far-reaching design projects.
This course is accredited by the Institution of Engineering and Technology (IET).

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Teaching and Assessment

Teaching

This course in Advanced Electronic and Electrical Engineering blends lectures, tutorials, laboratories, individual and group projects with presentations and a major research based dissertation project.
External lectures and research seminars will be used to enhance the student experience and highlight the application of the technologies in industry.

Assessment

You will be assessed on your written assignments, presentations, examinations and a major dissertation project.
The course comprises a blend of lectures, tutorials, laboratories, individual and group projects, presentations and a major research-based dissertation project, with external lectures and research seminars used to enhance your experience and highlight the application of the technologies in industry.

Read less
Electrical and electronic engineering are the foundation of 21st century innovations. from digital communications to robotics systems, from sustainable energy to smart environments. Read more

Electrical and electronic engineering are the foundation of 21st century innovations: from digital communications to robotics systems, from sustainable energy to smart environments. With the MSc Electrical and Electronic Engineering from GCU, you'll develop the skills to work at the forefront of these exciting fields. Through discovery and invention, you can build a better future for humanity and contribute to the common good.

Accredited by the Institution of Engineering and Technology (IET), the programme also meets the Engineering Council's further learning requirements to become a Chartered Engineer. It offers advanced study and ideal preparation so you can enter the next stage of your career. You'll also find professional development opportunities for your continued growth as a successful engineer.

The curriculum offers a comprehensive exploration of electrical and electronic engineering, with particular emphasis on today's fast-growing fields of energy engineering and renewable technologies.

  • Expand your understanding of power systems and instrumentation systems
  • Investigate telecommunications systems and technologies
  • Solidify your personal skills and practise collaborating with a team
  • Connect your learning to the real world with industry case studies and on-the-ground assignments

The MSc Electrical and Electronic Engineering offers two options for specialisation.

  • Digital Systems and Telecommunications - Master communication technologies and systems
  • Mechatronics - Study the electronic control of mechanical and intelligent robotic systems

What you will study

In addition to the knowledge and understanding of electrical and electronic engineering the programme will provide an integrated understanding of power systems, instrumentation systems, telecommunications systems and business operations, reinforced with personal and inter-personal skills.

Electrical Power Systems

The module examines topics relating to electric power generation, transmission, distribution and utilisation. This will include examination of individual power system components such as generators, transformers, overhead lines, underground cables, switchgears and protection systems as well as analysis of load flow and system fault conditions which are required for power system design and operation.

Advanced Industrial Communication Systems

Aims to provide a comprehensive knowledge and understanding of modern industrial communications systems. The operation of a wide range of state-of-the-art advanced communications systems will be studied, e.g. SCADA, satellite systems, digital cellular mobile networks and wireless sensor networks.

Measurement Theories and Devices

The generalised approach to measurement theory and devices adopted in this module will allow students to become familiar with the characteristics of measurement systems in terms of the underlying principles. Students should find this methodology to be a considerable benefit to them when they apply their expertise to solving more complex industrial measurement problems.

Measurement Systems

A range of advanced measurement systems will be studied in depth. Sensors, signal processing, low-level signal measurements, noise reduction methods and appropriate measurement strategies will be applied to industrial and environmental applications. The influence of environmental factors and operation conditions will be considered in relation to the optimisation of the measurement system.

Energy, Audit and Asset Management

Focuses on techniques for auditing and managing the amount of energy used in a range of industrial processes. The module will provide an understanding of the strategies and procedures of energy audit and energy asset management. Using case studies throughout, the module will present energy audit, managing energy usage, factors affecting energy efficiency on plant, and cost benefit analysis of introducing alternative strategies and technologies.

Professional Practice

Focuses on two themes, the first aims to develop student moral autonomy within a professional technology framework. It will examine moral issues and moral decision processes through evaluative enquiry and application of professional codes of conduct specifically in relation to design, information technology and the Internet. The second theme enhances the student's knowledge of concepts, methods and application of technology and environmental management as applied to a new or existing venture.

Renewable Energy Technologies

Renewable energy is regarded as an integral part of a sustainable development strategy. This module concentrates on the renewable energy technologies most likely to succeed in the UK and other temperate countries, i.e. solar energy, energy from waste, wind, hydro and biomass.

Condition Monitoring

Aims to provide an understanding of both Mechanical and Electrical Condition monitoring and associated instrumentation requirements for successful condition monitoring. The main focus in Mechanical Condition Monitoring is vibration monitoring since this is the most popular method of determining the condition and diagnosing faults in rotational machines, although other techniques used in condition monitoring are also covered.

Accreditation

MSc Electrical and Electronic Engineering is accredited by the Institution of Engineering and Technology (IET) and its students meet the UK Engineering Council’s further learning requirements for registration as a Chartered Engineer.

Assessment methods

Students will be assessed via a combination of examinations, coursework, presentations,case study analysis, reports and the final dissertation.

Graduate prospects

Your degree and specialist knowledge will guarantee you excellent career opportunities around the world. You might find work in the electrical power industry, the renewable energy sector, the offshore industry, transport engineering, electronic engineering or telecommunications.



Read less
Electrical and electronic engineering are the foundation of 21st century innovations. from digital communications to robotics systems, from sustainable energy to smart environments. Read more

Electrical and electronic engineering are the foundation of 21st century innovations: from digital communications to robotics systems, from sustainable energy to smart environments. With the MSc Electrical and Electronic Engineering from GCU, you'll develop the skills to work at the forefront of these exciting fields. Through discovery and invention, you can build a better future for humanity and contribute to the common good.

Accredited by the Institution of Engineering and Technology (IET), the programme also meets the Engineering Council's further learning requirements to become a Chartered Engineer. It offers advanced study and ideal preparation so you can enter the next stage of your career. You'll also find professional development opportunities for your continued growth as a successful engineer.

The curriculum offers a comprehensive exploration of electrical and electronic engineering, with particular emphasis on today's fast-growing fields of energy engineering and renewable technologies.

  • Expand your understanding of power systems and instrumentation systems
  • Investigate telecommunications systems and technologies
  • Solidify your personal skills and practise collaborating with a team
  • Connect your learning to the real world with industry case studies and on-the-ground assignments

The MSc Electrical and Electronic Engineering offers two options for specialisation.

  • Digital Systems and Telecommunications - Master communication technologies and systems
  • Mechatronics - Study the electronic control of mechanical and intelligent robotic systems

What you will study

In addition to the knowledge and understanding of electrical and electronic engineering the programme will provide an integrated understanding of power systems, instrumentation systems, telecommunications systems and business operations, reinforced with personal and inter-personal skills.

Electrical Power Systems

The module examines topics relating to electric power generation, transmission, distribution and utilisation. This will include examination of individual power system components such as generators, transformers, overhead lines, underground cables, switchgears and protection systems as well as analysis of load flow and system fault conditions which are required for power system design and operation.

Advanced Industrial Communication Systems

Aims to provide a comprehensive knowledge and understanding of modern industrial communications systems. The operation of a wide range of state-of-the-art advanced communications systems will be studied, e.g. SCADA, satellite systems, digital cellular mobile networks and wireless sensor networks.

Measurement Theories and Devices

The generalised approach to measurement theory and devices adopted in this module will allow students to become familiar with the characteristics of measurement systems in terms of the underlying principles. Students should find this methodology to be a considerable benefit to them when they apply their expertise to solving more complex industrial measurement problems.

Measurement Systems

A range of advanced measurement systems will be studied in depth. Sensors, signal processing, low-level signal measurements, noise reduction methods and appropriate measurement strategies will be applied to industrial and environmental applications. The influence of environmental factors and operation conditions will be considered in relation to the optimisation of the measurement system.

Energy, Audit and Asset Management

Focuses on techniques for auditing and managing the amount of energy used in a range of industrial processes. The module will provide an understanding of the strategies and procedures of energy audit and energy asset management. Using case studies throughout, the module will present energy audit, managing energy usage, factors affecting energy efficiency on plant, and cost benefit analysis of introducing alternative strategies and technologies.

Professional Practice

Focuses on two themes, the first aims to develop student moral autonomy within a professional technology framework. It will examine moral issues and moral decision processes through evaluative enquiry and application of professional codes of conduct specifically in relation to design, information technology and the Internet. The second theme enhances the student's knowledge of concepts, methods and application of technology and environmental management as applied to a new or existing venture.

Renewable Energy Technologies

Renewable energy is regarded as an integral part of a sustainable development strategy. This module concentrates on the renewable energy technologies most likely to succeed in the UK and other temperate countries, i.e. solar energy, energy from waste, wind, hydro and biomass.

Condition Monitoring

Aims to provide an understanding of both Mechanical and Electrical Condition monitoring and associated instrumentation requirements for successful condition monitoring. The main focus in Mechanical Condition Monitoring is vibration monitoring since this is the most popular method of determining the condition and diagnosing faults in rotational machines, although other techniques used in condition monitoring are also covered.

Accreditation

MSc Electrical and Electronic Engineering is accredited by the Institution of Engineering and Technology (IET) and its students meet the UK Engineering Council’s further learning requirements for registration as a Chartered Engineer.

Assessment methods

Students will be assessed via a combination of examinations, coursework, presentations,case study analysis, reports and the final dissertation.

Graduate prospects

Your degree and specialist knowledge will guarantee you excellent career opportunities around the world. You might find work in the electrical power industry, the renewable energy sector, the offshore industry, transport engineering, electronic engineering or telecommunications.



Read less
Our Masters in Electrical and Electronic Engineering is an advanced course designed for engineering graduates to enhance their skills in this area of high technology. Read more
Our Masters in Electrical and Electronic Engineering is an advanced course designed for engineering graduates to enhance their skills in this area of high technology. The ever increasing pace of developments in all areas of electrical and electronic engineering, (and in particular in the systems that are related to energy and the environment), requires engineers with a thorough understanding of operation principles and design methods for various modern electrical and electronic systems. As a graduate you'll be able to not only respond to the latest changes but also to look ahead and help in shaping future developments.

The unique features of this course are that the traditional electrical and electronic engineering subjects are supported by the more modern topics of computer control and machine learning techniques, which are at the forefront of modern electrical and electronic systems in the industry today. This course offers an integrated systems approach to engineering, incorporating modules in advanced power electronics and renewable energy systems, advanced instrumentation and control with signal processing, real-time systems and machine learning techniques.

There is an increasing demand for skilled engineers who are able to design and maintain electrical and electronic systems that are at the forefront of current technologies. These positions cover many industries, hence graduates from this course can expect significantly enhanced job prospects in electrical, electronic as well as systems engineering.

Modules

Digital signal processing
Pattern recognition and machine learning
Advanced Instrumentation and Design
Advanced power electronics and renewable energy systems
Technology evaluation and commercialization
Technical, research and professional skills
MSc engineering project

Professional links

The School has a strong culture of research and extensive research links with industry through consultancy works and Knowledge Transfer Partnerships (KTPs). Teaching content on our courses is closely related to the latest research work.

This course is accredited by the IET as meeting the further learning requirements for CEng registration. The IET is one of the world’s largest engineering institutions with over 167,000 members in 127 countries.

Employability

The acquired skills in computer control and AI techniques offer additional scope for jobs in the design of decision support systems that cross traditional boundaries between engineering and other disciplines. (i.e. medical, finance). Successful graduates will enjoy exciting career opportunities from a wide range of industries, such as electrical energy supply and control, electronics and instrumentation products and services, intelligent systems and automation to include: automotive, aerospace, electrical and electronic consumer products, telecommunications. The students can also pursue PhD studies after completing the course.

Engineering management skills

Engineering employers have expressed their need for engineers with a solid grasp of the business requirements that underpin real engineering projects. Our course incorporates a management-related module focused on entrepreneurship and project management. This management module develops our graduates' commercial awareness and ensures that they have the skill-set valued by industry employers.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

• Direct engagement from employers who come in to interview and talk to students
• Job Shop and on-campus recruitment agencies to help your job search
• Mentoring and work shadowing schemes.

Read less
This Masters' programme extends the technical knowledge acquired on an undergraduate programme in electrical and electronic engineering. Read more
This Masters' programme extends the technical knowledge acquired on an undergraduate programme in electrical and electronic engineering. This MSc covers a wide range of topics and the programme provides a broad subject-specific curriculum with specialism pursued through a major project. Many of the projects reflect the key research interests of the Faculty, such as embedded systems, electronic manufacturing and control and instrumentation. There is the opportunity for projects to be derived from our industrial links, and a number are proposed by students, reflecting their own personal interests or experience.

The aims of the programme are:

- To provide students with an enhanced base of knowledge and current and reflective practice necessary to initiate a career in electrical and electronic engineering at the professional engineer level

- To enhance specialist knowledge in the area of electrical and electronic engineering which build upon studies at the undergraduate level

- To further develop improved skills of independent learning and critical appraisal

- To develop an extensive insight into the industrial applications and requirements

- To develop critical insight of management issues relating to engineering business

- To develop a comprehensive knowledge of leading-edge ICT tools and techniques

- To provide the ability to progress to the next level of study.

Visit the website http://www2.gre.ac.uk/study/courses/pg/electr/elelec

Engineering - Electrical and Electronic

The Department of Electronic, Electrical & Computer Engineering has a focus on innovation, analysis and development within a wide range of advanced engineering technologies. Students develop an understanding of both hardware and software, enabling them to design electronic and electrical systems capable of meeting the exacting demands of a diverse range of applications.

What you'll study

Research Methodology (15 credits)
Internet Electronics (15 credits)
Real-Time Embedded Systems (15 credits)
Mixed Signal Electronics (15 credits)
Design of Embedded System (15 credits)
Design of Electronic System (15 credits)
Strategy and Management (15 credits)
Multiple Technology Integration (15 credits)
Individual Project and Dissertation (60 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Assessment

Students are assessed through examinations, case studies, assignments, practical work and a dissertation.

Career options

Graduates from this programme can pursue careers as electrical and electronic engineers in sectors ranging from communications to control and instrumentation in the process industries.

Find out about the teaching and learning outcomes here - http://www2.gre.ac.uk/__data/assets/pdf_file/0009/643914/MSc-Electrical-and-Electronic-Engineering.pdf

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
This programme is suitable for recent graduates and engineers with experience of microelectronics who have good mathematical ability. Read more
This programme is suitable for recent graduates and engineers with experience of microelectronics who have good mathematical ability. It provides a thorough knowledge of the principles and techniques of this exciting field and has been developed in consultation with industry advisors to ensure it is relevant to today’s workplace.

Modules are block taught so can also be studied separately by working engineers as continuous professional development either to enhance their knowledge in particular subject fields or to widen their portfolio.

Core study areas include ASIC engineering, sensors and actuators, technology and verification of VLSI systems, embedded software development and an individual project.

Optional study areas include communication networks, information theory and coding, solar power, wind power, systems architecture, advanced FPGAs, DSP for software radio, advanced photovoltaics, mobile network technologies and advanced applications.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/electronic-electrical-engineering/

Programme modules

Compulsory Modules:
• ASIC Engineering
• Sensors and Actuators for Control
• Embedded Software Development
• Individual Project

Optional Modules (Choose five):
• Communication Networks
• Fundamentals of Digital Signal Processing
• Solar Power 1
• Wind Power 1
• Communications Channels
• DSP for Software Radio
• Imagineering
• Mobile Networks
• Advanced FPGAs
• Engineering Applications
• Systems Modelling for Control Engineering – new for 2015
• Radio Frequency and Microwave Integrated Circuit Design – new for 2015

Block-taught, individual modules are also highly suitable as CPD for professional engineers needing to fill a skills gap.

How you will learn

Compulsory modules provide a comprehensive understanding of modern microelectronics, embedded electronic systems, emerging technologies and their uses while the individual research project offers the chance to pursue a specialism in-depth. You’ll have access to advanced research knowledge and state of the art laboratories using industry standard software (Altera, Cadence, Mentor, Xilinx) so that you are prepared to enter a wide range of industry sectors on graduation.

- Assessment
Examinations are held in January and May, with coursework and group work assessments throughout the programme. The high practical content of this course is reflected in the inclusion of laboratory assessments and practical examinations. The individual research project is assessed by written report and viva voce in September.

Facilities

You’ll have access to laboratories, industry standard software (Altera, Cadence, Mentor Graphics, Xilinx) and hardware including equipment provided by Texas Instruments.

Careers and further study

Consultation with industry to craft the syllabus ensures that you’ll have an advantage in the job market. The in-depth knowledge acquired can be applied wherever embedded electronic systems are found including mobile phones (4/5G), acoustics, defence, medical instrumentation, radio and satellite communication and networked systems, control engineering, instrumentation, signal processing and telecommunications engineering.

Scholarships and bursaries

Scholarships and bursaries are available each year for UK/EU and international students who meet the criteria for award.

Why choose electronic, electrical and systems engineering at Loughborough?

We develop and nurture the world’s top engineering talent to meet the challenges of an increasingly complex world. All of our Masters programmes are accredited by one or more of the following professional bodies: the IET, IMechE, InstMC, Royal Aeronautical Society and the Energy Institute.

We carefully integrate our research and education programmes in order to support the technical and commercial needs of society and to extend the boundaries of current knowledge.

Consequently, our graduates are highly sought after by industry and commerce worldwide, and our programmes are consistently ranked as excellent in student surveys, including the National Student Survey, and independent assessments.

- Facilities
Our facilities are flexible and serve to enable our research and teaching as well as modest preproduction testing for industry.
Our extensive laboratories allow you the opportunity to gain crucial practical skills and experience in some of the latest electrical and electronic experimental facilities and using industry standard software.

- Research
We are passionate about our research and continually strive to strengthen and stimulate our portfolio. We have traditionally built our expertise around the themes of communications, energy and systems, critical areas where technology and engineering impact on modern life.

- Career prospects
90% of our graduates were in employment and/or further study six months after graduating. They go on to work with companies such as Accenture, BAE Systems, E.ON, ESB International, Hewlett Packard, Mitsubishi, Renewable Energy Systems Ltd, Rolls Royce and Siemens AG.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/electronic-electrical-engineering/

Read less
This course focuses on systems engineering and engineering management, and offers three different system engineering pathways, these are electronic, mechanical and mechatronic engineering. Read more
This course focuses on systems engineering and engineering management, and offers three different system engineering pathways, these are electronic, mechanical and mechatronic engineering.

The 18 month, three semester course can be undertaken as either a single award or a dual award. The single award is studied entirely at the University of Bolton. In the dual award mode, you will normally study at the University of Bolton in semester 1 (October to February) and at South Westphalia University of Applied Sciences, Soest, Germany, in semester 2 (March to July). The third semester (October to February) will be assigned to a project, and this will normally be undertaken at the University of Bolton.

Entry to the course is also available in semester 2 (February) in the case of the dual award scheme, the second semester (to be spent at South Westphalia University of Applied Sciences, Soest Germany) will be undertaken during October to January.

In the dual award mode the successful student will obtain two separate MSc awards, one from each university. In the single award mode the student will receive the award of an MSc from the University of Bolton only.

What you will study

You are required to successfully complete 180 credits of study to gain the MSc. The course comprises eight taught modules, each with a credit value of 15, making a total of 120 taught credits. In each of the two taught semesters, you will study four modules. The third semester is dedicated to a 60 credit individual project. Where possible, the project will involve a work placement or an industrially-related project, based at one of the two universities. During the project phase it is the intention to find, where possible, some form of work experience for all of the students enrolled on the MSc.

Electronic pathway modules

Control Engineering: Intelligent Systems (EEM4010); Advanced Control Technology (EEM4015).

Engineering Management: Business in Engineering (EEM4013); Technical Publications and Presentations (EEM4014); Project Management (EEM4017); Integrated Management (EEM4020).

Electronic Engineering: Microprocessor-based Systems (EEM4016) or Microcontrollers (AMI4655); Signal Processing (EEM4011) or Digital Signal Processing (AMI4622).

Project (EEM5001).

Read less

Show 10 15 30 per page



Cookie Policy    X