• University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Swansea University Featured Masters Courses
University of Nottingham in China Featured Masters Courses
University College London Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
Birmingham City University Featured Masters Courses
University of Leeds Featured Masters Courses

Course content

About the course

This advanced course focuses on enabling you to become proficient in communicating across a range of different disciplines and delivering optimised engineering solutions using an integrated multidisciplinary mechatronics approach. You will be exposed to a broad range of engineering disciplines, be able to solve multidisciplinary mechatronics problems and develop the skills to apply a mechatronic approach to the solution of technical problems.

Reasons to Study

• Accredited by the Institution of Engineering and Technology (IET)
ensuring you will benefit from the highest quality teaching, and graduate with a recognised qualification

• Graduate employability
Mechatronic engineers are in high demand as more industries seek to apply advances across a range of engineering disciplines

• Enjoy access to state-of-the-art facilities
including dedicated mechanical, electrical and electronic laboratories especially suited for mechatronics, as well as an for the manufacture of student designs

• Industry placement opportunity
you can chose to undertake a year-long work placement, gaining valuable experience to enhance your practical and professional skills further

• Work with leading research groups
you will be offered opportunities to work on projects with research groups within the faculty, including the Centre for Advanced Manufacturing Processes and Mechatronics, that are engaged in high-class, research and industrial collaboration and consultancy

• Course content relevant to modern day practice
our research informs our teaching, ensuring the course content covers current industry topics and issues

• Excellent graduate prospects
graduates enjoy exciting career opportunities in a range of fields such as robotics and automation, manufacturing, aerospace, material processing, energy and power.


First semester (September to January)

• Electromechanics
• Mechatronic Systems - Engineering and Design
• Engineering Business Environment and Energy Studies
• Programming and Software Engineering

Second semester (February to May)

• Machine Vision, Robotics and Flexible Automation
• Engineering Systems: Dynamics and Control
• Microprocessor Applications and Digital Signal Processing
• Research Methods

Individual Project (Stage three)

This research can be industrially-based or linked to an industrial partner, attached to one of the mechatronic-related research teams within the faculty or in other collaborating institutions. The research project should be in an area relevant to Mechatronics, where clear evidence of the ability to solve a real multidisciplinary problem is demonstrated. The project assessment involves a formal presentation, production of a technical paper and a thesis.

Optional placement
We offer a great opportunity to boost your career prospects through an optional one year placement as part of your postgraduate studies. We have a dedicated Placement Unit which will help you obtain this. Once on your placement you will be supported by your Visiting Tutor to ensure that you gain maximum benefit from the experience. Placements begin after the taught component of the course has been completed - usually around June - and last for one year. When you return from your work placement you will begin your dissertation.

Teaching and assessment

Teaching is delivered through a variety of methods including lectures, tutorials and laboratories. You will be expected to undertake self-directed study.

Contact and learning hours

For taught sessions you will attend eight modules with a total of 48 hours (four hours per week for 12 weeks each), with eight hours per module per week of average additional self-directed study. For the individual project you normally will spend 13 weeks working five days (eight hours per day) a week to complete it, and have one hour per week contact time with your supervisor.

Academic expertise

Research is carried out by the Mechatronics Research Centre, which holds a considerable number of UK and EU research project grants and has collaborative research links with more than 100 national and international organisations. The group is internationally regarded and specialises in machine design, control and simulation, fluid power systems and motion control.

As part of your studies, you will be offered opportunities to work on projects with research groups within the faculty that are engaged in high-class, leading-edge research and industrial collaboration and consultancy.

During the project element of the course, the Intelligent Machines and Automation Systems (IMAS) Research Laboratory provides access to dedicated research facilities

To find out more

To learn more about this course and DMU, visit our website:
Postgraduate open days: http://www.dmu.ac.uk/study/postgraduate-study/open-evenings/postgraduate-open-days.aspx

Applying for a postgraduate course:

Funding for postgraduate students

Visit the Mechatronics MSc page on the De Montfort University website for more details!






Enquire About This Course

Recipient: De Montfort University

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully

Cookie Policy    X