Xi’an Jiaotong-Liverpool University Featured Masters Courses
Queen Margaret University, Edinburgh Featured Masters Courses
University of East London Featured Masters Courses
University of Birmingham Featured Masters Courses
University of London Featured Masters Courses
    Medical Sciences Graduate School Logo
  • Study Type

    Full time & Part time available

  • Subject Areas

    Biological Sciences

  • Start Date

    See Course

  • Course Duration

    1 year full time, 2 years part time

  • Course Type

    Research Only

  • Course Fees

    See Fees and Funding tab in the Programme information in our online Prospectus.
    website

  • Last Updated

    02 August 2019

The Institute of Genetic Medicine brings together a strong team with an interest in clinical and developmental genetics. Our research focuses on the causes of genetic disease at the molecular and cellular level and its treatment. Research areas include: genetic medicine, developmental genetics, neuromuscular and neurological genetics, mitochondrial genetics and cardiovascular genetics.

As a research postgraduate in the Institute of Genetic Medicine you will be a member of our thriving research community. The Institute is located in Newcastle’s Life Science Centre. You will work alongside a number of research, clinical and educational organisations, including the Northern Genetics Service.

Quality and Ranking

We rank in the top 100 for Medicine - QS World University Rankings by Subject 2019.

Research areas

Find out more about the Institute of Genetic Medicine's research areas. We offer supervision for MPhil, PhD and MD in the following research areas:

Cancer genetics and genome instability

Our research includes:

  • a major clinical trial for chemoprevention of colon cancer
  • genetic analyses of neuroblastoma susceptibility
  • research into Wilms Tumour (a childhood kidney cancer)
  • studies on cell cycle regulation and genome instability

Cardiovascular genetics and development

We use techniques of high-throughput genetic analyses to identify mechanisms where genetic variability between individuals contributes to the risk of developing cardiovascular disease. We also use mouse, zebrafish and stem cell models to understand the ways in which particular gene families' genetic and environmental factors are involved in the normal and abnormal development of the heart and blood vessels.

Complex disease and quantitative genetics

We work on large-scale studies into the genetic basis of common diseases with complex genetic causes, for example autoimmune disease, complex cardiovascular traits and renal disorders. We are also developing novel statistical methods and tools for analysing this genetic data.

Developmental genetics

We study genes known (or suspected to be) involved in malformations found in newborn babies. These include genes involved in normal and abnormal development of the face, brain, heart, muscle and kidney system. Our research includes the use of knockout mice and zebrafish as laboratory models.

Gene expression and regulation in normal development and disease

We research how gene expression is controlled during development and misregulated in diseases, including the roles of transcription factors, RNA binding proteins and the signalling pathways that control these. We conduct studies of early human brain development, including gene expression analysis, primary cell culture models, and 3D visualisation and modelling.

Genetics of neurological disorders

Our research includes:

  • the identification of genes that in isolation can cause neurological disorders
  • molecular mechanisms and treatment of neurometabolic disease
  • complex genetics of common neurological disorders including Parkinson's disease and Alzheimer's disease
  • the genetics of epilepsy

Kidney genetics and development

Kidney research focuses on:

  • atypical haemolytic uraemic syndrome (aHUS)
  • vesicoureteric reflux (VUR)
  • cystic renal disease
  • nephrolithiasis to study renal genetics

The discovery that aHUS is a disease of complement dysregulation has led to a specific interest in complement genetics.

Mitochondrial disease

Our research includes:

  • investigation of the role of mitochondria in human disease
  • nuclear-mitochondrial interactions in disease
  • the inheritance of mitochondrial DNA heteroplasmy
  • mitochondrial function in stem cells

Neuromuscular genetics

The Neuromuscular Research Group has a series of basic research programmes looking at the function of novel muscle proteins and their roles in pathogenesis. Recently developed translational research programmes are seeking therapeutic targets for various muscle diseases.

Stem cell biology

We research human embryonic stem (ES) cells, germline stem cells and somatic stem cells. ES cell research is aimed at understanding stem cell pluripotency, self-renewal, survival and epigenetic control of differentiation and development. This includes the functional analysis of genes involved in germline stem cell proliferation and differentiation. Somatic stem cell projects include programmes on umbilical cord blood stem cells, haematopoietic progenitors, and limbal stem cells.

Facilities

We have specialist facilities on-site for:

  • multicolour fluorescence-activated cell sorting
  • ‘next generation’ high-throughput sequencing and genotyping
  • transgenics/gene targeting
  • confocal microscopy
  • optical projection tomography
  • gene expression imaging
  • microarray technology
  • bioinformatics
  • fluorescent activated cell sorting
  • ‘Good Manufacturing Practice’ for human stem cells

Find out more about the Institute of Genetic Medicine's facilities.


Visit the Genetics - MPhil page on the Newcastle University website for more details!

Loading...

Loading...

Loading...

Loading...


Enquire About This Course

Recipient: Newcastle University

* required field

Please correct the errors indicated below to send your enquiry


Your enquiry has been emailed successfully