The American University of Paris Featured Masters Courses
University of Derby Featured Masters Courses
Staffordshire University Featured Masters Courses
Coventry University Featured Masters Courses
Swansea University Featured Masters Courses

Course content

This course provides both fundamental and applied knowledge to understand airflows, vehicle dynamics and control and methods for computational modelling. It will provide you with practical experience in the measurement, analysis, modelling and simulation of airflows and aerial vehicles.

You have the choice of two specialist options which you chose once you commence your studies: Flight Dynamics or Aerodynamics. 

Who is it for?

Suitable if you have an interest in aerodynamic design, flow control, flow measurement, flight dynamics and flight control. Choose your specialist option once you commence your studies.

  • Flight Dynamics option: if you want to develop a career in flight physics and aircraft stability and control, more specifically in the fields of flight control system design, flight simulation and flight testing.
  • Aerodynamics option: if you want to develop a career in flight physics and specifically in the fields of flow simulation, flow measurement and flow control.

Why this course?

The aerospace industry in the UK is the largest in the world, outside of the USA. Aerodynamics and flight dynamics will remain a key element in the development of future aircraft and in reducing civil transport environmental issues, making significant contributions to the next generation of aircraft configurations. 

In the military arena, aerodynamic modelling and flight dynamics play an important role in the design and development of combat aircraft and unmanned air vehicles (UAVs). The continuing search for aerodynamic refinement and performance optimisation for the next generation of aircraft and surface vehicles creates the need for specialist knowledge of fluid flow behaviour.

Cranfield University has been at the forefront of postgraduate education in aerospace engineering since 1946. The MSc in Aerospace Dynamics stems from the programme in Aerodynamics which was one of the first masters' courses offered by Cranfield and is an important part of our heritage. The integration of aerodynamics with flight dynamics reflects the long-term link with the aircraft flight test activity established by Cranfield. 

Graduates of this course are eligible to join the Cranfield College of Aeronautics Alumni Association (CCAAA), an active community which holds a number of networking and social events throughout the year.

Informed by Industry

The Industrial Advisory Panel, comprising senior industry professionals, provides input into the curriculum in order to improve the employment prospects of our graduates. Panel members include:

  • Adrian Gaylord, Jaguar Land Rover (JLR)
  • Trevor Birch, Defence, Science and Technology Laboratory (DSTL)
  • Chris Fielding, BAE Systems
  • Anastassios Kokkalis, Voith
  • Stephen Rolson, European Aeronautic Defence and Space Company (EADS)
  • Clyde Warsop, BAE Systems

Accreditation

The MSc in Aerospace Dynamics is accredited by the Royal Aeronautical Society (RAeS) on behalf of the Engineering Council as meeting the requirements for Further Learning for registration as a Chartered Engineer. Candidates must hold a CEng accredited BEng/BSc (Hons) undergraduate first degree to comply with full CEng registration requirements.

Course details

This course consists of optional taught modules, an individual research project and a group flight test project.

The group flight test project consists of two compulsory modules that offer an initial introduction to aerospace dynamics and provide grounding for the group flight test. Choice is a key feature of this course, with specialist options in either aerodynamics or flight dynamics. Choose your option once you have commenced your studies.

Group project

All students undertake the Group Flight Test Report during October to December. This involves a series of flight tests in the The National Flying Laboratory Centre (NFLC) Jetstream which are undertaken, reported and presented as a group exercise. This is an important part of the course as it enables candidates to experience the application of specialist skills within a real plane to a collaborative report/presentation.

Individual project

The individual research project allows you to delve deeper into an area of specific interest. It is very common for industrial partners to put forward real world problems or areas of development as potential research project topics. The project is carried out under the guidance of an academic staff member who acts as your supervisor. The individual research project component takes place between April and August.

If agreed with the course director, part-time students have the opportunity to undertake projects in collaboration with their place of work, which would be supported by academic supervision.

Previous Individual Research Projects covered:

Aerodynamics option

  • Spiked body instabilities at supersonic speeds
  • Aerodynamic loads on a race car wing in a vortex wake
  • Lateral/directional stability of a tailless aircraft.
  • Aerodynamic drag penalties due to runback ice
  • Automotive flow control using fluidic sheets
  • Aerodynamic design and optimisation of a blended wing body aircraft.

Flight Dynamics option

  • Flight dynamic modelling of large amplitude rotorcraft dynamics
  • Decision making for autonomous flight in icing conditions
  • Comparative assessment of trajectory planning methods for UAVs
  • Machine vision and scientific imaging for autonomous rotorcraft
  • Linear parameter varying control of a quadrotor vehicle
  • Gust load alleviation system for large flexible civil transport.

Assessment

Taught modules 40%, Group project 20% (dissertation for part-time students), Individual project 40%

Your career

Industry driven research makes our graduates some of the most desirable in the world for recruitment in a wide range of career paths within the aerospace and military sector. A successful graduate should be able to integrate immediately into an industrial or research environment and make an immediate contribution to the group without further training. Increasingly, these skills are in demand in other areas including automotive, environmental, energy and medicine. Recent graduates have found positions in the aerospace, automotive and related sectors. 

Employers include:

  • Airbus
  • BAE Systems
  • Onera
  • Deutsches Zentrum für Luft- und Raumfahrt (DLR)
  • Defence, Science and Technology Laboratory (DSTL)
  • QinetiQ
  • Rolls-Royce plc
  • Snecma
  • Thales
  • Selex ES
  • MBDA
  • Jaguar Land Rover
  • Tata
  • Science Applications International Corporation (SAIC)
  • Triumph Motorcycles.

A significant number of graduates go on to do research and higher degrees.


Visit the Aerospace Dynamics - MSc page on the Cranfield University website for more details!

Loading...

Loading...

Loading...

Loading...

Loading...


Enquire About This Course

Recipient: Cranfield University

* required field

Please correct the errors indicated below to send your enquiry


Your enquiry has been emailed successfully





FindAMasters. Copyright 2005-2018
All rights reserved.

Let us know you agree to cookies

We use cookies to give you the best online experience. By continuing, we'll assume that you're happy to receive all cookies on this website. To read our privacy policy click here

Ok