FindA University Ltd Featured Masters Courses
University of Derby Featured Masters Courses
Long Island University Featured Masters Courses
University of San Francisco Featured Masters Courses
University of Southampton Featured Masters Courses

Course content

You will study at EPCC, the UK’s leading supercomputing centre. EPCC is the major provider of high performance computing (HPC) training in Europe with an international reputation for excellence in HPC education and research.

Our staff have a wealth of expertise across all areas of HPC, parallel programming technologies and data science.

This MSc programme has a strong practical focus and provide access to leading- edge HPC systems such as ARCHER, which is the UK’s largest, fastest and most powerful supercomputer, with more than 100,000 CPU cores.

Data science involves the manipulation, processing and analysis of data to extract knowledge, and HPC provides the power that underpins it.

You will learn the multidisciplinary skills and knowledge in both HPC and data science to unlock the knowledge contained in the increasingly large, complex and challenging data sets that are now generated across many areas of science and business.

Programme structure

This MSc programme takes the form of two semesters of taught courses followed by a dissertation project.

Your studies will have a strong practical focus and you will have access to a wide range of HPC platforms and technologies. You will take seven compulsory courses, which provide a broad-based coverage of the fundamentals of HPC, parallel computing and data science. The option courses focus on specialist areas relevant to computational science. Assessment is by a combination of coursework and examination.

Taught courses

Compulsory courses:

  • Fundamentals of Data Management (Semester 1)
  • Message-Passing Programming (Semester 1)
  • Programming Skills (Semester 1)
  • Threaded Programming (Semester 1)
  • Data Analytics with High Performance Computing (Semester 2)
  • Software Development (Semester 2)
  • Project Preparation (Semester 2)

Optional courses:

  • HPC Architectures (Semester 1)
  • Parallel Numerical Algorithms (Semester 1)
  • Parallel Programming Languages (Semester 1)
  • Advanced Parallel Programming (Semester 2)
  • HPC Ecosystem (Semester 2)
  • Parallel Design Patterns (Semester 2)
  • Performance Programming (Semester 2)
  • Courses from the School of Informatics, Mathematics or Physics (up to 30 credits)

Dissertation

After completing the taught courses, students work on a three-month individual project leading to a dissertation. Dissertation projects may be either research-based or industry-based with an external organisation, with opportunities for placements in local companies.

Industry-based dissertation projects

Through our strong links with industry, we offer our students the opportunity to undertake their dissertation project with one of a wide range of local companies.

An industry-based dissertation project can give you the opportunity to enhance your skills and employability by tackling a real-world project, gaining workplace experience, exploring potential career paths and building relationships with local companies.

Career opportunities

Our graduates are employed across a range of commercial areas, for example software development, petroleum engineering, finance and HPC support. Others have gone on to PhD research in fields that use HPC technologies, including astrophysics, biology, chemistry, geosciences, informatics and materials science.


Visit the High Performance Computing with Data Science (MSc) page on the University of Edinburgh website for more details!

Loading...

Loading...

Loading...


Enquire About This Course

Recipient: University of Edinburgh

* required field

Please correct the errors indicated below to send your enquiry


Your enquiry has been emailed successfully





FindAMasters. Copyright 2005-2018
All rights reserved.

Let us know you agree to cookies

We use cookies to give you the best online experience. By continuing, we'll assume that you're happy to receive all cookies on this website. To read our privacy policy click here

Ok