• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
University of Nottingham in China Featured Masters Courses
Staffordshire University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Cranfield University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
  • Study Type

    Full time & Part time available

  • Subject Areas

    Chemistry

  • Start Date

    September

  • Course Duration

    1 year full time, up to 4 years flexible learning

  • Course Type

    MSc

  • Course Fees

    website

  • Last Updated

    05 January 2018

Course content

There is a growing need by industry for staff trained in computational molecular sciences. This new multidisciplinary MSc will teach simulation tools used in a wide range of applications, including catalysis and energy materials, nanotechnology and drug design, and will provide transferable skills to other fields, thereby broadening employment prospects.

About this degree

Students will gain detailed knowledge and skills in molecular modelling, focusing on the state-of-the art simulation techniques employed to research the molecular level properties that determine the macroscopic behaviour of matter. They will also gain key research skills and will learn the basic concepts in business and entrepreneurship as applied to high-tech industries.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (45 credits), three optional module (45 credits) and a research project (90 credits).

Core modules

  • Simulation Methods in Materials Chemistry
  • The Scientific Literature

Optional modules

Students take 45 credits (3 modules) drawn from the following:

  • Mastering Entrepreneurship
  • Numerical Methods in Chemistry
  • Researcher Professional Development
  • Transferable Skills for Scientists
  • Choice of one postgraduate lecture module at UCL
  • Concepts in Computational and Experimental Chemistry
  • Advanced Topics in Inorganic Chemistry
  • Inorganic Rings, Chains and Clusters
  • Biological Chemistry
  • Principles of Drug Design
  • Principles and Methods of Organic Synthesis
  • Pathways, Intermediates and Function in Organic Chemistry
  • Advanced Topics in Physical Chemistry
  • New Directions in Materials Chemistry

Dissertation/report

All students undertake a computational research project which culminates in a substantial dissertation of approximately 10,000 to 12,000 words.

Teaching and learning

The programme is delivered through a combination of lectures, seminars and laboratory classes. Assessment is through unseen examination, coursework, individual and group projects, poster creation, presentation and the research project.

Further information on modules and degree structure is available on the department website: Molecular Modelling MSc

Careers

There are increasing career opportunities in the field of molecular modelling in sectors including sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals. This MSc will train students in the skills necessary for future employment in the industrial and public sector communities, together with specific training in career development and transferable skills.

The majority of students on the programme have moved on to PhD study.

Recent career destinations for this degree

  • PhD Chemistry, UCL

Employability

The training provided by this program will enable the student to enter into a wide range of fields. Students may continue in academia to complete a PhD or pursue teaching as a profession. Students with the skills obtained during this study are highly sought after by the industrial sector, including IT, sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals. Students are very likely to be welcome in the financial sector.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Chemistry has a world-leading position in molecular modelling research.

Molecular modelling techniques are having increasing impact in the industrial sector, as evidenced by the partnership between UCL's Industrial Doctorate Centre in Molecular Modelling and Materials Science and a range of national and international industrial sponsors.

This multidisciplinary programme offers a wide range of options, thereby enabling each student to tailor the programme to their own needs and interests.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Chemistry

94% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.


Visit the Molecular Modelling (MSc) page on the University College London website for more details!

Loading...

Loading...

Loading...

Loading...


Enquire About This Course

Recipient: University College London

Insert previous message below for editing? 
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully




Cookie Policy    X