• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Loughborough University Featured Masters Courses
  • Queen Mary University of London Featured Masters Courses
  • Loughborough University London Featured Masters Courses
  • Arden University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Ulster University Featured Masters Courses
King’s College London Featured Masters Courses
Queen Mary University of London Featured Masters Courses
Cranfield University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Loughborough University Featured Masters Courses
0 miles
Chemistry×

Masters Degrees in Colour Chemistry

Masters degrees in Applied Chemistry develop advanced postgraduate knowledge in the theory, application and analysis of polymers, fine chemicals and colorants for commercial use and social practise.

Programmes include taught MSc degrees, as well as research-based MRes and MPhil programmes. Entry requirements normally include an undergraduate degree in Chemistry, Physics or Computer Science.

Why study a Masters in Colour Chemistry?

Read more...

  • Chemistry×
  • Colour Chemistry×
  • clear all
Showing 1 to 8 of 8
Order by 
This programme aims to meet the needs of the fine chemicals, cosmetics, biomaterial, polymers, surface coatings, graphic arts and colorant industries by producing graduates with advanced knowledge and research skills in colour science and in the theory, application and analysis of polymers, fine chemicals and colorants. Read more

This programme aims to meet the needs of the fine chemicals, cosmetics, biomaterial, polymers, surface coatings, graphic arts and colorant industries by producing graduates with advanced knowledge and research skills in colour science and in the theory, application and analysis of polymers, fine chemicals and colorants.

You’ll be introduced to a breadth of practical research and high-level academic skills in planning, experimentation and processes, in synthesis and characterisation aspects. Optional modules will also give you the chance to gain specialist knowledge in an area that suits your own interests and potential career plans.

You’ll also develop a range of generic skills such as problem solving, information technology and communication. Our graduates enjoy excellent employment opportunities both in industry and academia.

Course content

Throughout the programme you’ll study compulsory and optional modules covering concepts, information and techniques relevant to polymers, colorants and fine chemicals. You’ll also be introduced to topics from the research frontier such as synthesis, formulation and application of advanced polymers, colorants, cosmetics, inks and coatings, fine chemicals and pharmaceuticals.

The focal point of the course is the extended research project. Your supervisor will help you to select the project that is right for you, in an area that interests and motivates you. The project will provide you with key research experience to take your career forward. With the core modules behind you, you will be ideally positioned to choose an exciting problem to investigate. Some research projects are linked with industry and will help to enhance your employability.

Course structure

Compulsory modules

  • Extended Laboratory Project for Chemistry-based MSc courses 90 credits
  • Advanced Colour Science 15 credits
  • Synthesis and Application of Polymers 15 credits
  • Colour Application Technology 30 credits
  • Instrumental Analysis and Characterisation of Polymers, Colorants and Fine Chemicals 15 credits

Optional modules

  • Organic Synthesis for Fine Chemical and Pharmaceutical Synthesis 15 credits
  • Case Studies in Fine Chemical and Pharmaceutical Synthesis 15 credits

For more information on typical modules, read Polymers, Colorants and Fine Chemicals MSc in the course catalogue

Learning and teaching

Teaching methods involve a combination of lectures, tutorials, case studies, workshops and contact with relevant industries. The final stage of study is an individual extended research project which is typically carried out within a research group and may also include external industrial involvement.

Assessment

Assessment is based on course work, research project performance and written exams which take place at the end of the semester in which the module is taught.

Career opportunities

There are a range of employment opportunities in areas such as fine chemicals manufacture (eg colorants, cosmetics, food additives, healthcare products etc.), polymers and polymeric additives (eg high performance plastics, biopolymers, medical implants, drugs), colour applications (eg textile dyeing and printing, inks and coatings), with companies such as Unilever, P&G, GSK, Clariant, Archroma, Huntsman, L’Oreal, Abbott Laboratory, Akzo Nobel, Sun Chemical, and BASF.

There are also opportunities to continue on to PhD study with many projects supported by industrial partners.

Careers support

Colour Science, in conjunction with The Printing Charity, also offer career training days to students interested in furthering their career in graphic arts industries.

We encourage you to prepare for your career from day one. That’s one of the reasons Leeds graduates are so sought after by employers.

The Careers Centre and staff in your faculty provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
Our MSc Chemistry by Research combines advanced lecture modules in your area of specialisation with safety and professional skills modules and a significant period dedicated to an individual research project. Read more

Summary

Our MSc Chemistry by Research combines advanced lecture modules in your area of specialisation with safety and professional skills modules and a significant period dedicated to an individual research project. It offers specialisation in characterisation and analytics, chemical biology, computational systems chemistry, electrochemistry, flow chemistry, magnetic resonance, organic and inorganic synthesis and supramolecular chemistry.

Visit our website for further information...



Read less
The programme is structured around a solid core comprised of the three main analytical techniques – Mass spectrometry, NMR spectroscopy and X-ray diffraction. Read more

Summary

The programme is structured around a solid core comprised of the three main analytical techniques – Mass spectrometry, NMR spectroscopy and X-ray diffraction. Each of these techniques contains a number of key common themes (data collection, analysis and management). Supporting modules feature further analytical techniques and serve to embed themes of GLP, facility management and enterprise into the programme.

A group analytical project develops interpersonal skills and the ability to work in a team and will be the first opportunity for students to independently fully exercise some of the components of the course taught in the first semester. The integral research project provides an opportunity to explore any of the main themes directly or as part of a collaborative synthetic/analytical investigation.

Visit our website for further information...



Read less
The Specializing Master in Color Design and Technology, held in collaboration with Associazione Italiana Colore, aims to provide advanced training to professionals… Read more
The Specializing Master in Color Design and Technology, held in collaboration with Associazione Italiana Colore, aims to provide advanced training to professionals, so as to enable them to understand and manage the many technological and design issues, often across many disciplinary areas, typical of all those professional and research sectors in which the use and management of color are essential. Examples of such production areas include industrial product design, interior architecture, communication, fashion, entertainment and urban planning. Particular attention will be paid to analyzing and summarizing utilization, control, ideation, organization and planning through the use of color. Consequently, color is not treated as a simple attribute of objects or surfaces, but as a means of expression and design underlying perception and interaction with reality.

The Specializing Master consists of two phases. The theory and technique based phase aims to train students in the technical aspects of measurement, control, digital reproduction and comparison relating to disciplines such as physics, optics, colorimetry, chemistry, psychology and perception. The second phase focuses on the methods learned, which will be contextualized and experimented in different color application and design areas such as interior design, urban spaces, industrial products, fashion and communication.

For information: http://www.polidesign.net/en/colordesign

Read less
MPhil Chemistry is usually a one year programme that focuses on the design and execution of an original research project. The project will occupy about two thirds of the year, with the remainder of the time devoted to lectures and preparation of a chemistry MPhil thesis. Read more

Summary

MPhil Chemistry is usually a one year programme that focuses on the design and execution of an original research project.

The project will occupy about two thirds of the year, with the remainder of the time devoted to lectures and preparation of a chemistry MPhil thesis.

Visit our website for further information...



Read less
The MSc Chemistry is based on Southampton's highly successful MChem degree. Read more

Summary

The MSc Chemistry is based on Southampton's highly successful MChem degree. The one-year taught course offers the opportunity to study Chemistry at an advanced level, covering both the traditional core areas of analytical, inorganic, organic, and physical chemistry, as well as more specialist courses aligned to the research groupings of the Department. The course provides opportunities for you to develop and demonstrate advanced knowledge, understanding, and practical/research skills.

Visit our website for further information...



Read less
Electrochemistry and its application in electrochemical engineering is an increasingly important area of science and technology, with relevance to energy (batteries, fuel cells and solar cells), corrosion, sensors, waste treatment, metal finishing and the electronics industry. Read more

Summary

Electrochemistry and its application in electrochemical engineering is an increasingly important area of science and technology, with relevance to energy (batteries, fuel cells and solar cells), corrosion, sensors, waste treatment, metal finishing and the electronics industry. This new programme will provide students with a background in both the fundamental and applied aspects of electrochemistry, enabling them to pursue a variety of rewarding careers.

Visit our website for further information...



Read less
Color science is broadly interdisciplinary, encompassing physics, chemistry, physiology, statistics, computer science, and psychology. Read more

Program overview

Color science is broadly interdisciplinary, encompassing physics, chemistry, physiology, statistics, computer science, and psychology. The curriculum, leading to a master of science degree in color science, educates students using a broad interdisciplinary approach. This is the only graduate program in the country devoted to this discipline and it is designed for students whose undergraduate majors are in physics, chemistry, imaging science, computer science, electrical engineering, experimental psychology, physiology, or any discipline pertaining to the quantitative description of color. Graduates are in high demand and have accepted industrial positions in electronic imaging, color instrumentation, colorant formulation, and basic and applied research. Companies that have hired graduates include Apple Inc., Benjamin Moore, Canon Corp., Dolby Laboratories, Eastman Kodak Co., Hallmark, Hewlett Packard Corp., Microsoft Corp., Pantone, Qualcomm Inc., Ricoh Innovations Inc., Samsung, and Xerox Corp.

The color science degree provides graduate-level study in both theory and practical application. The program gives students a broad exposure to the field of color and affords them the unique opportunity of specializing in an area appropriate for their background and interest. This objective will be accomplished through the program’s core courses, selection of electives, and completion of a thesis or graduate project.The program revolves around the activities of the Munsell Color Science Laboratory within the College of Science. The Munsell Laboratory is the pre-eminent academic laboratory in the country devoted to color science. Research is currently under way in color appearance models, lighting, image-quality, color-tolerance psychophysics, spectral-based image capture, archiving, reproduction of artwork, color management, computer graphics; and material appearance. The Munsell Laboratory has many contacts that provide students with summer and full-time job opportunities across the United States and abroad.

Plan of study

Students must earn 30 semester credit hours as a graduate student to earn the master of science degree. For full-time students, the program requires three to four semesters of study. Part-time students generally require two to four years of study. The curriculum is a combination of required courses in color science, elective courses appropriate for the candidate’s background, and either a research thesis or graduate project. Students require approval of the program director if they wish to complete a graduate project, rather than a research thesis, at the conclusion of their degree.

Prerequisites: The foundation program

The color science program is designed for the candidate with an undergraduate degree in a scientific or other technical discipline. Candidates with adequate undergraduate work in related sciences start the program as matriculated graduate students. Candidates without adequate undergraduate work in related sciences must take foundation courses prior to matriculation into the graduate program. A written agreement between the candidate and the program coordinator will identify the required foundation courses. Foundation courses must be completed with an overall B average before a student can matriculate into the graduate program. A maximum of 9 graduate-level credit hours may be taken prior to matriculation into the graduate program. The foundation courses, representative of those often required, are as follows: one year of calculus, one year of college physics (with laboratory), one course in computer programming, one course in matrix algebra, one course in statistics, and one course in introductory psychology. Other science courses (with laboratory) might be substituted for physics.

Curriculum

Color science, MS degree, typical course sequence:
First Year
-Principles of Color Science
-Computational Vision Science
-Historical Research Perspectives
-Color Physics and Applications
-Modeling Visual Perception
-Research and Publication Methods
-Electives
Second Year
-Research
-Electives

Other admission requirements

-Submit scores from the Graduate Record Examination (GRE).
-Submit official transcripts (in English) for all previously completed undergraduate and graduate course work.
-Submit two professional recommendations.
-Complete an on-campus interview (when possible).
-Have an average GPA of 3.0 or higher.
-Have completed foundation course work with GPA of 3.0 or higher (if required), and complete a graduate application.
-International applicants who native language is not English must submit scores from the Test of English as a Foreign Language. Minimum scores of 94 (internet-based) are required. International English Language Testing System (IELTS) scores will be accepted in place of the TOEFL exam. Minimum scores will vary; however, the absolute minimum score required for unconditional acceptance is 7.0. For additional information about the IELTS, please visit http://www.ielts.org.

Additional information

Scholarships and assistantships:
Students seeking RIT-funded scholarships and assistantships should apply to the Color Science Ph.D. program (which is identical to the MS program in the first two years). Currently, assistantships are only available for qualified color science applicants to the Ph.D. program. Applicants seeking financial assistance from RIT must submit all application documents to the Office of Graduate Enrollment Services by January 15 for the next academic year.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X