• Aberystwyth University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Bristol Featured Masters Courses
Cranfield University Featured Masters Courses
University College London Featured Masters Courses
Buckinghamshire New University Featured Masters Courses
Cranfield University Featured Masters Courses
Swansea University Featured Masters Courses
  • Study Type

    Full time available

  • Subject Areas


  • Start Date


  • Course Duration

    1 year full time

  • Course Type


  • Course Fees


  • Last Updated

    23 January 2018

Course content

The Thermal Power and Fluid Engineering MSc is a highly successful course which has been offered here for almost forty years. The aim of this postgraduate course is to train and educate thermofluid engineers to enable them to meet present and future demands of the industry and to equip them with the necessary skills to engage in employment or further research.

The course is suitable for engineering/science graduates and professionals who not only wish to enhance their expertise in thermofluids but also to develop their competence in the use of state-of-the-art analytical, computational and experimental methods; advanced methods which are specifically designed for the analysis of heat and fluid flow in both industrial and research applications.

The objectives of this course are to produce postgraduate specialists with:

  • advanced understanding of heat and fluid flow processes and their role in modern methods of power generation
  • in-depth understanding of numerical and experimental techniques in heat and fluid flow

Teaching on the course is delivered by academics from our world-leading research group in the field of turbulence modelling and heat transfer.

Special features

Thermal Power and Fluid Engineering Merit Award

The three students who achieve the highest performance in this MSc course in 2016-17 will receive an award.

The winners of the Thermal Power and Fluid Engineering Merit Award are presented with a certificate by the Head of the School, Prof Andy Gibson, and are awarded a cash prize. The awards are £3,000 for the top student, £2,000 for the second and £1,000 for the third student in each semester.

The winners of the award this semester were: Aseem Bhavnesh Desai (1st), Robert O'Donoghue (2nd) and Luca Cappellone (3rd).

Teaching and learning

This is a full-time course studied over 12 months with one start date each year in September. Every year this MSc course in Thermal Power and Fluid Engineering attracts a large number of applications from all around the world, which allows us to select only the best candidates.

Throughout the course, alongside the teaching, special emphasis is placed on both computational and experimental work; the aim is to provide insight through experimentally observed phenomena, and also to provide practical/computational experience of a wide range of measurement and data analysis techniques. Thus, the course has a strong practical orientation which is supported by our School laboratories and facilities and it aims to produce engineers who are able to engage in the design, development and testing of internal combustion engines, turbines or power producing devices. Whilst on the course, students have the opportunity to participate in a number of industrial visits. Relevant companies sometimes offer projects to our students as a result of these visits.

The MSc is continually reviewed and now includes course units such as research and experimental methods, advanced fluid mechanics, advanced heat transfer, engineering thermodynamics, power engineering and computational fluid dynamics. Students are assessed based upon a combination of coursework, laboratory calculations, exams and projects. Upon successful completion of taught modules the students are required to do a research dissertation .

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

The MSc in Thermal Power and Fluid Engineering trains graduates in the theory and practice of a broad range of industrially relevant topics within the fields of thermodynamics and fluid mechanics. It is specifically designed to meet the needs of the modern engineer both in industry and in research. Most of our research is derived and funded by industry, and we have always been proud of maintaining strong links with our industrial partners. Teaching staff on this course have research-based collaborations with multinational companies such as Boeing, Airbus, Rolls Royce, Jaguar Land rover, Électricité de France, Procter and Gamble, Unilever, Dyson, Alstom and many others.

Each year Manchester careers fairs, workshops and presentations attract more than 600 exhibitors and 20,000 visitors illustrating how employers target Manchester graduates.

Our recent graduates have gone on to work in internationally renowned companies including:

  • Airbus, UK
  • Électricité de France, UK
  • Jaguar Land Rover, UK
  • Dassault Systèmes, France
  • Honda Motors, UK
  • Doosan Global, UK
  • ExxonMobil, UK
  • Saudi Aramco, KSA
  • Engro Chemicals, Pakistan
  • Abu Dhabi National Oil Company, UAE
  • ABB Group, UK
  • Exa GmbH, UK

Please see our Alumni profiles to find out more about some of our graduates.

Accrediting organisations

This Masters Course is accredited by the IMechE, the Institution of Mechanical Engineers which is the UK's professional body of Mechanical Engineers. This means that graduates from this course are recognised by the IMechE as having the academic qualifications required of candidates for the status of Chartered Engineer.

Visit the Thermal Power and Fluid Engineering (MSc) page on the University of Manchester website for more details!





Enquire About This Course

Recipient: University of Manchester

Insert previous message below for editing? 
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

Cookie Policy    X