• University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
University of Leeds Featured Masters Courses
Cass Business School Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Vlerick Business School Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
0 miles
Engineering×

Masters Degrees in Electromechanical Engineering

We have 18 Masters Degrees in Electromechanical Engineering

Masters degrees in Electromechanical Engineering offer advanced study of electrically-operated mechanical devices.

Taught MSc degrees are typical for the field, though research oriented MRes and MPhil programmes may also be available at some institutions. Entry requirements normally include an undergraduate degree in a relevant subject such as Mechanical Engineering.

Why study a Masters in Electromechanical Engineering?

Read more...

  • Engineering×
  • Electromechanical Engineering×
  • clear all
Showing 1 to 15 of 18
Order by 
What's the Master of Mechanical Engineering all about? . The Master of Science in Engineering. Mechanical Engineering is a general training programme integrating all disciplines of basic sciences, engineering and technology. Read more

What's the Master of Mechanical Engineering all about? 

The Master of Science in Engineering: Mechanical Engineering is a general training programme integrating all disciplines of basic sciences, engineering and technology. An essential element of the mechanical engineering curriculum at KU Leuven is the direct training of each student in a real-life industrial or research setting. Following up on the design assignment in the Bachelor's programme, the Master's programme brings the student in close contact with the industrial reality.

Structure 

Three versions

The Master's programme in Mechanical Engineering has three versions:

  • A Dutch-language version for students who have already obtained a Master's degree of Engineering Technology: Electromechanical Engineering
  • A Dutch-language version for students who have completed their Bachelor's training at our Faculty or at another university with Mechanical Engineering either as a major or as minor.
  • An English-language version which mainly addresses foreign students, and to which admission is granted after evaluation of the application file.

Five modules 

The programme consists of five modules.

  • The first major component is the core module in mechanical engineering.
  • The second major component is one out of five options, which have been put together in a complementary way.

Three generic options 

  • Manufacturing and Management: modern techniques for the design and production of discrete components, CAD and computer integration in production, management techniques, maintenance and logistics of a production company.
  • Mechatronics and Robotics: mechatronics is the discipline in which the synergy of construction, sensing, actuation and control of machinery are concurrently defined and tuned for optimum integration
  • Thermo-technical Sciences: physical principles and analysis, design, construction and operation of combustion engines and thermal and flow machines, cooling machines, power plants, etc.

Two application oriented options

  • Aerospace technology: physical principles, analysis, design, construction, exploitation and operation of aircraft and space systems;
  • Vehicle technology: physical principles, design, analysis and production of cars and ground vehicles and of systems for ground transportation.

Elective courses 

The third and fourth components in the programme structure concern a set of elective courses, to be chosen from a list of technical coursesand from a list of general interest courses.

Master's thesis

The final component is the Master's thesis, which represents 20% of the credits of the entire curriculum.

Strengths

  • The department has a large experimental research laboratory with advanced equipment, to which Master's students have access. FabLab (a "Fabrication Laboratory") is also directly accessible for students.
  • The department has built up an extensive network of companies which recruit a large number of our alumni since many years already, from whom we receive lots of informal feedback on the programme.
  • In addition to their academic teaching and research assignments, several members of the teaching staff also have other responsibilities in advisory boards, in external companies, science & technology committees, etc. and they share that expertise with students.
  • The programme attracts a large number of students.
  • The programme offers students the choice between application oriented options and generic methodology oriented options.
  • Many courses are dealing with contents in which the R&D of the Department has created spin-off companies, and hence can offer very relevant and innovation driven contents.
  • The programme has a clearly structured, extensive and transparent evaluation procedure for Master's theses, involving several complementary assessment views on every single thesis.
  • Several courses are closely linked to top-level research of the lecturers, and they can hence offer up-to-date and advanced contents to the students.

International experience

The Erasmus+ programme gives students the opportunity to complete one or two semesters of their degree at a participating European university. Student exchange agreements are also in place with Japanese and American universities.

Students are also encouraged to learn more about industrial and research internships abroad by contacting our Internship Coordinator. Internships are scheduled in between two course phases of the Master’s programme (in the summer period after the second semester and before the third semester).

These studying abroad opportunities and internships are complemented by the short summer courses offered via the Board of European Students of Technology (BEST) network. This student organisation allows students to follow short courses in the summer period between the second and the third semester. The Faculty of Engineering Science is also member of the international networks CESAER, CLUSTER and T.I.M.E.

You can find more information on this topic on the website of the Faculty

Career perspectives

The field of mechanical engineering is very wide. Mechanical engineers find employment in many industrial sectors thanks to our broad training programme. Demand for this engineering degree on the labour market is very strong and constant. A study by the Royal Flemish Engineers Association, identifies the specific sectors in which graduated mechanical engineers are employed.

  • mechanical engineering: e.g. production machinery, compressed air systems, agricultural machinery
  • metal and non-metal products: a very wide range of products e.g. pressure vessels, piping, suit cases,...
  • off-shore and maritime engineering
  • automation industry
  • vehicle components, such as exhaust systems, drivetrain components and windshield wipers,...
  • development and production of bicycles
  • aircraft components, such as high lift devices, aircraft engines and cockpit display systems
  • building, textile, plastic, paper sector
  • electrical industry
  • chemical industry
  • environmental engineering and waste management
  • energy sector
  • financial, banking and insurance sector
  • communications sector
  • transportation sector: infrastructure and exploitation and maintenance of rolling stock
  • software development and vendors
  • technical and management consulting: large companies and small offices
  • education and research
  • technical and management functions in the public sector


Read less
The programme is co-organised by Vrije Universiteit Brussel (VUB) and Universite Libre de Bruxelles (ULB), offering students the possibility to obtain a double master's degree at the end of the programme. Read more

About the programme

The programme is co-organised by Vrije Universiteit Brussel (VUB) and Universite Libre de Bruxelles (ULB), offering students the possibility to obtain a double master's degree at the end of the programme. The first year of courses is taught at the ULB Engineering Campus in Brussels, while the second year is taught at VUB.

This Master offers:

- A broad range of scientific knowledge combining a multidisciplinary engineering training with an in-depth specialisation in the chosen major.
- Students the necessary tools to begin a productive career in engineering practice or research.
- Close contact with highly qualified academic staff and specialists from industry and research institutes.
- The best international context you can think of in Europe. Study in Brussels, the capital of Europe!
- A gateway to a challenging and exciting future.
- Students the opportunity to become an engineer with scientific and technological efficiency

The program trains engineers with scientific and technological efficiency. The program is academic, meaning that it is characterized by close links to scientific research in the related fields as well as the profession.

Students must obtain a scientific balance between thorough, critical knowledge and practical skills, with emphasis on independence, creativity and inventiveness.

The academically educated engineer must be eager to study throughout his/her career in order to be able to assimilate the results of research and learn new skills. He/she must be able to solve problems. In addition, he/she should have both social and language skills.

Specific objectives

- To train engineers specialized in machine construction, the automobile industry, thermal installations, aircraft construction, consulting firms, application of machinery, maintenance of chemical, petrochemical and nuclear companies, production, distribution and application of electric energy (including power electronics and maintenance of industrial installations)
- To specialize in electromechanical engineering while maintaining a broad-based education by balancing the specialization with more general subjects.

Choose between four majors

This master enables students to build a broad ranging scientific knowledge combined with a multidisciplinary engineering traiwithning an in-depth specialization in the chosen major: Aeronautics, Energy, Mechatronics-Construction or Vehicle Technology and Transport.

Aeronautics: students will become engineers who are competent in the many aspects of cutting-edge technologies in the aeronautics sector and their spin-off possibilities in other industrial sectors. The programme includes all aspects of construction, exploitation and maintenance of aircraft and spacecraft.

Energy: students will become engineers who are specifically well-acquainted with systems for production, transport distribution and electronic conversion of energy, as well as its transformation into mechanical energy. Sustainable energy, rational use of energy and energy management are also covered.

Mechatronics-Construction: students will become engineers who are able to optimally design, produce, maintain and apply complex electromechanical systems..

Vehicle Technology and Transport: students will become engineers who can design systems in which transportation of people and goods are central, with special attention to innovative, environmentally friendly vehicles

Curriculum

Available on http://www.vub.ac.be/en/study/electromechanical-engineering/programme

Read less
What is the Master in Electromechanical Engineering Technology all about?. Mechanical design and energy conversion are the cornerstones of this programme. Read more

What is the Master in Electromechanical Engineering Technology all about?

Mechanical design and energy conversion are the cornerstones of this programme. Mechanical design begins with an idea, which is then shaped in a graphical design and executed into a finished product through a choice of materials, simulation and production techniques. Energy conversion is aimed at all aspects of energy efficiency in this process and ranges from electrical controls and automation to thermal power plants, combustion engines, etc. 

You specialise in one of following options: 

  • Intelligent Manufacturing - The issues covered in this option include the latest production techniques, the way production systems operate and the intrinsic relationship between production and other business processes. 
  • Intelligent Mechanics - This option relates to designing, developing and optimizing automated mechanical machines. 
  • Intelligent Mobility - This application area is very diverse and deals with the sustainable, applying smart solutions. 
  • Clinical Engineering - This option gives insight in the domain of medical technology. Topics are surgical robotics and medical equipment in general.

Add an in-company or project-based learning experience to your master's programme

You can augment your master's programme with the Postgraduate Programme Innovation and Entrepreneurship in Engineering. This programme is made up by a multifaceted learning experience in and with a company, with an innovative engineering challenge as the central assignment. It is carried out in a team setting, has a distinct international dimension, and usually requires a multidisciplinary approach. Entrepreneurs and students alike are encouraged to innovate, transfer knowledge and grow. It is a unique cross-fertilisation between company and classroom.

International Campus Group T

The Faculty of Engineering Technology maintains close ties with universities around the world. At Campus Group T, more than 20% of the engineering students are international students. They represent 65 different nationalities from all over the world. This international network extends not just to Europe, but also to China, Southeast Asia, India, Ethiopia and beyond.

Campus Group T is the only campus of the faculty who offers all the degree programmes in the business language par excellence: English. The language is ubiquitous both inside and outside the classroom. If you've mastered English, you feel right at home. And if you want to explore more of the world, you can do part of your training at a university outside Belgium as an exchange student.

Objectives

This master's programme brings students to the advanced level of knowledge and skills that is associated with scientific work in the broad sense, and more particularly to those areas of the engineering sciences that are related to electromechanics. They have the necessary creativity to employ technological and scientific principles for the qualitative design, development and production of devices, machines and their individual parts, as well as for the optimization and automation of industrial processes. They are capable of conducting scientific research, in which they take into account economic conditions, managerial implications and ethical aspects. The students are trained to function in a team and take on responsibility.

Degree holders are able to apply the acquired scientific knowledge autonomously and in a broad social context. They possess the necessary organisational skills to hold executive positions.

Career paths

Depending on your interest, your engineering profile can range from technological expert to company manager.



Read less
This is an MSc course in Embedded Systems with contributions from the fields of mechatronics and robotics. Embedded systems are microprocessor-based systems within a larger mechanical or electrical system that performs a dedicated function or task. Read more
This is an MSc course in Embedded Systems with contributions from the fields of mechatronics and robotics.

Embedded systems are microprocessor-based systems within a larger mechanical or electrical system that performs a dedicated function or task. They encompass a wide variety of products ranging from small mobile phones to large process automation installations. A practicing engineer in the field of embedded systems needs to have a specialised expertise in more than one of the engineering subjects of this multi-discipline subject.

Our MSc is tailored to provide you with advanced learning in microprocessor systems that are at the heart of embedded systems, with additional contributions from the fields of mechatronics and robotics. This approach reflects the needs of the industry and is well supported by the range in expertise we have in our Department.

The Department of Engineering and Design covers the full gamete of teaching in electronic, telecommunication and computer networks engineering as well as mechanical engineering and product design.

Our academics are a cohesive group of highly skilled lecturers, practitioners and researchers. You'll benefit from your choice of supervisors to support a wide range of modern and multi-discipline Masters-level projects. Our teaching is supported by well-equipped laboratory workshops, using mostly the latest hardware and software available in universities.

Modules

In each of the semesters 1 and 2 you will be required to take two core and one optional module from the lists below:

Semester 1:

•Robotics (20 credits)
• Microprocessors and Control (20 credits)

Optional modules (Semester 1):

• Pattern recognition and machine learning (20 credits)
• Technical, research and professional skills (20 credits)
• Advanced Instrumentation and Design (20 credits)
• Electrical Energy Converters and Drives (20 credits)

Semester 2:

• Digital Signal Processing and Real Time Systems (20 credits)
• Mechatronics and Embedded System Design (20 credits)

Optional modules (Semester 2):

• Electromechanical systems and manufacturing technology (20 credits)
• Technology evaluation and commercialisation (20 credits)
• Cloud Computing (20 credits)
• E-Business Applications (20 credits)

Semester 3

•MSc project (60 credits)

Professional links

The School of Engineering at LSBU has a strong culture of research, extensive research links with industry through consultancy works and Knowledge Transfer Partnerships (KTPs), and teaching content is closely related to the latest research findings in the field.

History and expertise

A strong research tradition and our industrial links has helped shaped the course design, content selection, course delivery and project supervision.

The Department of Engineering and Design has a strong Mechatronics, Robotics and Non-destructive testing research group with a wide national and international profile. This is in addition to excellent research in many areas of mechanical engineering, electrical engineering, product design, computer network and telecommunications engineering.

Employability

The course has been designed to help to meet the needs of industry. How much your employability will increase, will depend on your background and the personal contribution you make to your development whilst studying on the course.

Benefits for new graduates

If you are a new graduate in electronic or computer engineering then you benefit from the further advanced topics presented. You'll get an opportunity to cut your teeth on a challenging MSc Project, which will demonstrate your abilities to the potential employers. Alternatively, you could also pursue PhD studies after completing the course.

Benefits of returning to University

If you are returning to University after a period of working in industry, then you'll be able to update yourself with the recent technological progress in the field. You'll gain confidence in your ability to perform at your best and stand a better chance to seek challenging work opportunities. If you are already working in the field, the MSc qualification will enhance your status which will may help with your promotion.

Employment links

We are continually developing links with employers who are interested to provide internship to our students . Examples of this can include small VHDL and DSP designs, ARM based designs, industrial design or correlation research. These projects can be performed as part of the curriculum or as part of a research project.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

• Direct engagement from employers who come in to interview and talk to students
• Job Shop and on-campus recruitment agencies to help your job search
• Mentoring and work shadowing schemes.

Read less
Fields of research include. Read more

Program Overview

Fields of research include: acoustics; aerodynamics and fluid mechanics; automatic controls; robotics and industrial automation; energy conversion, combustion, thermodynamics and heat transfer; vibrations and space dynamics; solid mechanics; bioengineering and biomechanics; design and manufacturing processes; industrial engineering, fuel cells, micro-electromechanical systems, mechatronics, and CAD; and naval architecture. Applicants for graduate degrees may be considered for appointment as research assistants, teaching assistants, or markers in the Department. Courses are selected in consultation with faculty.

Quick Facts

- Degree: Master of Applied Science
- Specialization: Mechanical Engineering
- Subject: Engineering
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Applied Science

Program Requirements

The Master of Applied Science (M.A.Sc.) is a graduate-level study program that includes a research investigation and the writing of a thesis. Requirements for the M.A.Sc. include satisfactory completion of 30 credits of graduate-level courses (up to 6 credits may be at the undergraduate level in courses numbered 300 to 499), original research under the supervision of a faculty member, and a thesis. The thesis is assigned 6 to 12 credits and is counted as part of the coursework requirement. A typical completion time for the M.A.Sc. is 24 months. Subject to satisfactory progress and acceptance by a faculty supervisor, a successful M.A.Sc. graduate may transfer to a course of studies leading to the Ph.D.

Read less
The Master of Engineering (M.Eng.) program is suited to students who wish to pursue their engineering education in a preferred area of specialization beyond the undergraduate level, but who do not wish to pursue a thesis research program. Read more

Master of Engineering

The Master of Engineering (M.Eng.) program is suited to students who wish to pursue their engineering education in a preferred area of specialization beyond the undergraduate level, but who do not wish to pursue a thesis research program.

Mechatronics Design combines the fields of mechanical and electrical engineering in the study of integrated modeling, analysis, design and manufacture of electromechanical and mechatronic systems. These principles can be applied in the transportation, manufacturing and production engineering, biomedical and healthcare technologies, energy, aviation and aerospace, automated office and household technologies, and computer systems industries.

Students must have a B.A.Sc./Mechatronics or equivalent to enroll the M.Eng. program – Mechatronics option.

Quick Facts

- Degree: Master of Engineering
- Specialization: Mechatronics Design
- Subject: Engineering
- Mode of delivery: On campus
- Program components: Coursework only
- Faculty: Faculty of Applied Science

Read less
Our MSc in Electronic Engineering offers content that is different to many other similarly-titled courses. It equips you with a skill set that is in demand by industry worldwide, allowing you to maximise your employability by taking a course that is broad in scope but challenging in detail. Read more

About the course

Our MSc in Electronic Engineering offers content that is different to many other similarly-titled courses. It equips you with a skill set that is in demand by industry worldwide, allowing you to maximise your employability by taking a course that is broad in scope but challenging in detail.

Electronic Engineering provides a broad master’s-level study of some of the most important aspects of electronic engineering today. It builds on your undergraduate knowledge of core aspects of electronics, supported by a module in Engineering Business Environment and Energy Policies, which provides you with an understanding of the context of engineering in the early 21st Century.

The course embraces a number of themes in areas identified as being generally under-represented in many other courses, such as power electronics and electromagnetic compatibility, providing you with as wide a range of employment opportunities as possible – whether this is in industry or continuing in research at university.

The course has achieved accreditation by the Institution of Engineering and Technology (IET) to CEng level for the full five year period.

Reasons to study

• Accredited by the Institution of Engineering and Technology (IET) to CEng level
offering a streamlined route to professional registration

• Industry placement opportunity
you can chose to undertake a year-long work placement, gaining valuable experience to enhance your practical and professional skills further

• Graduate employability
Our graduates have gone on to work in a variety of specialist roles in diverse industries, including; embedded systems, electronic design and biomedical monitoring

• Access to superb professional facilities
such as general electronics and assembly, digital electronics and microprocessor engineering, power electronics, control systems and communications engineering

• Study a wide range of specialist modules
course content is regularly reviewed and modules have been specifically developed to address skills gaps in the industry

• Academic and research expertise
benefit from teaching by experienced academic and research-based staff, including those from DMU’s dedicated Centre for Electronic and Communications Engineering, who are actively involved in international leadership roles in the sector.Programme

Course Structure

First semester (September to January)

• Digital Signal Processing
• Physics of Semiconductor Devices
• Engineering Business Environment and Energy Policies
• Control and Instrumentation

Second semester (February to May)

• Embedded Systems
• Research Methods
• Electromagnetic Compatibility and Signal Integrity
• Power Electronics

Third semester (June to September)

This is a major research-based individual project

Optional placement
We offer a great opportunity to boost your career prospects through an optional one year placement as part of your postgraduate studies. We have a dedicated Placement Unit which will help you obtain this. Once on your placement you will be supported by your Visiting Tutor to ensure that you gain maximum benefit from the experience. Placements begin after the taught component of the course has been completed - usually around June - and last for one year. When you return from your work placement you will begin your dissertation.

Teaching and Assessment

Modules are delivered through a mixture of lectures, tutorials and laboratories. The methodology ensures a good balance between theory and practice so that real engineering problems are better understood, using strong theoretical and analytical knowledge translated into practical skills.

Contact and learning hours

You will normally attend 4 hours of timetabled taught sessions each week for each module undertaken during term time, for full time study this would be 16 hours per week during term time. You are expected to undertake around 212 further hours of independent study per 30 credit modules. Alternate study modes and entry points may change the timetabled session available, please contact us for details.

Industry Accreditation

he course is fully accredited by the Institution of Engineering and Technology (IET) which is one of the world’s leading professional societies for the engineering and technology community, with more than 150,000 members in 127 countries.

IET accreditation recognises the high standard of the course and confirms the relevance of its content. In order to achieve IET accreditation the course has had to reach a certain standard in areas such as the course structure, staffing, resourcing, quality assurance, student support and technical depth.

The benefits of an IET accredited course include increased opportunities, being looked on favourably by employers and completing the first step in your journey to achieving professional Chartered Engineer (CEng) status which can be applied for following a period of suitable industrial experience after graduation.

This degree has been accredited by IET under licence from the UK regulator, the Engineering Council. Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

You will have flexible access to our laboratories and workshops which include: electrical and electronic experimental facilities in general electronics and assembly, digital electronics and microprocessor engineering, power electronics, control systems and communications engineering. Each area is equipped with the latest experimental equipment appropriate to the corresponding areas of study and research. An additional CAD design suite provides access to computing facilities with specialist electronics CAD tools including OrCAD and PSpice. A specialised area incorporating a spacious radio frequency reverberation chamber and Faraday cage allows for experimentation in radio frequency engineering and electromagnetics, while our digital design suite is equipped with the latest 8 and 32-bit embedded microprocessor platforms together with high-speed programmable logic development environments. Power generation and conversion, industrial process control and embedded drives are provided while our communications laboratory is additionally equipped for RF engineering.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students:
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
The Mechanical Engineering MSc builds on your undergraduate knowledge base through a number of advanced modules in core subject areas. Read more

About the course

The Mechanical Engineering MSc builds on your undergraduate knowledge base through a number of advanced modules in core subject areas. These are supported by modules in business and electromechanics, providing you with an insight of the engineering business environment and broadening your understanding of other engineering disciplines.

The course provides you with an understanding of the methodology used in research and an awareness of the numerical techniques underpinning the tools employed in mechanical and thermal analysis.

Topicality and direct application to the needs of society are also catered for, providing you with an understanding of the environmental impact of human activities and energy consumption and the role of the mechanical engineer in seeking appropriate solutions.

Course Structure

Modules

First semester (September to January)

• Electromechanics
• Engineering Business Environment and Energy Studies
• Numerical Techniques in Engineering
• Advanced Thermodynamics and Heat Transfer

Second semester (February to May)

• Advanced Solid Mechanics
• Research Methods
• Engineering Systems Dynamics and Control
• Advanced Materials and Design

Third semester (June to September)

• This is a major research-based individual project

Optional placement
We offer a great opportunity to boost your career prospects through an optional one year placement as part of your postgraduate studies. We have a dedicated Placement Unit which will help you obtain this. Once on your placement you will be supported by your Visiting Tutor to ensure that you gain maximum benefit from the experience. Placements begin after the taught component of the course has been completed - usually around June - and last for one year. When you return from your work placement you will begin your dissertation.

Teaching and assessment

The modules are delivered through a mixture of lectures, tutorials and laboratories. This ensures a good balance between theory and practice so that real engineering problems are better understood through an underpinning of strong theoretical and analytical knowledge translated into practical skills.

Contact and learning hours

You will normally attend four hours of timetabled taught sessions each week for each module undertaken during term time; for full-time study this would be 16 hours per week during term time. You can expect to also undertake around 24 further hours of independent study and assignments as required per week.

Academic expertise

Mechanical Engineering teaching staff are active in several important research areas, including: Combustion modelling and energy conversion research using both experimental and CFD methods to analyse efficiencies and emissions of energy systems Computational rheology, non- Newtonian biofluid simulations, viscoelastic effects on lubrication thin film flows Surface engineering via surface modification of materials for enhancement of mechanical, tribological and chemical properties.

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:
http://www.dmu.ac.uk/study/postgraduate-study/entry-criteria-and-how-to-apply/entry-criteria-and-how-to-apply.aspx

Funding for postgraduate students
http://www.dmu.ac.uk/study/postgraduate-study/postgraduate-funding-2017-18/postgraduate-funding-2017-18.aspx

Read less
If you are a graduate in engineering or a related science subject who wishes to progress to a technical project management position, then this is the course for you. Read more
If you are a graduate in engineering or a related science subject who wishes to progress to a technical project management position, then this is the course for you. It has been developed in consultation with industry and is supported by our internationally renowned expert staff and the state of the art facilities based in our Centre for Precision Technologies.

Our modern facilities include an impressive range of professionally equipped laboratories for control, electrical, electronic and communications projects. There are also a computer numerical control (CNC) machine tool facility and metrology laboratory for aspiring engineers wishing to undertake projects related to manufacturing control. In addition, our computing laboratories are equipped with industry standard software for measurement and control and for computer aided engineering applications - all with high speed internet access.

With our support you will develop the practical skills and expert knowledge required to succeed in roles in technical design, development and project management in the areas of controls systems and instrumentation; improving your technical effectiveness and preparing you for roles in management.

Read less
Please click here to view website www.itim.unige.it/mipet. Read more
Please click here to view website http://www.itim.unige.it/mipet

MIPET (Master in Industrial Plant Engineering and Technologies) is a One-year Degree Program organized in Genoa University and focusing on preparing new generations of top quality technical experts for Process Engineering, Industrial Plant Main Contractors, Power & Energy Industry, Iron & Steel Sector, Plant Equipment Suppliers as well as Construction Companies.

MIPET main aim it is to satisfy the expectation from Leading Industries in term of high technical skills and excellence capabilities in Industrial Plants and Engineering. The Master Program is directed by Polytechnic School - Faculty of Engineering in strong cooperation with leading industries and major companies operating in these industrial sectors; this approach guarantees the relevance and effectiveness of the initiative in the international scenario.

In fact this project is part of a large initiative devoted to develop excellence in Industrial Plant Engineering through the synergy between the expertise of Genoa University Engineering Faculty and Top Level Companies with long traditions that are leading this Area Nationally and Internationally in term of turnovers, size, processes and products complexity as well as know how and technical background and skills.
MIPET is devoted to create System and Process Engineers, Technical Coordinators operating effectively in Project Teams in Global Engineering and Construction. This Master provides deep technical skills in Industrial Plants as well as the capability to get the whole overview on the project and its technical aspects along the whole project phases: Offering, Engineering, Purchasing, Construction and Erection and Commissioning.

At the completion of the Master Program students develop transversal capabilities in all the critical areas (mechanics, high power, electronics , automation, computation, management, security and safety, materials, processes and components) combined with their specialization expertise in specific Plant Sectors (i.e. Power Equipment, Iron & Steel) as well as with the Company Internship Experiences.

More details can be found here: http://www.itim.unige.it/mipet

Read less
Enhance your knowledge and skills in the rapidly developing field of additive manufacturing (also known as 3D printing) and advanced manufacturing technologies with this MSc course. Read more
Enhance your knowledge and skills in the rapidly developing field of additive manufacturing (also known as 3D printing) and advanced manufacturing technologies with this MSc course. It's aimed at both new graduates and professional mechanical engineers.

The course has been developed to meet the demands of industry and will expose you to cutting-edge manufacturing techniques and applications. You’ll gain practical experience in research, including training in research methods and management.

There are specialist modules in additive manufacturing, state-of-the-art manufacturing technologies, materials and a broad range of modules in advanced mechanical engineering. You'll carry out a research project on additive manufacturing, working with cutting-edge technologies and relevant industrial sectors. Further optional modules are available, allowing you to customise the course based on your interests or career aspirations.

The investigative MSc project takes place within our internationally renowned Centre for Advanced Additive Manufacturing (AdAM) under the guidance of world-leading academics in this field.

The AdAM centre, with its state-of-the art facilities, carries out research in collaboration with industry in areas of process, material and design for aerospace, automotive and medical sectors.

Core modules

Information Management
Additive Manufacturing – Principles and Applications
Additive Manufacturing – Principles and Applications 2
Research Project

Optional modules

Design Innovation Toolbox
Engineering Marketable Solutions: Make a Change!
Aerospace Metals
Advanced Materials Manufacturing: Part I
Engineering Composite Materials
Signal Processing and Instrumentation
Condition Monitoring
Advanced Finite Element Modelling
Advanced Topics in Machining

Teaching

Lectures
Tutorials and example classes
Interactive workshops
Group presentation sessions
Individual research project

Assessment

Exams
Essays
Oral and poster presentations
Research project report

Read less
The Placement Course for Professional Engineers in the Construction Infrastructure and Oil & Gas sectors aims to train engineers to become managers in Construction and Oil & Gas Companies who are able to manage business processes and construction site procedures. Read more
The Placement Course for Professional Engineers in the Construction Infrastructure and Oil & Gas sectors aims to train engineers to become managers in Construction and Oil & Gas Companies who are able to manage business processes and construction site procedures.

The Placement Course for Professional Engineers Construction and Oil & Gas Sectors is accredited by CPD Certification Service in London. Accredited CPD training means the learning activity has reached the required Professional Development standards and benchmarks. The learning value has been scrutinised to ensure integrity and quality. The CPD Certification Service provides recognised independent CPD accreditation compatible with global CPD requirements.

The Course is delivered with the support of Multinational Companies operating worldwide

Dirextra has more than 2,300 alumni engineers who have worked on the construction of major infrastructures around the world. There is no growth without engineers.

6 months (1000 hours) of training on a Construction or Oil & Gas Site. Accommodation will be provided by the host company. (not applicable to positions in the office headquarters).

Kick-start your career with a programme in Construction and Oil & Gas. Dirextra is a leader in the field of Construction Infrastructure, Oil & Gas and Engineering education.

EMPLOYMENT OPPORTUNITIES
The programme is supported by large Oil & Gas and Construction Infrastructure Companies operating all over the world aiming to hire young engineers.
100% successful placement in previous cohorts.

Next editions
27th cohort will start in Rome on 26 Sep 2017
28th cohort will start in Manchester on 26 Feb 2018

Fees and Financing
Tuition fees £ 12,000. (pounds).
Payment can be made in the following ways:
-in total at the time of registration (discount of £ 1,000 (pounds)
-in 4 installments
The Construction and Oil & Gas Companies sponsoring our Programme grant Scholarships to cover part of Tuition Fees.
6 scholarship up to 40% and 4 scholarship up to 30%.

Scholarships are limited students who register in advance will receive a higher amount based on selection performance.
Selection will be determined by qualifications and psychometric tests and interviews.

Programme and Certification acquired
Organization of Construction Companies and Strategies;Organization of Oil&Gas Companies and Strategies;Administration, Management Control and Finance;Tenders Department;Contract Management: from signature to testing;Standard Contract Forms and Claims;Procurement and Risk Management;Construction Project Management;Planner Primavera P6;Managerial Accounting;Cost Control;Technical Management of Construction Site;Management Control and Budget;Quality Management System of Construction Sites;Environmental Management of Construction Sites;Health and Safety Management of Construction Sites;Management of Claims, Litigation and Arbitration;Drilling Engineering of Wells;People Management;Plant Production and Processing of Hydrocarbons;Excavated Rocks and Fluids in the Subsurface.
Certification Acquired:
1. Master’s Degree in Professional Engineers Construction and Oil&Gas Sector
2. Mini Master Construction Planner: Oracle Primavera P6 EPPM. 24 PMI Contacts Hours (24h)
3. Mini Master Construction Cost Control. 16 PMI Contacts Hours (16h)
4. Construction Business English Course (40h).
5. Construction CAPM Course. 40 PMI Contacts Hours (40h)

Read less
Your programme of study. Read more

Your programme of study

Have you ever wanted to invent something mechanical, prevent environmental damage to a building from floods, fire, explosions, landslides and other natural disasters, understand risks and reliability across buildings, renewables, and other areas? Do you want to improve quality of life across environmental remediation, farming, smart grid, green technology, food production, housing, transportation, safety, security, healthcare and water? Do you find it fascinating to try to make things work from what you have available? There will be plenty of major challenges to get involved with in the coming years crossing over into Nano technologies, advanced materials, electronic printing, grapheme technologies, wearable's, 3d printing, renewables and recycling and biotechnologies. Technology now means that you can design and engineer from anywhere in the world, including your home. Advanced Mechanical Engineering looks at computational mechanics, response to materials and reliability engineering. The Victorians set up some of the most advanced mechanical engineering of our times and in many ways they were the biggest mechanical engineering innovators ever.

This programme specialises in mechanical engineering so you are becoming proficient in designing anything that has background moving parts to allow it to work such as engines, motor driven devices and the effects of nature on mechanical objects and their ability to perform. You also look at how material composition can alter performance issues and provide new innovative methods to solve challenges in every day life and natural and other risks to machinery in all situations.  Your employment options are very varied, you may want to work within consumer goods to design and improve everyday objects like white goods, or you may like to be involved in very large scale hydro electric and power driving machinery in energy , manufacturing or large scale developments, or you may decide to get involved in innovation and enterprise yourself.

Courses listed for the programme

SEMESTER 1

  • Compulsory Courses
  • Computational Fluid Dynamics
  • Numerical Simulation of Waves
  • Advanced Composite Materials

Optional Courses

  • Fire and Explosion Engineering
  • Structural Dynamics

SEMESTER 2

  • Compulsory Courses
  • Finite Element Methods
  • Mathematical Optimisation
  • Engineering Risk and Reliability Analysis

Optional Courses

  • Project Management
  • Risers Systems Hydrodynamics
  • Renewable Energy 3 (Wind, Marine and Hydro

SEMESTER 3

  • Project

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • Your skills and knowledge can have huge application potential within newly disruptive industries affecting life and work
  • You can improve employability in Aerospace, Marine, Defences, Transport Systems and Vehicles
  • Some of the knowledge you build directly relates to industries in Aberdeen such as the energy industry.
  • Mechanical Engineering cuts into high growth Industry 4.0 and IOT related areas across many areas disrupted by climate, population growth, and quality of life
  • We ensure close links with industries to attend industry events, visits and teaching by professionals from the industry
  • Graduates are very successful and many work in senior industry roles

Where you study

  • University of Aberdeen
  • 12 Months Full Time
  • September start

International Student Fees 2017/2018

Find out about international fees:

  • International
  • EU and Scotland
  • Other UK

Find out more about fees on the programme page

*Please be advised that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page and the latest postgraduate opportunities

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about https://abdn.ac.uk/study/student-life" target="_blank">living in Aberdeen and https://www.abdn.ac.uk/study/international/finance.php" target="_blank">living costs

Other engineering disciplines you may be interested in:



Read less
The main objective of this programme is to produce graduates with the ability to plan, execute and produce reports on technical projects for industry and academia. Read more
The main objective of this programme is to produce graduates with the ability to plan, execute and produce reports on technical projects for industry and academia. The programme is composed of taught units, assessed by examination and coursework submission, and a major research project supervised by academic staff in the department.

The facilities and expertise in the Department of Mechanical Engineering have earned us consistently high rankings in university league tables and an internationally excellent rating for research.

Programme structure

Core units

Four mandatory units, each worth 10 credits, are designed to develop your skills of investigation, system analysis and project planning.

- Finite Element Analysis
- Literature Review
- Power Generation for the 22nd Century
- Research Project Proposal

You will be able to choose eight optional 10-credit units from the list below at the start of the programme. The current options list is as follows:

Design and Manufacture

- Virtual Product Development
- Robotic Systems
- Biomechanics

Engineering and the Environment

- Environmental Thermalhydraulics

Materials

- Ultrasonic Non-Destructive Testing
- Non-linear Behaviour of Materials
- Advanced Composites Analysis

Dynamics

- Advanced Dynamics
- Systems and Control Engineering 4
- Nonlinear Structural Dynamics
- Generic Propulsion

Research project (60 credits)

Each student is allocated an individual project, worth 60 credits, which is supported from within the department through the three main research groups:

- Dynamics and Control
- Design and Process Engineering
- Solid Mechanics

Provided that the content is academically rigorous, industrially-related projects are possible, through either your own contacts or the department's strong links with major companies such as Airbus UK, BAE Systems, Bechtel, British Energy, Nestlé, Qinetiq Ltd, Renishaw, Renold Chain and Rolls-Royce.

Careers

Several of our recent students have gone into research, including two recent PhD graduates from Bristol.

One further student is currently working towards an Engineering doctorate with the Systems Centre in Bristol and has been working closely with a local company, Vestas Wind Systems (his industrial sponsor). His research title is "Expanding the life cycle of wind turbine components through reverse engineering and repairing solutions".

Read less
Applications are invited for a postgraduate student to join the Acoustics Research Unit (https://www.liverpool.ac.uk/architecture/research/acoustics-research-unit/about/) for a fully-funded, one-year period of full-time research leading to the award of MPhil. Read more
Applications are invited for a postgraduate student to join the Acoustics Research Unit (https://www.liverpool.ac.uk/architecture/research/acoustics-research-unit/about/) for a fully-funded, one-year period of full-time research leading to the award of MPhil. The project is funded by Morgan Advanced Materials.

The research primarily concerns designing, building and validating a test rig to measure airflow resistivity of porous materials at high temperature. This will allow estimates of the sound absorption of, and sound transmission through, fibrous materials at temperatures well-above 500°C.

The minimum requirement is a first degree (First or Upper Second) in engineering, physics, acoustics or similar.

Enquiries should be sent to Professor Carl Hopkins:

Applications should be sent to:

Funding Notes

The project is funded by Morgan Advanced Materials. The stipend is £14,553 per annum. In addition, the MPhil registration fees for Home/EU students will be paid for the one year (NB Applications from International students with at least 6.5 IELTS a

Read less

Show 10 15 30 per page



Cookie Policy    X