Birkbeck, University of London Featured Masters Courses
Imperial College London Featured Masters Courses
University of Birmingham Featured Masters Courses
Queen Margaret University, Edinburgh Featured Masters Courses
University of Reading Featured Masters Courses
    School of Computing, Science and Engineering Logo
  • Study Type

    Full time available

  • Subject Areas

    Engineering

  • Start Date

    September

  • Course Duration

    MSc (one year full-time) PgDip (nine months full-time) PgCert (four months full-time)

  • Course Type

    MSc, PgDip, PgCert

  • Course Fees

    website

  • Last Updated

    05 December 2018

IN BRIEF:

  • Great employer demand for graduates of this course
  • Access to excellent facilities including over 20 wind tunnels and a DC10 jet engine
  • Accredited course by the Institute of Mechanical Engineers, giving you the opportunity to achieve chartered engineer status
  • International students can apply

COURSE SUMMARY

The aerospace industry is at the forefront of modern engineering and manufacturing technology and there is an expanding need for highly skilled chartered Aerospace Engineers.

If you are looking to pursue a career in aerospace engineering this course will enable you to apply your skills and knowledge of engineering devices and associated components used in the production of civil and military aircraft, spacecraft and weapons systems.

This module has been accredited by the Institution of Mechanical Engineers. On graduation you be able to work towards Chartered Aerospace Engineer status which is an independent verification of your skills and demonstrates to your colleagues and employers your commitment and credentials as an engineering professional.

TEACHING

The course will be taught by a series of lectures, tutorials, computer workshops and laboratory activities.

Some modules will include a structured factory visit to illustrate the processes and techniques and to enable investigations to be conducted.

Engineers from the industry will contribute to the specialist areas of the syllabus as guest lecturers.

ASSESSMENT

The coursework consists of one assignment, and two laboratory exercises.

  • Assignment 1: Control design skills. (30%)
  • Laboratory 1: Feedback control design skills and system modelling skills. (10%)
  • Laboratory 2: Flight dynamics (10%)
  • The first 5 assignments are of equal weighting of 10%, assignment 6 has a weighting of 20%
  • Assignment1: Matlab programming skills assessed.
  • Assignment2: Simulink/ Matlab for control programming skills assessed.
  • Assignment3: Matlab simulation skills assessed.
  • Assignment4: Matlab integration skills assessed.
  • Assignment5: Matlab matrix manipulation knowledge assessed.
  • Assignment 6: Aerospace assembly techniques.

EMPLOYABILITY

This is a highly valued qualification and as a graduate you can expect to pursue careers in a range of organizations around the world such as in aerospace companies and their suppliers, governments and research institutions.

FACILITIES

Mechanical Lab – This lab is used to understand material behaviour under different loading conditions and contains a tensile test machine and static loading experiments – typical laboratory sessions would include tensile testing of materials and investigation into the bending and buckling behaviour of beams.

Aerodynamics Lab – Contains low speed and supersonic wind tunnels – typical laboratory experiments would include determining the aerodynamic properties of an aerofoil section and influence of wing sweep on the lift and drag characteristics of a tapered wing section.

Composite Material Lab – This lab contains wet lay-up and pre-preg facilities for fabrication of composite material test sections. The facility is particularly utilised for final year project work.

Control Dynamics Lab – Contains flight simulators (see details below) and programmable control experiments – typical laboratory sessions would include studying the effects of damping and short period oscillation analysis, forced vibration due to rotating imbalance, and understanding the design and performance of proportional and integral controllers.

Flight Simulators

  • Merlin MP520-T Engineering Simulator    
  • This simulator is used to support engineering design modules, such as those involving aerodynamics and control systems by giving a more practical experience of aircraft design than a traditional theory and laboratory approach. As a student, you'll design and input your own aircraft parameters into the simulator before then assessing the flight characteristics.
  • The simulator is a fully-enclosed single seat capsule mounted on a moving 2-degree of freedom platform which incorporates cockpit controls, integrated main head-up display and two secondary instrumentation display panels.
  • An external instructor console also accompanies the simulator and is equipped with a comprehensive set of displays, override facilities and a two-way voice link to the pilot.
  • Elite Flight Training System    
  • The Elite is a fixed base Piper PA-34 Seneca III aircraft simulator used for flight operations training and is certified by the CAA as a FNPT II-MCC Multi-Crew Cockpit training environment. It has two seats, each with a full set of instrumentation and controls, and European Visuals, so you see a projection of the terrain that you're flying through, based on real geographic models of general terrain and specific airports in Europe.

Visit the Aerospace Engineering (MSc/PG Dip/PGCert) page on the University of Salford website for more details!

Loading...

Loading...

Loading...


Enquire About This Course

Recipient: University of Salford

* required field

Please correct the errors indicated below to send your enquiry


Your enquiry has been emailed successfully