• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Ulster University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Birmingham City University Featured Masters Courses
London Metropolitan University Featured Masters Courses
University of Hertfordshire Featured Masters Courses
Coventry University Featured Masters Courses
Cass Business School Featured Masters Courses
University of Bath Featured Masters Courses

Course Content

Course content

Rational and economic use of energy, with the least damage to the environment, is vital for the future of our planet. Achieving energy efficiency and reducing environmental pollution are increasingly important aspects of professional engineering. This course equips graduates and practicing engineers with an in-depth understanding of the fundamental issues of energy thrift in the industrial and commercial sectors.

Who is it for?

The course has been developed to provide up-to-date technical knowledge and skills required for achieving the better management of energy, designing of energy-efficient systems and processes, utilisation of renewable energy sources and the cost effective reduction and control of pollution. This knowledge can be directly applied to help various sectors of the economy in improving their competitiveness in the face of dwindling resources, probable substantial increases in unit energy costs and the urgent requirement to comply with the increasingly restrictive pollution control standards.

The course is suitable for engineering and applied science graduates who wish to embark on successful careers as environmentally aware energy professionals.

Why this course?

The MSc in Energy Systems and Thermal Processes, established in 1972, was the first of its type to be instituted in Europe, and remains the most prestigious degree in technical energy management in the UK. The course has evolved over the past 40 years from discussions with industrial experts, employers, sponsors and previous students. The content of the study programme is updated regularly to reflect changes arising from technical advances, economic factors and changes in legislation, regulations and standards. 

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

  • Demonstrate competence in the current concepts and theories governing energy flows, heat transfer and energy conversions
  • Demonstrate an in-depth understanding of the issues involved in the management of energy in industry and commerce, and the design of energy-efficient systems and processes
  • Effectively acquire and critically review information from various sources
  • Apply effectively learnt techniques and technologies to achieve cost-effective conservation of energy and reduction of environmental pollution in industrial/commercial applications
  • Assess the potential and viability of energy policies and projects and making informed judgement in the absence of complete data.

Informed by Industry

We have a world-class reputation for its industrial-scale research facilities and pilot-scale demonstration programmes in the energy area. Close engagement with the energy sector over the last 40 years has produced long-standing strategic partnerships with the sectors most prominent organisations including Alstom Power, BP, Cummins Power Generation, Doosan Babcock, E.ON, npower, Rolls Royce, Shell, Siemens and Total.

Our strategic links with industry ensure that all of the materials taught on the course are relevant, timely and meet the needs of organisations competing within the energy sector. This industry-led education makes our graduates some of the most desirable in the world for energy companies to recruit.

Accreditation

This MSc degree is accredited by Institution of Mechanical Engineers (IMechE).

Course details

The taught programme for the Energy Systems and Thermal Processes masters is generally delivered from October to March and is comprised of eight compulsory taught modules and one optional module to select from a choice of three. A typical module consists of five days of intensive postgraduate level structured lectures, tutorials or workshops covering advanced aspects of each subject.

Students on the part-time programme will complete all of the compulsory modules based on a flexible schedule that will be agreed with the Course Director.

Group project

The Energy Audit group project is part of the Energy Management for Industry module. It requires teams of students to carry out energy audits on selected industrial/commercial sites. Teams must produce prioritised recommendations to reduce energy costs. Each team is expected to present findings and conclusions at various stages and submit a final report for assessment. 

Part-time students are encouraged to participate in a group project as it provides a wealth of learning opportunities. However, an option of an individual dissertation is available if agreed with the Course Director.

Individual project

The individual research project allows you to delve deeper into a specific area of interest. As our academic research is so closely related to industry, it is common for our industrial partners to put forward real practical problems or areas of development as potential research topics. The individual research project component takes place between April and August.

For part-time students, it is common that their research project is undertaken in collaboration with their place of work. 

Research projects will involve designs, computer simulations, feasibility assessments, reviews, practical evaluations and experimental investigations.

Typical areas of research include: 

  • Modelling of energy-conversion systems and thermal processes
  • Renewable energy utilisation schemes
  • Control of environmental pollution
  • Combustion and heat transfer processes.

Recent individual research projects Include:

  • Feasibility study for a mini hydropower plant in Peru
  • Developing a self-powered generator for energy usage
  • Feasibility assessment of Installing photovoltaic systems in a house in Alicante, Spain
  • Biomass gasification plants for decentralised small scale rural electrification in Northern Ghana: Assessing the economic viability of its utilisation
  • Thermal analysis on a vertical axis wind turbine generator
  • Investigation of jet pump performance under multiphase flow conditions.

Assessment

Taught modules 40%, Group projects 20%, Individual project 40%

Your career

There is a considerable demand for environmentally aware energy specialists with in-depth technical knowledge and practical skills. Our industry-led education makes graduates of this program some of the most desirable in the world for recruitment by companies and organisations competing in the energy sector.

Graduates of the course have been successful in gaining employment in energy, environmental and engineering consultancies and design practices, research organisations and government departments. A number of our MSc graduates follow further research studies leading to PhD degrees at Cranfield and in other academic institutions.

Recent graduates have gained positions with:

  • Alstom Power
  • Blue Circle Cement
  • British Gas
  • Ceylon Electricity Board, Sri Lanka
  • DELPHI Automotive Systems, Mexico
  • Electrolux, Denmark
  • Energy Saving Trust
  • Environmental Agency
  • Ministry of Energy (Botswana, Jordan, Tanzania, Uganda)
  • Powergen
  • Scottish Power
  • Unilever.

Visit the Energy Systems and Thermal Processes - MSc page on the Cranfield University website for more details!

Loading...

Loading...

Loading...

Loading...

Loading...


Enquire About This Course

Recipient: Cranfield University

* required field

Please correct the errors indicated below to send your enquiry


Your enquiry has been emailed successfully




Cookie Policy    X