• University of Bristol Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Northumbria University Featured Masters Courses

Postgrad LIVE! Study Fair

Edinburgh

London Metropolitan University Featured Masters Courses
University of Sheffield Featured Masters Courses
University of Leeds Featured Masters Courses
University of Cambridge Featured Masters Courses
University of Nottingham Featured Masters Courses

Course content

This Masters in Bioinformatics (formerly Bioinformatics, Polyomics and Systems Biology) is an exciting and innovative programme that has recently been revamped. Bioinformatics is a discipline at the interface between biology, computing and statistics and is used in organismal biology, molecular biology and biomedicine. This programme focuses on using computers to glean new insights from DNA, RNA and protein sequence data and related data at the molecular level through data storage, mining, analysis and graphical presentation - all of which form a core part of modern biology.

Why this programme

  • Our programme emphasises understanding core principles in practical bioinformatics and functional genomics, and then implementing that understanding in a series of practical elective courses in semester 2 and in a summer research project.
  • You will benefit from being taught by scientists at the cutting edge of their field and you will get intensive, hands-on experience in an active research lab during the summer research project.
  • Bioinformatics and the 'omics' technologies have evolved to play a fundamental role in almost all areas of biology and biomedicine.
  • Advanced biocomputing skills are now deemed essential for many PhD studentships/projects in molecular bioscience and biomedicine, and are of increasing importance for many other such projects.
  • The semester 2 courses are built around real research scenarios, enabling you not only to gain practical experience of working with large molecular datasets, but also to see why each scenario uses the particular approaches it does and how to go about organising and implementing appropriate analysis pipelines.
  • You will be based in the College of Medical, Veterinary & Life Sciences, an ideal environment in which to train in bioinformatics. Our College has carried out internationally-leading research in functional genomics and systems biology.
  • Some of the teaching and research scenarios you’ll be exposed to reflect the activities of 'Glasgow Polyomics', a world-class omics facility set up within the university in 2012 to provide research services using microarray, proteomics, metabolomics and next-generation DNA sequencing technologies. Its' scientists have pioneered the 'polyomics' approach, in which new insights come from the integration of data across different omics levels.
  • In addition, we have several world-renowned research centres at the University, such as the Wellcome Centre for Molecular Parasitology, the MRC-University of Glasgow Centre for Virus Research and the Wolfson Wohl Cancer Research Centre, whose scientists do ground-breaking research employing bioinformatic approaches in the study of disease.
  • You will learn computer programming in courses run by staff in the internationally reputed School of Computing Science, in conjunction with their MSc in Information Technology.

Programme structure

Bioinformatics helps biologists gain new insights about genomes (genomics) and genes, about RNA expression products of genes (transcriptomics) and about proteins (proteomics); rapid advances have also been made in the study of cellular metabolites (metabolomics) and in a newer area, systems biology.

‘Polyomics’ is an intrinsically systems-level approach involving the integration of data from these ‘functional genomics’ areas - genomics, transcriptomics, proteomics and metabolomics - to derive new insights about how biological systems function.

The programme structure is designed to equip students with understanding and hands-on experience of both computing and biological research practices relating to bioinformatics and functional genomics, to show students how the computing approaches and biological questions they are being used to answer are connected, and to give students an insight into new approaches for integration of data and analysis across the 'omics' domains.

On this programme, you will develop a range of computing and programming skills, as well as skills in data handling, analysis (including statistics) and interpretation, and you will be brought up to date with recent advances in biological science that have been informed by bioinformatics approaches.

The programme has the following overall structure

  • core material of 60 credits in semester 1, made up of 10, 15 and 20 credit courses.
  • optional material of 60 credits in semester 2: students select 4 courses (two 10 credit courses and two 20 credit courses) from those available.
  • Project of 60 credits over 14 weeks embedded in a research group over the summer.

Additional information about the programme can be found in the Bioinformatics MSc Programme Structure 2017-18.

Please note: students undertaking the three month PgCert will also be required to take two exams in March/April.

Career prospects

Most of our graduates embark on a University or Institute-based research career path, here in the UK or abroad, using the skills they've acquired on our programme. These skills are now of primary relevance in many areas of modern biology and biomedicine. Many are successful in getting a PhD studentship. Others are employed as a core bioinformatician (now a career path within academia in its own right) or as a research assistant in a research group in basic biological or medical science.

A postgraduate degree in bioinformatics is also valued by many employers in the life sciences sector - eg computing biology jobs in biotechnology, biosciences, neuroinformatics and the pharma industries.

Some of our graduates have entered science-related careers in scientific publishing or education. Others have gone into computing-related jobs in non-bioscience industry or the public sector.


Visit the Bioinformatics - MSc/PgDip/PgCert page on the University of Glasgow website for more details!

Loading...

Loading...

Loading...

Loading...


Enquire About This Course

Recipient: University of Glasgow

Insert previous message below for editing? 
You haven’t included a message. Providing a specific message means universities will take your enquiry more seriously and helps them provide the information you need.
Why not add a message here
* required field
Send a copy to me for my own records.

Your enquiry has been emailed successfully




Cookie Policy    X