University of Oxford Featured Masters Courses
University of Portsmouth Featured Masters Courses
Queen Margaret University, Edinburgh Featured Masters Courses
SOAS University of London Featured Masters Courses
FindA University Ltd Featured Masters Courses
The Biomedical Engineering (BME) program seeks to prepare graduate engineers to face 21st-century challenges by advancing student understanding of prevention, diagnosis and treatment of human injury, disease and the health complications associated with aging as they work to improve human health through advances in healthcare and medicine.

The master's degree program prepares students for careers in the biotechnology industry and medical/healthcare centers or providers of medical/healthcare technology.

Doctoral students will also develop a detailed understanding of the operation of the health care industry, preparing them for academic or industry careers related to medical technology, as well as the background necessary to pursue an entrepreneurial role in medical/healthcare technology. To assist students in pursuing new ventures, incubator space and technology transfer mechanisms are available.

In 2014, the first two doctoral graduates of this program went on to postdoctoral work at Pennsylvania State University, and a permanent position at American Systems in Washington D.C.

Educational Objectives

The goal of biomedical engineers is to improve human health through advances in healthcare and medicine. This includes advancing our understanding of prevention, diagnosis and treatment of human injury, disease and the health complications associated with physiologic and sociologic factors such as aging, environment and diet. In this regard, we are living in an exciting time. In the last two decades or so we have witnessed, among numerous achievements, the decoding of the entire human genome, the birth of proteomic methods, the maturation of computerized tomography, dramatic advances in imaging and sensing technologies, the culture of stem cells, and advances in biomaterials that may eventually enable us to engineer tissues and even organs. Altogether, these achievements have dramatically augmented our potential for improving health care. However, addressing how to use these basic science research advances for improved health care represents a major challenge for biomedical engineers of the coming generation.
Chronic illness is now a dominant issue in health care, consuming vast sums of healthcare dollars, personnel and facilities usage. This situation will only be exacerbated over the coming decades with the aging of the population. As a result, improvements in our ability to prevent, diagnose, and treat chronic illness, and to do so at reasonable cost, has become a focus of the national healthcare agenda. Accordingly, the goal of the biomedical engineering program at Binghamton University is to prepare graduate engineers to face not only these new 21st century challenges, but also to advance new technologies for better healthcare.

MS and PhD applicants must submit the following:

- Online graduate degree application and application fee
- Transcripts from each college/university which you attended
- Two letters of recommendation
- Personal statement of no longer than one page describing your reasons for pursuing graduate study, your career aspirations, your special interests within your field, and any unusual features of your background that might need explanation or be of interest to your program's admissions committee.
- Resume or Curriculum Vitae (max. 2 pages)
- Official GRE scores

And, for international applicants:
- International Student Financial Statement form
- Official bank statement/proof of support
- Official TOEFL, IELTS, or PTE Academic scores

Visit the MS in Biomedical Engineering page on the Binghamton University website for more details!






Enquire About This Course

Recipient: Binghamton University

* required field

Please correct the errors indicated below to send your enquiry

Your enquiry has been emailed successfully