University of Kent, Brussels Featured Masters Courses
Alexandru Ioan Cuza University of Iasi Featured Masters Courses
University of Portsmouth Featured Masters Courses
Cranfield University Featured Masters Courses
Loughborough University Featured Masters Courses

The studies in Biomedical Imaging provide you with strong knowledge on either cellular biology, anatomy and physiology, nanomedicine or biophysics, depending on the area of specialisation. You will study in a highly international environment and gain excellent theoretical and practical skills in a wide range of imaging techniques and applications as well as in image analysis.

In addition, the courses cover for instance light microscopy, advanced fluorescence techniques, super-resolution imaging techniques, PET, electron microscopy, and atomic force microscopy. Also an understanding of the use of multimedia in a scientific context and excellent academic writing skills are emphasised. The interdisciplinary curriculum provides you with a broad spectrum of state-of-the-art knowledge in biomedical imaging related to many different areas in cell biology and biomedicine.

The graduates have the possibility to continue their studies as doctoral candidates in order to pursue a career as a scientist, in industry or science administration, and in an imaging core facility or a hospital research laboratory.

Academic excellence and experience

The strong imaging expertise of Turku universities is a great environment for the studying Biomedical Imaging. Imaging is one of the strongholds of the two universities in Turku, Åbo Akademi University and the University of Turku. Both universities also maintain the Turku BioImaging, which is a broad-based, interdisciplinary science and infrastructure umbrella that unites bioimaging expertise in Turku, and elsewhere in Finland. Turku is especially known for its PET Centre and the development of super-resolution microscopy.

Winner of the 2014 Nobel Prize in Chemistry Stefan Hell did his original discoveries on STED microscopy at the University of Turku. Turku is also a leader of the Euro-BioImaging infrastructure network which provides imaging services for European researchers.

Turku has a unique, compact campus area, where two universities and a university hospital operate to create interdisciplinary and innovative study and research environment.

Research facilities include a wide array of state-of-the-art imaging technologies ranging from atomic level molecular and cellular imaging to whole animal imaging, clinical imaging (e.g. PET) and image analysis.

Studies in bioimaging are highly research oriented and the courses are tailored to train future imaging experts in various life science areas.

Biomedical Imaging specialisation track is very interdisciplinary with a unique atmosphere where people from different countries and educational backgrounds interact and co-operate. Students are motivated to join courses, workshops and internship projects also elsewhere in Finland, in Europe and all around the world. Programme has Erasmus exchange agreements with University of Pecs in Hungary and L’Institut Supérieur de BioSciences in Paris, France.

Master's thesis and topics

Master’s thesis in biomedical imaging consists of two parts: an experimental laboratory project, thesis plan and seminar presentation, and the written thesis.

The aim of the thesis is to demonstrate that the student masters their field of science, understands the research methodology as well as the relevant literature, and is capable of scientific thinking and presenting the obtained data to the scientific community.

Usually the Master’s thesis is conducted in a research group as an independent sub-project among the group’s research projects. Experimental research work will be conducted under the guidance of a supervisor.

Examples of thesis topics:

  • Exercise and brown adipose tissue activation in humans (EXEBAT)
  • Stimulated emission depletion microscopy of sub-diffraction polymerized structures
  • Optimization of immunofluorescence protocols for detection of biomarkers in cancer tissues.
  • Exploring the feasibility of a new PET tracer for assessment of atherosclerotic plaques in mice.
  • Morphology of the inner mitochondrial membrane
  • Accuracy and precision of advanced T2 mapping in cardiac magnetic resonance imaging
  • Prevalence of perfusion-diffusion mismatch in acute stroke patients

Competence description

After completing the studies, you will:

  • have a strong basic knowledge in either cellular biology, anatomy and physiology or biophysics depending on your interests and area of specialisation
  • have excellent theoretical and practical skills in a wide range of imaging techniques and applications as well as in image analysis
  • have a degree from a highly international learning environment where students from all around the world have a chance to interact and collaborate with each other
  • understand the use of multimedia in scientific contexts and see it as a powerful tool of popularising science
  • master scientific writing in English
  • have excellent readiness for postgraduate studies

Job options

The interdisciplinary curriculum provides you with broad knowledge on biomedical imaging that is related to many areas of biomedicine and life sciences.

The Biomedical Imaging spesialisation track aims to train future imaging and image analysis experts to meet the increasing needs in the fields of basic and medical research as well as the high demand for imaging core facility personnel.

The Programme provides excellent possibilities for a career in life sciences. For example, you can:

  • continue as postgraduate students to pursue a career as a scientist
  • work in core facility management
  • work in science administration nationally or internationally
  • work in hospital research laboratories
  • work in industry and industrial research
  • work in imaging network or project management

Career in research

Master of Science degree provides you with eligibility for scientific postgraduate degree studies.

Graduates from the Biomedical Sciences Programme are eligible to apply for a position in the University of Turku Graduate School, UTUGS. The Graduate School consists of 16 doctoral programmes covering all disciplines and doctoral candidates of the University.

Together with the doctoral programmes the Graduate School provides systematic and high quality doctoral training. UTUGS aims to train highly qualified experts with the skills required for both professional career in research and other positions of expertise.

Several doctoral programmes at University of Turku are available for graduates:


Visit the Biomedical Sciences: Biomedical Imaging page on the University of Turku website for more details!

Loading...

Loading...

Loading...

Loading...


Enquire About This Course

Recipient: University of Turku

* required field

Please correct the errors indicated below to send your enquiry


Your enquiry has been emailed successfully