• University of Southampton Featured Masters Courses
  • University of Cambridge Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
De Montfort University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Leeds Featured Masters Courses
FindA University Ltd Featured Masters Courses
Bath Spa University Featured Masters Courses
  • Study Type

    Full time available

  • Subject Areas

    Engineering

  • Start Date

    September

  • Course Duration

    12 months

  • Course Type

    MSc

  • Course Fees

    website

  • Last Updated

    09 August 2017

Course content

Commercial products today combine many technologies, and industry is increasingly interdisciplinary. This course is designed to meet this demand, giving you an interdisciplinary knowledge base in modern electronics including power, communications, control and embedded processors.

You’ll develop a broad grasp of a range of interlocking disciplines, combining core modules developing your practical lab skills and industry awareness with a range of optional modules that allow you to focus on topics that suit your interests or career plans. Next-generation silicon technologies, electric drives and generating electric power from renewable sources are among the topics you could study.

This course will appeal to people with a broad interest in electronics and communications, as well as those who are interested in modern communications techniques, radio propagation, cellular mobile systems, control systems, power and drives, and modern system on-chip technology.

Specialist facilities

Our School is an exciting and stimulating environment where you’ll learn from leading researchers in specialist facilities. These include our Keysight Technologies wireless communications lab, as well as labs for embedded systems, power electronics and drives.

Depending on your choice of project, you may have use of our Terahertz photonics lab, ultrasound and bioelectronics labs, class 100 semiconductor cleanroom, traffic generators and analysers, FPGA development tools, sensor network test beds.

The School also contains facilities for electron-beam lithography and ceramic circuit fabrication – and a III-V semiconductor molecular beam epitaxy facility. The Faculty is also home to the £4.3 million EPSRC National Facility for Innovative Robotic Systems, set to make us a world leader in robot design and construction.

Accreditation

This course is accredited by the Institution of Engineering and Technology (IET) under licence from the UK regulator, the Engineering Council.

Course content

Throughout the course you’ll choose from a range of optional modules that allow you to pursue topics across electronic and electrical engineering as they relate to your interests or career plans. You could focus on FPGA design for system-on-chip, wireless communications systems nano-electromechanical systems among many others to gain a broad and deep understanding a range of subjects.

A set of core modules will support your learning. You’ll take part in a range of experiments linked to your subject on our lab module, and you’ll develop your skills in programming. If you have no experience of C programming you’ll take the Programming module, or you can take Software Development if you already have those skills.

To build your understanding of the global electronics industry, you’ll also complete a dissertation. This could take the form of a business, manufacturing or outsourcing plan, a proposal for research funding or an essay on a specific aspect of the industry.

Over the summer months you’ll also work on your research project. This may give you the chance to work as an integral part of one of our active research groups, focusing on a specialist topic in computer science and selecting the appropriate research methods.

Want to find out more about your modules?

Take a look at the Electronic and Electrical Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Industry Dissertation 15 credits
  • Mini Projects and Laboratory 15 credits
  • Main Project 45 credits

Optional modules

  • Wireless Communications Systems Design 15 credits
  • Micro- and Nano-Electromechanical Systems 15 credits
  • Power Electronics and Drives 15 credits
  • Electric Power Generation by Renewable Sources 15 credits
  • Electric Drives 15 credits
  • FPGA Design for System-on-Chip 15 credits
  • Control Systems Design 15 credits
  • Embedded Microprocessor System Design 15 credits
  • Medical Electronics and E-Health 15 credits
  • Programming 15 credits
  • Software Development 15 credits

For more information on typical modules, read Electronic and Electrical Engineering MSc(Eng) in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The professional project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects by students in the School of Electronic and Electrical Engineering have included:

  • Wireless sensor networks, the internet of things and bicycle traffic in the city.
  • Device to Monitor Activity of Ageing People
  • Wind turbine strain gauge system
  • Wind turbine teaching demonstrator
  • Virtual Machines Placement in Core Networks with Renewable Energy
  • Design and Analysis of High-Performance Internet Routers
  • Spatial Modulation for Massive MIMO System
  • Fuel cell for energy storage
  • Low cost design and fabrication of 3D MEMS components
  • Ultrasonic Wind Speed Detection
  • Core Quantum Networks
  • Microwave Low Noise Amplifier

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

Graduates of this course can expect to find jobs where industry needs a breadth of knowledge matched by a depth in certain areas.

You’ll be well equipped to integrate and co-ordinate the strands of a cross-disciplinary project and manage the interfaces between specialities. With these skills, you’ll be in a good position to progress to project management roles in companies working at the cutting edge of modern multi-faceted systems.

General Electric, AECOM, Deep Sea Electronics, Hyperdrive Innovation, Descon Engineering, Broadcom, Pakistan Oilfields Ltd., Wabtec Rail UK and many others are among the organisations where graduates from our School have found employment.


Visit the Electronic and Electrical Engineering MSc (Eng) page on the University of Leeds website for more details!

Loading...

Loading...

Loading...

Loading...


Enquire About This Course

Recipient: University of Leeds

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully




Cookie Policy    X