• Birmingham City University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Cardiff University Featured Masters Courses
University of Nottingham in China Featured Masters Courses
Anglia Ruskin University Featured Masters Courses
Cranfield University Featured Masters Courses
EURECOM Featured Masters Courses
University of Bath Featured Masters Courses

Course content

The Molecular Modelling and Materials Science MRes programme provides training in the key area of the application of state-of-the-art computer modelling and experimental characterisation techniques to determine the structure, properties and functionalities of materials and complex molecules.

About this degree

The programme provides specific training in molecular modelling methods and structure determination and characterisation techniques applicable to the materials sciences, together with tuition in research methods and the use of literature sources. The taught modules cover both specialist scientific topics and general project management and professional skills training relevant to the industrial environment.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (45 credits), two optional modules (30 credits) and a research project (105 credits).

Core modules

Students take both modules listed below (45 credits) and submit a research dissertation (105 credits).

  • Simulation Methods in Materials Chemistry
  • The Scientific Literature

Optional modules

Students take 2 modules drawn from the following or take one from following and one from UCL postgraduate course worth 15 credits.

  • Researcher Professional Development
  • Mastering Entrepreneurship
  • Transferable Skills for Scientists
  • Numerical Methods
  • Concepts in Computational and Experimental Chemistry
  • Advanced Topics in Inorganic Chemistry
  • Inorganic Rings, Chains and Clusters
  • Biological Chemistry
  • Principles of Drug Design
  • Principles and Methods of Organic Synthesis
  • Pathways, Intermediates and Function in Organic Chemistry
  • Advanced Topics in Physical Chemistry
  • New Directions in Materials Chemistry

Dissertation/report

All students undertake an independent research project which culminates in a substantial dissertation of approximately 12,000 to 15,000 words, and an oral presentation.

Teaching and learning

The programme is delivered through a combination of lectures, tutorials, practical classes and seminars. Assessment is through unseen examination, presentation, coursework and the research project.

Further information on modules and degree structure is available on the department website: Molecular Modelling and Materials Science MRes

Careers

This MRes provides the ideal foundation for employment in a range of industries or further doctoral research, with increasing career opportunities in sectors including sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals.

Recent career destinations for this degree

  • Pharmaceutical Conference Producer, SMi
  • EngD Chemistry,UCL
  • PhD Chemistry, Technische Universität Berlin (Technical Universit
  • PhD Computional Chemistry, UCL
  • Laboratory Demonstrator and Marker,UCL and studying Chemistry, UCL

Employability

The training provided by this program will enable the student to enter into a wide range of fields. Students may continue in academia to complete a PhD or pursue teaching as a profession. Students with the skills obtained during this study are highly sought after by the industrial sector, including IT, sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals. Students are very likely to be welcome in the financial sector.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

UCL Chemistry's interests and research activities span the whole spectrum of chemistry from the development of new drugs to the prediction of the structure of new catalytic materials.

This programme was established by the Engineering and Physical Sciences Research Council in response to the needs of industry for highly qualified research leaders with industrial experience and it provides for significant collaboration between academic institutions and industry.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Chemistry

94% rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.


Visit the Molecular Modelling and Materials Science (MRes) page on the University College London website for more details!

Loading...

Loading...

Loading...

Loading...


Enquire About This Course

Recipient: University College London

Insert previous message below for editing? 
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully




Cookie Policy    X