De Montfort University Featured Masters Courses
Coventry University Featured Masters Courses
Long Island University Featured Masters Courses
Coventry University Featured Masters Courses
University of Hertfordshire Featured Masters Courses

Course content

This course has been designed to reflect the wide applications of Computational Fluid Dynamics. You will learn to understand, write and apply CFD methods across a wide broad range of fields, from aerospace, turbomachinery, multi-phase flow and heat transfer, to microflows, environmental flows and fluid-structure interaction problems. Tailor your course by choosing from a range of specialist modules covering application-specific methods and techniques.

Who is it for?

Designed to meet the education needs of graduates and professional engineers who are looking to kick-start an industrial or research career in the rapidly growing field of Computational Fluid Dynamics. This course bridges the gap between the introductory level of undergraduate courses and the applied expertise acquired by engineers using CFD in industry. You will gain the knowledge and appreciation of CFD methods necessary for a strong foundation to a career in this exciting engineering discipline.

Why this course?

The MSc in Computational Fluid Dynamics provides a solid background so that you will be able to apply CFD methods as a tool for design, analysis and engineering applications. With a strong emphasis on understanding and application of the underlying methods, enthusiastic students will be able to write their own CFD codes during the course.

Sharing some modules with the MSc in Aerospace Dynamics gives you the opportunity to interact with students from other disciplines. In recent years, our students have been had the opportunity for work-based placements at the Aircraft Research Association (ARA), European Space Agency (ESA), Ricardo and DAF Trucks.

Informed by Industry

Our strategic links with industry ensures that all of the materials taught on the course are relevant, timely and meet the needs of organisations competing within the computational analysis sector. This industry led education makes Cranfield graduates some of the most desirable for companies to recruit.

The Industrial Advisory Panel is comprised of senior industry professionals provides input into the curriculum in order to improve the employment prospects of our graduates.

Accreditation

The MSc in Computational Fluid Dynamics will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng (Hons) accredited for CEng will be able to show that they have satisfied the educational base for CEng registration.

Course details

The taught modules are delivered from October to April via a combination of structured lectures, and computer based labs.

The core part of the course consists of modules which are considered to represent the necessary foundation subject material. The course is designed to reflect the broad range of CFD applications by providing a range of optional modules to address specific application areas. Students on the part-time programme will complete all of the compulsory modules based on a flexible schedule that will be agreed with the course director.

Individual project

The taught element of the course finishes in May, at which point you will have an excellent understanding of CFD methods and applications. From May to September you will work full-time on your individual research project. The research project gives you the opportunity to produce a detailed piece of work either in close collaboration with industry, or on a particular topic which you are passionate about.

Recent Individual Research Projects include:

  • A Study of A-pillar Vortices on the Jaguar XF Using Transitional Turbulence Models
  • Aerodynamic Analysis and Optimisation of the Aegis UAV
  • Performance Analysis of Hypervapotron Inlet Region
  • Phase Separation of Oil-water Flow in a Pipe Bend
  • CFD Simulation of a Novel CO Sensor
  • Shock Wave Interaction with Biological Membranes for Drug Therapy
  • High Resolution Implicit Large Eddy Simulation of Ariane 5 Aerodynamics.

Assessment

Taught modules 50%, Individual research project 50%

Your career

Strategic industrial links ensure that the course meets the needs of the organisations competing within the computational sector therefore making our graduates some of the most desirable in the world for companies to recruit. An increasing demand for CFD specialists with in depth technical knowledge and practical skills within a wide range of sectors has seen our graduates employed by leading companies including:

  • Alstom
  • BAE Systems
  • Cummins Turbo Technology
  • BHR
  • ESTEC
  • Hindustan Aeronautics Ltd
  • NUMECA
  • ONERA
  • Rio Tinto
  • Rolls-Royce plc
  • Siemens.

Roughly one third of our graduates go on to register for PhD degrees, many on the basis of their MSc individual research project. Thesis topics are often supplied by individual companies on in-company problems with a view to employment after graduation - an approach that is being actively encouraged by a growing number of industries.



Visit the Computational Fluid Dynamics - MSc page on the Cranfield University website for more details!

Loading...

Loading...

Loading...

Loading...

Loading...


Enquire About This Course

Recipient: Cranfield University

* required field

Please correct the errors indicated below to send your enquiry


Your enquiry has been emailed successfully




Let us know you agree to cookies

We use cookies to give you the best online experience. By continuing, we'll assume that you're happy to receive all cookies on this website. To read our privacy policy click here

Ok