• University of Edinburgh Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of York Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Imperial College London Featured Masters Courses
King’s College London Featured Masters Courses
Cardiff University Featured Masters Courses
University of Kent Featured Masters Courses
University of Leeds Featured Masters Courses
University College London Featured Masters Courses
0 miles
Biological Sciences×

Masters Degrees in Developmental & Reproductive Plant Biology

Masters degrees in Developmental & Reproductive Plant Biology are primarily concerned with the study of plant growth, including a scrutiny of their genetics, environment, and economic importance. Students can specialise in Plant Genetics, Agro-ecology, Weed Science, and Sustainable Horticulture.

Degrees in this field range from taught MSc programmes, to research oriented MRes and MPhil courses. Entry requirements normally include an undergraduate degree in a relevant subject, such as biology or environmental science.

Why study a Masters in Developmental & Reproductive Plant Biology?

Read more...

  • Biological Sciences×
  • Developmental & Reproductive Plant Biology×
  • clear all
Showing 1 to 15 of 15
Order by 
Life on Earth depends on solar energy captured by plants - they are the base of most food webs and underpin the functioning of all major ecosystems. Read more
Life on Earth depends on solar energy captured by plants - they are the base of most food webs and underpin the functioning of all major ecosystems. Plants release the oxygen we breath. They convert solar energy into chemical energy, providing us with food, fibres, renewable energy sources, and raw materials for many industries. Plants do not carry out these processes in isolation. They interact with other organisms and the physical and chemical environment, communicate and actively adjust to their circumstances. How do they do these things and how can we profit from understanding them? When you have graduated from the Master’s Program in Plant Biology you will have the answers to these big questions, and more, such as:
-How one plant cell develops into a complicated organism and how plant cells, tissues and organs communicate with each other
-How plants avoid, tolerate or defend themselves from external stress factors such as diseases, drought and excessive solar radiation
-How plants sense their environment and communicate with each other and with other organisms
-How plants, interacting with microbes, fungi and animals, maintain ecosystems and thus life
-How the genotypic, functional and morphological differences between plants allow them to thrive in vastly different habitats

You will also be able to:
-Understand how research in plant biology and biotechnology can contribute to plant breeding and production.
-Plan, coordinate and execute high-quality basic and applied scientific research.
-Have a good command of the scientific method and critically evaluate research across scientific disciplines.
-Use the basic skills needed to expand your knowledge into other related fields and communicate with experts in those fields.
-Act in working life as an expert and innovator in your field, supported by your language, communication and other transferable skills.
-Be eligible for scientific post-graduate (doctoral) studies.

After earning your degree, you can continue towards a PhD or move directly into a career. If you have a Bachelor’s degree in a field of biology from another Finnish university or from a foreign university anywhere in the world, you are welcome to apply for the Master’s programme in Plant Biology. Based on your previous studies we will evaluate the possible need for supplementary studies, which will be included in your degree.

The University of Helsinki will introduce annual tuition fees to foreign-language Master’s programmes starting on August 1, 2017 or later. The fee ranges from 13 000-18 000 euros. Citizens of non-EU/EEA countries, who do not have a permanent residence status in the area, are liable to these fees. You can check this FAQ at the Studyinfo website whether or not you are required to pay tuition fees.

Programme Contents

The Master’s Programme in Plant Biology is a joint programme of the Faculty of Biological and Environmental Sciences and the Faculty of Agriculture and Forestry, which ensures an exceptionally comprehensive curriculum. You will be able to study the diversity of wild and cultivated plants from the Arctic to the Tropics, as well as plant functions from the molecular to the ecosystem level.

The teaching is diverse, consisting of modern laboratory and computer courses, field courses, seminars and excursions. The curriculum is intertwined with research. You will be introduced to the research groups from the beginning of your studies, so you will become familiar with research methods as your studies progress. Much of the study material is in various learning platforms (such as Moodle), which allow distance learning. You will have a personal tutor who will help you tailor an individual study plan according to your requirements.

Within the programme you can choose among several optional study modules and focus on, for example:
-Plant biotechnology and breeding
-Molecular biology and genetics
-Regulation of growth, reproduction and differentiation of tissues
-Biological basis of crop yield
-Plant ecology and evolutionary biology
-Evolutionary history and systematics of plants and fungi
-Species identification

All modules are worth at least 15 credits. They are interlinked to ensure a coherent and balanced degree that allows you to obtain a broad perspective. Alternatively, you can focus on your primary research interest while acquiring the skills needed to follow your career goals on completion of your degree.

A translational perspective is emphasised in courses in which it is relevant. That will allow you to apply the acquired basic knowledge in problem-based research, bridging the gap between basic and applied research.

Selection of the Major

By choosing study modules you find interesting you will be able to deepen your expertise in particular areas of plant biology. Your degree can thus be tailored depending on your aspirations, whether you want to be a university researcher, entrepreneur, or environmental/agricultural consultant. You will also be free to pick individual courses from any module, without having to take all courses in it. However, each module is a coherent entity so we recommend that you take all of the courses in it.

Programme Structure

The extent of the programme is 120 credits (ECTS), to be completed in two years of full-time studies. The degree consists of:
-60 credits of advanced studies (in plant biology), including Master’s thesis (30 credits).
-60 credits of other studies from this programme or other programmes.

The curriculum contains a personal study plan and it can contain career planning or transferable skill studies.

Career Prospects

With a Master’s degree in Plant Biology, you will have many potential career opportunities. You can work especially:
-As a researcher and/or part-time teacher at universities or other institutions of higher education.
-As a researcher in national and international institutions in the public and private sectors.
-As an expert, civil servant, authority or PR officer in public administration.
-In various positions in international organisations or enterprises engaged in bioeconomy.
-As an entrepreneur in the biological or environmental sectors of business.

Internationalization

International scope is a key benefit of the Plant Biology programme. You will be encouraged and helped to seek exchange possibilities in international student exchange programmes with cooperating universities. In this way you will get new ideas, perspectives and personal contacts that may prove useful later in your working life or doctoral studies.

All of our research groups include numerous members from Europe and farther afield. Thus you will be doing research in an international community and will be able to improve your skills in foreign languages, especially English, which is of primary importance in working life today.

You can also tutor international students or act in the student’s subject association or Student’s Union and get valuable experience of international and multicultural communities.

Read less
On a national and international scale there is an increasing need to reconcile the need for increased food production with the need for conservation of natural resources. Read more

The course

On a national and international scale there is an increasing need to reconcile the need for increased food production with the need for conservation of natural resources. There is also a need for people to understand and deal with complex land situations such as within agricultural systems. This course is intended to provide students with a detailed understanding of basic and applied agro-ecology and the issues associated with, on the one hand, the increased and shifting needs for food production and on the other the need for conservation and management of natural resources. Sustainable food production and sustainable intensification are of high policy importance both nationally and internationally. Agro-ecology is a key aspect of sustainable intensification.

How will it benefit me?

An understanding of agro-ecology and the organisms and systems that underpin agricultural systems can facilitate the ability to manage agricultural systems in a more sustainable manner.
This course will provide the foundation for a career in both conservation and in agriculture.
The course will provide you with specialized training in agroecology and farmland conservation.

You will be able to:

Appraise the role of agro-ecology within the wider context of global food security and sustainable food production
Evaluate the strategic and operational issues and conflicts affecting the sustainable management of agricultural ecosystems in order to select the most appropriate conservation management solutions.
Evaluate the interactions between organisms and consider these when making management recommendations for successful agro-ecological landscapes
Develop the ability to solve conflicts in agro-ecosystems by the application of novel research techniques

The course will:
Prepare you for a career in conservation agriculture, or agriculture or conservation more widely.
Offer vocational training in the field of agroecology.
Enable you to make a more informed choices for further study, such as PhD studies or other career development

Read less
This MSc takes advantage of our unique expertise in Plant Genetics to provide expert, cutting-edge training in a highly prized discipline. Read more
This MSc takes advantage of our unique expertise in Plant Genetics to provide expert, cutting-edge training in a highly prized discipline. The degree provides an ideal grounding for PhD research or a career in plant breeding and crop improvement with modules including Genetics, Plant Genomics, Plant Molecular Genetics and Statistics for Plant Science.

Your taught modules will be complemented by a six-month laboratory-based research project, giving you the opportunity to work closely with world-leading scientists from the John Innes Centre and our School of Biological Sciences.

The John Innes Centre – based on Norwich Research Park alongside UEA – is one of the world’s leading research institutes in plant genetics and crop improvement, so there are few places in the world where you’ll find a better opportunity to work with such leading authorities and world-class facilities.

Read less
In the last 10-15 years the study of plant sciences has been revolutionised by the development of new tools and technologies which have allowed unprecedented progress in the study of plant biology - knowledge which is being applied to develop sustainable solutions to some of the major challenges of the 21st century. Read more
In the last 10-15 years the study of plant sciences has been revolutionised by the development of new tools and technologies which have allowed unprecedented progress in the study of plant biology - knowledge which is being applied to develop sustainable solutions to some of the major challenges of the 21st century.

This programme provides training in modern molecular aspects of plant science. Teaching is delivered by academics from the University’s Centre for Plant Sciences (CPS) and is often related to their areas of expertise and current research projects.

You’ll benefit from the research of international experts in DNA recombination and repair mechanisms and explore the wide range of approaches used in bio-imaging alongside the range of modern techniques and methodologies that underpin contemporary biomolecular sciences. You’ll explore the key topic areas of molecular biology; structural biology; cell imaging and flow cytometry; high throughput techniques; and transgenic organisms.

Our Facilities

You’ll study in a stimulating environment which houses cutting-edge facilities. The CPS laboratories feature a state-of-the-art plant growth unit, including tissue culture suites with culture rooms, growth rooms and cabinets alongside glass-houses to meet a range of growth requirements.

Read less
This programme is concerned with understanding the biology of plants at the molecular level. Read more
This programme is concerned with understanding the biology of plants at the molecular level. We study, in particular, mechanisms of microbial pathogenicity and host plant defence in temperate and tropical species, cell and molecular biology of pollen-stigma recognition and signalling in flowering plants, plant hormone and G protein signalling pathways, genomics and gene networks, and molecular biology of stress responses in the important tropical crop cassava.

The MSc programmes in Biology & Biochemistry are designed for students who wish to specialise further in a particular field or wish to change direction from their first degree (in a related area).

If you already have extensive and relevant research experience and would like to specialise, you might consider an MRes programme.

Visit the website http://www.bath.ac.uk/science/graduate-school/taught-programmes/msc-molecular-plant-sciences/

Why study Biology and Biochemistry with us?

- Biology & Biochemistry ranked 2nd in the Sunday Times University Guide 2013
- 90% of our research judged to be internationally recognised, excellent or world-leading
- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

What will I learn?

The aim of each of our MSc programmes in Biology and Biochemistry is to provide professional-level training that will develop highly skilled bioscientists with strong theoretical, research and transferable skills, all of which are necessary to work at the forefront of modern biosciences.

For further information please see our department pages (http://www.bath.ac.uk/bio-sci/)

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa.

Recent employers include:

Morvus-Technology Ltd
Janssen-Cilag
Royal United Hospital, Bath
Ministry of Defence
State Intellectual Property Office, Beijing
Wellcome Trust Centre for Human Genetics, Oxford University
AbCam
Salisbury Foundation Trust Hospital
BBSRC
Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/

Read less
Molecular Plant Scientists attempt to understand the biology of plants at the molecular level. Read more
Molecular Plant Scientists attempt to understand the biology of plants at the molecular level. We study, in particular, mechansims of microbial pathogenicity and host plant defence in temperate and tropical species, cell and molecular biology of pollen-stigma recognition and signalling in flowering plants, plant hormone and G protein signalling pathways, genomics and gene networks, and molecular biology of stress responses in the important tropical crop cassava.

The MRes provides a unique mix of taught components, extended laboratory projects, literature reviews and preparation of a grant proposal based on a research dissertation.It gives students an insight into a range of state-of-the-art research activities and techniques, and provides generic, transferable skills training needed for all early stage researchers.

The programmes also address the scientific, ethical and commercial context within which the research takes place.

All of the MRes programmes can be studied as the first year of our Integrated PhD programme.

Visit the website http://www.bath.ac.uk/science/graduate-school/taught-programmes/mres-molecular-plant-sciences/

Why study Biology & Biochemistry with us?

- Biology & Biochemistry ranked 2nd in the Sunday Times University Guide 2013
- 90% of our research judged to be internationally recognised, excellent or world-leading
- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

What will I learn?

MRes degree programmes are designed for graduates who are contemplating a research career and who may go on to study for a PhD or to a position in industry involving interaction with research scientists.

If these do not apply, you might consider an MSc programme (http://www.bath.ac.uk/bio-sci/masters/)

For further information please see our department pages (http://www.bath.ac.uk/bio-sci/).

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa. Recent employers include:

Morvus-Technology Ltd
Janssen-Cilag
Royal United Hospital, Bath
Ministry of Defence
State Intellectual Property Office, Beijing
Wellcome Trust Centre for Human Genetics, Oxford University
AbCam
Salisbury Foundation Trust Hospital
BBSRC
Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/

Read less
The Plant Sciences programme has been designed to help meet the worldwide demand for scientific expertise in the development of plant and crop production and farming systems. Read more

MSc Plant Sciences

The Plant Sciences programme has been designed to help meet the worldwide demand for scientific expertise in the development of plant and crop production and farming systems.

Programme summary

Plant Sciences deals with crop production ranging from plant breeding to the development of sustainable systems for the production of food, pharmaceuticals and renewable resources. It is linked with a professional sector that is highly important to the world economy. The programme focuses on the principles of plant breeding, agro-ecology and plant pathology and the integration of these disciplines to provide healthy plants for food and non-food applications. Technological aspects of crop production are combined with environmental, quality, socio-economic and logistic aspects. Students learn to apply their knowledge to develop integrated approaches for sustainable plant production.

Specialisations

Crop Science
Sound knowledge of crop science is essential to develop appropriate cultivation methods for a reliable supply of safe, healthy food; while considering nature conservation and biodiversity. An integrated approach is crucial to studying plant production at various levels (plant, crop, farm, region). This requires a sound understanding of basic physical, chemical, and physiological aspects of crop growth. Modelling and simulation are used to analyse yield constraints and to improve production efficiency.

Greenhouse Horticulture
Greenhouse horticulture is a unique agro-system and a key economic sector in the Netherlands. It is the only system that allows significant control of (a-) biotic factors through protected cultivation. The advances in this field are based on technological innovations. This specialisation combines product quality with quality of production and focuses on production, quality- and chain management of vegetables, cut flowers and potted plants.

Natural Resource Management
The development of sustainable agro-ecosystems requires understanding of the complex relationships between soil health, cultivation practices and nutrient kinetics. Other important aspects include the interactions between agriculture and nature, and competing claims on productive land worldwide. Natural Resource Management provides knowledge and tools to understand the interactions between the biotic and abiotic factors in agro-systems to facilitate diverse agricultural demands: bulk vs. pharmaceutical products, food vs. biofuel, conservation of biodiversity, climate change, and eco-tourism.

Plant Breeding and Genetic Resources
Plant Breeding and Genetic Resources ranges from the molecular to the population level and requires knowledge of the physiology and genetics of cultivated plants. Plant breeding is crucial in the development of varieties that meet current demands regarding yield, disease resistance, quality and sustainable production. The use of molecular techniques adds to the rapid identification of genes for natural resistance and is essential for accelerating selection by marker assisted breeding.

Complete Online Master
In September 2015, Wageningen University started the specialisation "Plant Breeding" as the first complete online Master of Science. For more information go to http://www.wageningenuniversity.eu/onlinemaster.


Plant Pathology and Entomology
The investments made in crop production need to be protected from losses caused by biotic stress. Integrated pest management provides protection by integrating genetic resistance, cultivation practices and biological control. This specialisation focuses on the ecology of insects, nematodes and weeds, and the epidemiology of fungi and viruses, including transmission mechanisms. Knowledge of plantinsect, plant-pathogen, and crop-weed relations establishes the basis for studies in integrated pest management and resistance breeding.

Your future career

Graduates in Plant Sciences have excellent career prospects and most of them receive job offers before graduation. They are university-trained professionals who are able to contribute to the sustainable development of plant production at various integration levels based on their knowledge of fundamental and applied plant sciences and their interdisciplinary approach. Graduates with a research focus are employed at universities, research institutes and plant breeding or agribusiness companies. Other job opportunities are in management, policy, consultancy and communication in agribusiness and (non-) governmental organisations.

Alumnus Maarten Rouwet.
“I was born in Germany and raised in the East of the Netherlands. After high school I applied for the Bèta-gamma bachelor at the University of Amsterdam where I majored in biology. After visiting the master open day at Wageningen University I knew that the master Plant Sciences had something unique to offer. In my master, I specialised in plant breeding, an ever so interesting field of research. I just started my first job as junior biotech breeder of leavy vegetables at Enza Zaden, a breeding company in Enkhuizen. One of my responsibilities is to identify resistances in wild species of lettuce and to implement these in breeding programmes of cultivated lettuce.”

Related programmes:
MSc Biosystems Engineering
MSc Biotechnology
MSc Biology
MSc Forest and Nature Conservation
MSc Organic Agriculture
MSc Plant Biotechnology.

Read less
Join the growers and activists at the forefront of a revolution in food production. This programme is delivered at Schumacher College, Dartington, Devon. Read more
Join the growers and activists at the forefront of a revolution in food production.

This programme is delivered at Schumacher College, Dartington, Devon..

Programme structure

This MSc brings together the thinking, research and practice at the cutting-edge of a global food revolution. Drawing from many different projects and schools of thought around the world, and looking at the roles of large-scale food production, biotechnology, ‘human scale’ horticulture and botanical diversity, our starting point is natural systems.

How can we work with nature and biological cycles to improve our horticultural production? And how do we do it without increasing environmental degradation, climate change or consumption of finite resources?

We offer you a unique and transformative blend of academic and practical learning opportunities from Schumacher College, the Centre for Alternative Technology (CAT), Organic Research Centre (Elm Farm) and Plymouth University.

Programme content

• Science, systems and sustainability
• Resource use in socio-ecological systems
• Research methods
• Plant science and production
• Design and practices in horticulture
• Ethnobotany and plant taxonomy
• Food systems in the post-carbon world
• New food economy

Read less
This is an online Master specialisation within the MSc Plant Sciences. Read more

MSc Plant Breeding

This is an online Master specialisation within the MSc Plant Sciences

ONLINE OPEN DAY: 17 MARCH 2016

Would you like to know more about the Master programmes of Wageningen University, join us for the Master online open day on 17 March 2016! During the online open day you can meet the staff and students of the Master programmes, experience Wageningen University and check out the innovative campus. You can also ask your questions about application and admission, scholarships, the education system and much more, all online!

sign up now

http://www.wageningenuniversity.eu/masteronlineopenday

Online Master

The online master specialisation is designed for part-time study (approx. 20 hrs/week) to combine work and study or in the context of Life-Long-Learning. A course-programme of 2 years will be followed by a tailor-made internship and Master thesis. During the courses, you will closely collaborate with lecturers, tutors and fellow distance learning students on a virtual learning platform. The course programme includes two short stays of two weeks, each in Wageningen, for essential practicals that relate to the theory. There may be options to organise the academic internship and Master thesis in your own professional context, either parttime or full-time.

Programme summary

Plant Breeding plays an important role in the development of plant varieties for food, feed and industrial uses. New varieties have to meet current demands regarding yield, disease resistance, quality characteristics, salt or drought tolerance and suitability for sustainable plant production systems. Plant Breeding involves a variety of aspects, ranging from the molecular level to the population level and requires knowledge of the physiology, ecology and genetics of cultivated plants. The use of various molecular techniques contributes enormously to the rapid identification of genes for natural resistance and is essential for accelerating the selection process by marker-assisted breeding.

Your future career

Graduates of the Master Plant Sciences have excellent career prospects and most of them receive job offers before graduation. They are university-trained professionals who are able to contribute to the sustainable development of plant production at various integration levels based on their knowledge of fundamental and applied plant sciences and their interdisciplinary approach. Graduates with a research focus are employed at universities, research institutes and plant breeding or agribusiness companies. Other job opportunities are in management, policy, consultancy and communication in agribusiness and (non-) governmental organisations.

Student Timo Petter.
After 10 years of practical experience in Allium breeding, Timo subscribed to follow courses of the master Plant Breeding and Genetic Resources. His job at Bejo Zaden brought him to many countries where the breeding company has her trial fields, breeding stations and sales representatives. But as a crop research manager he started to feel the need to improve his knowledge of the theoretical side of his profession: “Although I have not finished my masters yet, I use the knowledge that I have gained from the various courses every day! For a plant breeder, I believe that this master is the best educational programme available in the Netherlands.”

Related on-campus programmes:
MSc Biosystems Engineering
MSc Biotechnology
MSc Biology
MSc Forest and Nature Conservation
MSc Organic Agriculture
MSc Plant Biotechnology

Read less
The Plant Science Program offers degrees in fundamental and applied topics related to plant production, plant protection, biotechnology, plant physiology and biochemistry, and plant-environment interactions. Read more
The Plant Science Program offers degrees in fundamental and applied topics related to plant production, plant protection, biotechnology, plant physiology and biochemistry, and plant-environment interactions.

Specific areas of specialization include:
- Plant-microbe interaction, bacterial and fungal diseases, plant virology, biological control of pests and diseases, insect physiology, natural insecticides, insect ecology and behaviour, and weed biology, ecology and control;
- Seed physiology, plant nutrition, plant growth analysis, plant-plant interaction, biotic and abiotic stressor resistance, and environmental plant physiology;
- Vegetable culture, ornamental horticulture, plant breeding, and post-harvest physiology;
- Plant biochemistry, tissue culture, genetic engineering, and plant, fungal, and viral molecular genetics;
- Rangeland ecology, and wildlife habitat studies.

Quick Facts

- Degree: Master of Science
- Specialization: Plant Science
- Subject: Agriculture and Forestry
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Land and Food Systems

Read less

  • 1
Show 10 15 30 per page


Share this page:

Cookie Policy    X