• University of Oxford Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
Vlerick Business School Featured Masters Courses
Coventry University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Swansea University Featured Masters Courses
0 miles
Biological Sciences×

Masters Degrees in Developmental & Reproductive Plant Biology

We have 15 Masters Degrees in Developmental & Reproductive Plant Biology

Masters degrees in Developmental & Reproductive Plant Biology are primarily concerned with the study of plant growth, including a scrutiny of their genetics, environment, and economic importance. Students can specialise in Plant Genetics, Agro-ecology, Weed Science, and Sustainable Horticulture.

Entry requirements normally include an undergraduate degree in a relevant subject, such as Biology or Environmental Science.

Why study a Masters in Developmental & Reproductive Plant Biology?

Read more...

  • Biological Sciences×
  • Developmental & Reproductive Plant Biology×
  • clear all
Showing 1 to 15 of 15
Order by 
This MSc takes advantage of our unique expertise in Plant Genetics to provide expert, cutting-edge training in a highly prized discipline. Read more
This MSc takes advantage of our unique expertise in Plant Genetics to provide expert, cutting-edge training in a highly prized discipline. The degree provides an ideal grounding for PhD research or a career in plant breeding and crop improvement with modules including Genetics, Plant Genomics, Plant Molecular Genetics and Statistics for Plant Science.

Your taught modules will be complemented by a six-month laboratory-based research project, giving you the opportunity to work closely with world-leading scientists from the John Innes Centre and our School of Biological Sciences.

The John Innes Centre – based on Norwich Research Park alongside UEA – is one of the world’s leading research institutes in plant genetics and crop improvement, so there are few places in the world where you’ll find a better opportunity to work with such leading authorities and world-class facilities.

Read less
In recent years the study of plant sciences has been revolutionised by the development of new tools and technologies which have allowed unprecedented progress in the study of plant biology – knowledge which is being applied to develop sustainable solutions to some of the major challenges of the 21st century. Read more

In recent years the study of plant sciences has been revolutionised by the development of new tools and technologies which have allowed unprecedented progress in the study of plant biology – knowledge which is being applied to develop sustainable solutions to some of the major challenges of the 21st century.

This course will give you specialist training in the modern molecular aspects of plant science. A large part of your teaching will be delivered by academics from the University’s Centre for Plant Sciences (CPS) linked to the latest research in their areas of expertise.

You’ll explore the wide ranges of approaches used in biomolecular sciences as applied to plant science. This will cover theory and practice of recombinant DNA and protein production, bioimaging using our confocal microscope suite, practical bioinformatics and theories behind ‘omic technologies.

You’ll also learn how to design a programme of research and write a research proposal, read and critically analyse scientific papers in plant science and biotechnology and present the findings. A highlight of the course is your individual 80 credit practical research project.

The course is 100% coursework assessed (although some modules have small in course tests). Our teaching and assessment methods are designed to develop your independent thinking, problem solving, communication skills and practical ability, making you attractive to employers or providing an excellent foundation for further study (eg PhD).

You’ll study in a faculty ranked 6th in the UK for its research impact in the recent Research Excellence Framework (REF 2014).

Our Facilities

You’ll study in a stimulating environment which houses extensive facilities developed to support and enhance our faculty’s pioneering research. As well as Faculty operated facilities, the CPS laboratories are well equipped for general plant research. There is also a plant growth unit, including tissue culture suites with culture rooms, growth rooms and flow cabinets alongside transgenic glass-houses to meet a range of growth requirements.

Course content

On this course you’ll gain an overview of a range of modern techniques and methodologies that underpin contemporary biomolecular plant sciences.

You’ll also apply your knowledge to an extended practical investigation in the form of a laboratory-based mini project, involving practical training in a range of modern molecular biology and protein engineering techniques such as gene cloning, PCR, mutagenesis, protein expression, protein purification and analysis.

A module on plant biotechnology will address current topics such as the engineering of plants, development of stress-tolerant crop varieties and techniques for gene expression and gene silencing through reading discussion and critical analysis of recent research papers.

You’ll learn from the research of international experts in DNA recombination and repair mechanisms and their importance for transgene integration and biotechnological applications; plant nutrition and intracellular communication; and the biosynthesis, structure and function of plant cell walls.

You’ll also explore the wide range of approaches used in bio-imaging and their relative advantages and disadvantages for analysing protein and cellular function. Bioinformatics and high throughput omic technologies are crucial to plant science research and you will take modules introducing you to these disciplines.

In the final part of the course you'll work on an independent laboratory-based research project related to your course options. You’ll receive extensive training in experimental design, the practical use of advanced techniques and technologies, data analysis and interpretation, and will be assigned a research project supervisor who will support and guide you through your project.

Course structure

Compulsory modules

  • Bioimaging 10 credits
  • Topics in Plant Science 10 credits
  • Practical Bioinformatics 10 credits
  • Plant Biotechnology 10 credits
  • High-throughput Technologies 10 credits
  • MSc Bioscience Research Project Proposal 5 credits
  • Research Planning and Scientific Communication 10 credits
  • Advanced Biomolecular Technologies 20 credits
  • Protein Engineering Laboratory Project 15 credits
  • Bioscience MSc Research Project 80 credits

For more information on typical modules, read Plant Science and Biotechnology MSc in the course catalogue

Learning and teaching

You’ll have access to the very best learning resources and academic support during your studies. We’ve been awarded a Gold rating in the Teaching Excellence Framework (TEF, 2017), demonstrating our commitment to delivering consistently outstanding teaching, learning and outcomes for our students.

Your learning will be heavily influenced by the University’s world-class research as well as our strong links with highly qualified professionals from industry, non-governmental organisations and charities.

You’ll experience a wide range of teaching methods including formal lectures, interactive workshops, problem-solving, practical classes and demonstrations.

Through your research project and specialist plant science modules, you’ll receive substantial subject-specific training. Our teaching and assessment methods are designed to develop you into a scientist who is able to think independently, solve problems, communicate effectively and demonstrate a high level of practical ability.

Assessment

We use a variety of assessment methods: multiple-choice testing, practical work, data handling and problem solving exercises, group work, discussion groups (face-to-face and online), computer-based simulation, essays, posters and oral presentations.

Career opportunities

The strong research element of the Plant Science and Biotechmology MSc, along with the specialist and generic skills you develop, mean you’ll graduate equipped for a wide range of careers.

Our graduates work in a diverse range of areas, ranging from bioscience-related research through to scientific publication, teacher training, health and safety and pharmaceutical market research.

Links with industry

We have a proactive Industrial Advisory Board who advise us on what they look for in graduates and on employability-related skills within our courses.

We collaborate with a wide range of organisations in the public and commercial sectors. Many of these are represented on our Industrial Advisory Board. They include:

  • GlaxoSmithKline
  • Ernst and Young
  • The Food and Environment Research Agency
  • The Health Protection Agency
  • MedImmune
  • Thermofisher Scientific
  • Hays Life Sciences
  • European Bioinformatics Institute
  • Smaller University spin-out companies, such as Lumora.

Industrial research placements

Some of our partners offer MSc research projects in their organisations, allowing students to develop their commercial awareness and build their network of contacts.



Read less
Learn the fundamentals of the biology of plants and their molecules. Study the specialist area of industrial biotechnology. You will gain a broad understanding of molecular plant sciences before specialising in a specific area. Read more

Learn the fundamentals of the biology of plants and their molecules. Study the specialist area of industrial biotechnology.

You will gain a broad understanding of molecular plant sciences before specialising in a specific area. You’ll study the biology of plants at the molecular level.

You will focus on topics including mechanisms of microbial pathogenicity, cell and molecular biology of pollen-stigma recognition, signalling in flowering plants and genomics and gene networks. You’ll have access to facilities including a GM glasshouse and tissue culture for plant and mammalian cells.

Your studies will help you develop the skills you need to move into a wide range of careers in the sciences or to take on further research. Our graduates have an excellent employment record with companies and academic institutions across the globe. Graduates have moved into roles with employers including BBSRC, Oxford University and Morvus-Technology Limited.

If you already have extensive and relevant research experience and would like to specialise, you might consider an MRes programme.

Visit the website http://www.bath.ac.uk/courses/postgraduate-2018/taught-postgraduate-master-s-courses/msc-molecular-plant-sciences/

If you are interested in applying for one of our master's courses and you would like to find out more about your job prospects, then there is a webinar for you on Friday 24 November at 1pm GMT.

Join us from around the world without leaving your house.

During the webinar you will be able to find about:

• the current job market

• what our graduates go to on to do after their master's

• how the careers service and the Faculty's careers adviser can help you with finding a job. You will also have the opportunity to put your questions to staff during a live question and answer session.

Find out more and register for the webinar.      

Why study Biology and Biochemistry with us?

- 90% of our research judged to be internationally recognised, excellent or world-leading

- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

What will I learn?

The aim of each of our MSc programmes in Biology and Biochemistry is to provide professional-level training that will develop highly skilled bioscientists with strong theoretical, research and transferable skills, all of which are necessary to work at the forefront of modern biosciences.

For further information please see our department pages (http://www.bath.ac.uk/bio-sci/)

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa.

Recent employers include:

Morvus-Technology Ltd

Janssen-Cilag

Royal United Hospital, Bath

Ministry of Defence

State Intellectual Property Office, Beijing

Wellcome Trust Centre for Human Genetics, Oxford University

AbCam

Salisbury Foundation Trust Hospital

BBSRC

Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/



Read less
Learn the fundamentals of the biology of plants and their molecules. Study the specialist area of industrial biotechnology. This course is for you if you want to go into a research career or study for a PhD in the field of molecular plant sciences. Read more

Learn the fundamentals of the biology of plants and their molecules. Study the specialist area of industrial biotechnology.

This course is for you if you want to go into a research career or study for a PhD in the field of molecular plant sciences.

You will have the opportunity to study molecular problems from epigenetics through to food crops. Themes include mechanisms of microbial pathogenicity and host plant defence in temperate and tropical species, cell and molecular biology of pollen-stigma recognition and signalling in flowering plants, plant hormone and G protein signalling pathways, genomics and gene networks, and molecular biology of stress responses in the important tropical crop cassava. You’ll have access to facilities including a GM glasshouse and tissue culture for plant and mammalian cells.

The MRes provides a unique mix of taught components, extended laboratory projects, literature reviews and preparation of a grant proposal based on a research dissertation. You’ll gain an insight into a range of research activities and techniques, gaining the transferable skills training needed for all early stage researchers. You’ll also address the scientific, ethical and commercial context within which the research takes place.

All of the MRes courses can be studied as the first year of our Integrated PhD course.

Visit the website http://www.bath.ac.uk/courses/postgraduate-2018/taught-postgraduate-master-s-courses/mres-molecular-plant-sciences/

If you are interested in applying for one of our master's courses and you would like to find out more about your job prospects, then there is a webinar for you on Friday 24 November at 1pm GMT.

Join us from around the world without leaving your house.

During the webinar you will be able to find about:

• the current job market

• what our graduates go to on to do after their master's

• how the careers service and the Faculty's careers adviser can help you with finding a job. You will also have the opportunity to put your questions to staff during a live question and answer session.

Find out more and register for the webinar.      

Why study Biology & Biochemistry with us?

- 90% of our research judged to be internationally recognised, excellent or world-leading

- Our current research funding portfolio stands at £14 million, supporting internationally excellent research in the biosciences

What will I learn?

MRes degree programmes are designed for graduates who are contemplating a research career and who may go on to study for a PhD or to a position in industry involving interaction with research scientists.

For further information please see our department pages (http://www.bath.ac.uk/bio-sci/).

Career opportunities

Since graduating, our students have gone on to employment or further research at institutions in the US, Europe, Australia, Asia and Africa. Recent employers include:

Morvus-Technology Ltd

Janssen-Cilag

Royal United Hospital, Bath

Ministry of Defence

State Intellectual Property Office, Beijing

Wellcome Trust Centre for Human Genetics, Oxford University

AbCam

Salisbury Foundation Trust Hospital

BBSRC

Lonza

Find out more about the department here - http://www.bath.ac.uk/bio-sci/

Find out how to apply here - http://www.bath.ac.uk/science/graduate-school/taught-programmes/how-to-apply/



Read less
The Plant Sciences programme has been designed to help meet the worldwide demand for scientific expertise in the development of plant and crop production and farming systems. Read more

MSc Plant Sciences

The Plant Sciences programme has been designed to help meet the worldwide demand for scientific expertise in the development of plant and crop production and farming systems.

Programme summary

Plant Sciences deals with crop production ranging from plant breeding to the development of sustainable systems for the production of food, pharmaceuticals and renewable resources. It is linked with a professional sector that is highly important to the world economy. The programme focuses on the principles of plant breeding, agro-ecology and plant pathology and the integration of these disciplines to provide healthy plants for food and non-food applications. Technological aspects of crop production are combined with environmental, quality, socio-economic and logistic aspects. Students learn to apply their knowledge to develop integrated approaches for sustainable plant production.

Specialisations

Crop Science
Sound knowledge of crop science is essential to develop appropriate cultivation methods for a reliable supply of safe, healthy food; while considering nature conservation and biodiversity. An integrated approach is crucial to studying plant production at various levels (plant, crop, farm, region). This requires a sound understanding of basic physical, chemical, and physiological aspects of crop growth. Modelling and simulation are used to analyse yield constraints and to improve production efficiency.

Greenhouse Horticulture
Greenhouse horticulture is a unique agro-system and a key economic sector in the Netherlands. It is the only system that allows significant control of (a-) biotic factors through protected cultivation. The advances in this field are based on technological innovations. This specialisation combines product quality with quality of production and focuses on production, quality- and chain management of vegetables, cut flowers and potted plants.

Natural Resource Management
The development of sustainable agro-ecosystems requires understanding of the complex relationships between soil health, cultivation practices and nutrient kinetics. Other important aspects include the interactions between agriculture and nature, and competing claims on productive land worldwide. Natural Resource Management provides knowledge and tools to understand the interactions between the biotic and abiotic factors in agro-systems to facilitate diverse agricultural demands: bulk vs. pharmaceutical products, food vs. biofuel, conservation of biodiversity, climate change, and eco-tourism.

Plant Breeding and Genetic Resources
Plant Breeding and Genetic Resources ranges from the molecular to the population level and requires knowledge of the physiology and genetics of cultivated plants. Plant breeding is crucial in the development of varieties that meet current demands regarding yield, disease resistance, quality and sustainable production. The use of molecular techniques adds to the rapid identification of genes for natural resistance and is essential for accelerating selection by marker assisted breeding.

Complete Online Master
In September 2015, Wageningen University started the specialisation "Plant Breeding" as the first complete online Master of Science. For more information go to http://www.wageningenuniversity.eu/onlinemaster.


Plant Pathology and Entomology
The investments made in crop production need to be protected from losses caused by biotic stress. Integrated pest management provides protection by integrating genetic resistance, cultivation practices and biological control. This specialisation focuses on the ecology of insects, nematodes and weeds, and the epidemiology of fungi and viruses, including transmission mechanisms. Knowledge of plantinsect, plant-pathogen, and crop-weed relations establishes the basis for studies in integrated pest management and resistance breeding.

Your future career

Graduates in Plant Sciences have excellent career prospects and most of them receive job offers before graduation. They are university-trained professionals who are able to contribute to the sustainable development of plant production at various integration levels based on their knowledge of fundamental and applied plant sciences and their interdisciplinary approach. Graduates with a research focus are employed at universities, research institutes and plant breeding or agribusiness companies. Other job opportunities are in management, policy, consultancy and communication in agribusiness and (non-) governmental organisations.

Alumnus Maarten Rouwet.
“I was born in Germany and raised in the East of the Netherlands. After high school I applied for the Bèta-gamma bachelor at the University of Amsterdam where I majored in biology. After visiting the master open day at Wageningen University I knew that the master Plant Sciences had something unique to offer. In my master, I specialised in plant breeding, an ever so interesting field of research. I just started my first job as junior biotech breeder of leavy vegetables at Enza Zaden, a breeding company in Enkhuizen. One of my responsibilities is to identify resistances in wild species of lettuce and to implement these in breeding programmes of cultivated lettuce.”

Related programmes:
MSc Biosystems Engineering
MSc Biotechnology
MSc Biology
MSc Forest and Nature Conservation
MSc Organic Agriculture
MSc Plant Biotechnology.

Read less
Government and private companies are working to develop new ways to improve existing food and animal feed crops, and to develop novel crops to meet future challenges. Read more
Government and private companies are working to develop new ways to improve existing food and animal feed crops, and to develop novel crops to meet future challenges. The last decade has seen rapid developments in our understanding of plants and their significance to our wellbeing and this has been achieved through advances in a range of disciplines including genetics, genomics, cell biology, physiology, ecology and studies on climate change.

Graduates of this one-year MSc will be equipped with the knowledge and skills in these recent advances to rise to the future challenges in academia, industry and policy development. Innovation and entrepreneurship permeate the course as central themes and, in addition, a specific module on entrepreneurship in plant biology is delivered. This MSc covers a wide diversity of both topics and approaches, and is taught by a high-profile research-oriented group of academics. Students will have full involvement in active research groups and access to, and experience of, a large array of state-of-the-art facilities and technologies.

Key Fact

Researchers from the UCD School of Biology and Environmental Science represent the single largest grouping of plant scientists in Ireland, with research interests ranging from genetics and molecular biology of the cell to plant physiology and ecology. They actively work with organisations such as Coillte (Forestry), the Irish Agricultural and Food Development Authority (Teagasc), the Department of Agriculture, Food and the Marine, and industry partners.

Course Content and Structure

Modules include:
• Entrepreneurship in Plant Biology
• Future Crops and Sustainability
• Current Developments in Plant Biology
• Insect-Plant Interactions
• Biological Invasions
• Plant-Atmosphere Climate Interactions
• Ecological Significance of Different Photosynthetic Pathways
• Plant Development
• Programmed Cell Death in Plants
• Plants and Stress

Career Opportunities

Graduates will have a distinct advantage when applying for PhD studentships or other more advanced graduate training in the area of plant biology and biotechnology. This MSc is ideal for graduates interested in pursuing scientific careers in academia, agriculture and plant science-based or biotechnology industries. Graduates will haveo pportunities to pursue postgraduate education and research and work in areas such as plant biotechnology, scientific journalism/publishing and for government agencies involved in governmental and non-governmental policy.

Facilities and Resources

• UCD Rosemount Environmental Research Station
• Controlled plant growth facility and bioreactors
• Plant Metabolomics Technology Platform
• Plant Cell and Tissue Culture Facility

Read less
This is an online Master specialisation within the MSc Plant Sciences. Read more

MSc Plant Breeding

This is an online Master specialisation within the MSc Plant Sciences

ONLINE OPEN DAY: 17 MARCH 2016

Would you like to know more about the Master programmes of Wageningen University, join us for the Master online open day on 17 March 2016! During the online open day you can meet the staff and students of the Master programmes, experience Wageningen University and check out the innovative campus. You can also ask your questions about application and admission, scholarships, the education system and much more, all online!

sign up now

http://www.wageningenuniversity.eu/masteronlineopenday

Online Master

The online master specialisation is designed for part-time study (approx. 20 hrs/week) to combine work and study or in the context of Life-Long-Learning. A course-programme of 2 years will be followed by a tailor-made internship and Master thesis. During the courses, you will closely collaborate with lecturers, tutors and fellow distance learning students on a virtual learning platform. The course programme includes two short stays of two weeks, each in Wageningen, for essential practicals that relate to the theory. There may be options to organise the academic internship and Master thesis in your own professional context, either parttime or full-time.

Programme summary

Plant Breeding plays an important role in the development of plant varieties for food, feed and industrial uses. New varieties have to meet current demands regarding yield, disease resistance, quality characteristics, salt or drought tolerance and suitability for sustainable plant production systems. Plant Breeding involves a variety of aspects, ranging from the molecular level to the population level and requires knowledge of the physiology, ecology and genetics of cultivated plants. The use of various molecular techniques contributes enormously to the rapid identification of genes for natural resistance and is essential for accelerating the selection process by marker-assisted breeding.

Your future career

Graduates of the Master Plant Sciences have excellent career prospects and most of them receive job offers before graduation. They are university-trained professionals who are able to contribute to the sustainable development of plant production at various integration levels based on their knowledge of fundamental and applied plant sciences and their interdisciplinary approach. Graduates with a research focus are employed at universities, research institutes and plant breeding or agribusiness companies. Other job opportunities are in management, policy, consultancy and communication in agribusiness and (non-) governmental organisations.

Student Timo Petter.
After 10 years of practical experience in Allium breeding, Timo subscribed to follow courses of the master Plant Breeding and Genetic Resources. His job at Bejo Zaden brought him to many countries where the breeding company has her trial fields, breeding stations and sales representatives. But as a crop research manager he started to feel the need to improve his knowledge of the theoretical side of his profession: “Although I have not finished my masters yet, I use the knowledge that I have gained from the various courses every day! For a plant breeder, I believe that this master is the best educational programme available in the Netherlands.”

Related on-campus programmes:
MSc Biosystems Engineering
MSc Biotechnology
MSc Biology
MSc Forest and Nature Conservation
MSc Organic Agriculture
MSc Plant Biotechnology

Read less
The Plant Science Program offers degrees in fundamental and applied topics related to plant production, plant protection, biotechnology, plant physiology and biochemistry, and plant-environment interactions. Read more
The Plant Science Program offers degrees in fundamental and applied topics related to plant production, plant protection, biotechnology, plant physiology and biochemistry, and plant-environment interactions.

Specific areas of specialization include:
- Plant-microbe interaction, bacterial and fungal diseases, plant virology, biological control of pests and diseases, insect physiology, natural insecticides, insect ecology and behaviour, and weed biology, ecology and control;
- Seed physiology, plant nutrition, plant growth analysis, plant-plant interaction, biotic and abiotic stressor resistance, and environmental plant physiology;
- Vegetable culture, ornamental horticulture, plant breeding, and post-harvest physiology;
- Plant biochemistry, tissue culture, genetic engineering, and plant, fungal, and viral molecular genetics;
- Rangeland ecology, and wildlife habitat studies.

Quick Facts

- Degree: Master of Science
- Specialization: Plant Science
- Subject: Agriculture and Forestry
- Mode of delivery: On campus
- Program components: Coursework + Thesis required
- Faculty: Faculty of Land and Food Systems

Read less
Goal of the pro­gramme. Life on Earth depends on solar energy captured by plants - they are the base of most food webs and underpin the functioning of all major ecosystems. Read more

Goal of the pro­gramme

Life on Earth depends on solar energy captured by plants - they are the base of most food webs and underpin the functioning of all major ecosystemsPlants release the oxygen we breath. They convert solar energy into chemical energy, providing us with food, fibres, renewable energy sources, and raw materials for many industries. Plants do not carry out these processes in isolation. They interact with other organisms and the physical and chemical environment, communicate and actively adjust to their circumstances. How do they do these things and how can we profit from understanding them? When you have graduated from the Master’s Program in Plant Biology you will have the answers to these big questions, and more, such as:

  • How one plant cell develops into a complicated organism and how plant cells, tissues and organs communicate with each other
  • How plants avoid, tolerate or defend themselves from external stress factors such as diseases, drought and excessive solar radiation
  • How plants sense their environment and communicate with each other and with other organisms
  • How plants, interacting with microbes, fungi and animals, maintain ecosystems and thus life
  • How the genotypic, functional and morphological differences between plants allow them to thrive in vastly different habitats

You will also be able to:

  • Understand how research in plant biology and biotechnology can contribute to plant breeding and production
  • Plan, coordinate and execute high-quality basic and applied scientific research
  • Have a good command of the scientific method and critically evaluate research across scientific disciplines
  • Use the basic skills needed to expand your knowledge into other related fields and communicate with experts in those fields
  • Act in working life as an expert and innovator in your field, supported by your language, communication and other transferable skills
  • Be eligible for scientific post-graduate (doctoral) studies

After earning your degree, you can continue towards a PhD or move directly into a career. If you have a Bachelor’s degree in a field of biology from another Finnish university or from a foreign university anywhere in the world, you are welcome to apply for the Master’s programme in Plant Biology. Based on your previous studies we will evaluate the possible need for supplementary studies, which will be included in your degree.

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

The Master’s Programme in Plant Biology is a joint programme of the Faculty of Biological and Environmental Sciences and the Faculty of Agriculture and Forestry, which ensures an exceptionally comprehensive curriculum. You will be able to study the diversity of wild and cultivated plants from the Arctic to the Tropics, as well as plant functions from the molecular to the ecosystem level.

The teaching is diverse, consisting of modern laboratory and computer courses, field courses, seminars and excursions. The curriculum is intertwined with research. You will be introduced to the research groups from the beginning of your studies, so you will become familiar with research methods as your studies progress. Much of the study material is in various learning platforms (such as Moodle), which allow distance learning. You will have a personal tutor who will help you tailor an individual study plan according to your requirements.

Within the programme you can choose among several optional study modules and focus on, for example:

  • Plant biotechnology and breeding
  • Molecular biology and genetics
  • Regulation of growth, reproduction and differentiation of tissues
  • Biological basis of crop yield
  • Plant ecology and evolutionary biology
  • Evolutionary history and systematics of plants and fungi
  • Species identification

All modules are worth at least 15 credits. They are interlinked to ensure a coherent and balanced degree that allows you to obtain a broad perspective. Alternatively, you can focus on your primary research interest while acquiring the skills needed to follow your career goals on completion of your degree.

A translational perspective is emphasised in courses in which it is relevant. That will allow you to apply the acquired basic knowledge in problem-based research, bridging the gap between basic and applied research.



Read less
On a national and international scale there is an increasing need to reconcile the need for increased food production with the need for conservation of natural resources. Read more

The course

On a national and international scale there is an increasing need to reconcile the need for increased food production with the need for conservation of natural resources. There is also a need for people to understand and deal with complex land situations such as within agricultural systems. This course is intended to provide students with a detailed understanding of basic and applied agro-ecology and the issues associated with, on the one hand, the increased and shifting needs for food production and on the other the need for conservation and management of natural resources. Sustainable food production and sustainable intensification are of high policy importance both nationally and internationally. Agro-ecology is a key aspect of sustainable intensification.

How will it benefit me?

An understanding of agro-ecology and the organisms and systems that underpin agricultural systems can facilitate the ability to manage agricultural systems in a more sustainable manner.
This course will provide the foundation for a career in both conservation and in agriculture.
The course will provide you with specialized training in agroecology and farmland conservation.

You will be able to:

Appraise the role of agro-ecology within the wider context of global food security and sustainable food production
Evaluate the strategic and operational issues and conflicts affecting the sustainable management of agricultural ecosystems in order to select the most appropriate conservation management solutions.
Evaluate the interactions between organisms and consider these when making management recommendations for successful agro-ecological landscapes
Develop the ability to solve conflicts in agro-ecosystems by the application of novel research techniques

The course will:
Prepare you for a career in conservation agriculture, or agriculture or conservation more widely.
Offer vocational training in the field of agroecology.
Enable you to make a more informed choices for further study, such as PhD studies or other career development

Read less
Our MPhil/PhD research degree programme offers you. Wide variety of research interests. Research interests of the group include plant-microbe interactions, cell cycle and cell signalling. Read more
Our MPhil/PhD research degree programme offers you:

Wide variety of research interests
Research interests of the group include plant-microbe interactions, cell cycle and cell signalling. In general, the group use molecular biology, plant pathology, proteomics, genetics, microscopy and bioinformatics to investigate the functional role of genes in various conditions. These include biotic stress, flowering, cell cycling, circadian rhythm, receptor-ligand interactions, identification of pathogen secreted molecules and their function, targeted genome editing using CRISPR technology, comparisons of bacterial genomes using next generation sequencing and bioinformatics.

Excellent supervision
Benefit from a professional and challenging relationship with your supervisory team, drawn from experienced academics working at the forefront of their disciplines. The team members have collaborations within and outside the UK, thus possibilities for travelling and longer term visits exist at national and international partner universities.

Resources
Access to the University of Worcester’s virtual resources and its state of the art library facilities. The Institute of Science and the Environment has an excellent range of resources available to support your learning and your research project.

Recent research
Regulation of effectors by circadian rhythm; Identification of PAMPs and apoplastic effectors from downy mildew pathogen; Role of heterozygosity in effector-triggered immunity, investigating immune system of plants using genome editing technology and biopesticides.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X