• University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
Middlesex University Featured Masters Courses
Vlerick Business School Featured Masters Courses
FindA University Ltd Featured Masters Courses
FindA University Ltd Featured Masters Courses
University of Glasgow Featured Masters Courses
0 miles
Biological Sciences×

Masters Degrees in Biotechnology

We have 262 Masters Degrees in Biotechnology

Masters degrees in Biotechnology equip postgraduates with the skills to utilise organisms and their biological outputs, in order to optimise products and services in numerous contexts. Specialisations include Medical Biotechnology, Pharmaceutical Biotechnology, Environmental Biotechnology, and Plant Biotechnology.

Entry requirements normally include an undergraduate degree in a relevant science, technology or engineering subject.

Why study a Masters in Biotechnology?

Read more...

  • Biological Sciences×
  • Biotechnology×
  • clear all
Showing 1 to 15 of 262
Order by 
The Biotechnology MSc within the Institute of Biological, Environmental and Rural Sciences (IBERS) provides you with key skills, specialist knowledge and essential training for a career in industrial or academic bioscience. Read more

About the course

The Biotechnology MSc within the Institute of Biological, Environmental and Rural Sciences (IBERS) provides you with key skills, specialist knowledge and essential training for a career in industrial or academic bioscience. Increasingly, biotechnology companies are recruiting Master’s students with specialised skills to perform jobs previously the reserve of Doctorate level scientists.
At the end of the course you will be able to meet the challenges of biotechnology, demonstrate critical thinking and solve problems, exploit opportunities, and know how ideas can be turned into viable businesses or a successful grant application.

Why study Biotechnology at IBERS?

You want specialist experience and knowledge in biotechnology research and commercial application to give you a competitive edge in the job market and underpin your successful career. IBERS has the credentials to deliver these goals.

With 360 members of staff, 1350 undergraduate students and more than 150 postgraduate students IBERS is the largest Institute within Aberystwyth University. Our excellence in teaching was recognised by outstanding scores in the National Student Satisfaction Survey (2016), with three courses recording 100% student satisfaction and a further 10 scoring above the national average. The latest employability data shows that 92% of IBERS graduates were in work or further study six months after leaving Aberystwyth University. The most recent joint submission to the Research Excellence Framework (REF) displayed that 78% of our research as world-leading or internationally excellent, 97% of our research is internationally recognised, and 76% judged as world-leading in terms of research impact.

IBERS is internationally-recognised for research excellence and works to provide solutions to global challenges such as food security, sustainable bioenergy, and the impacts of climate change. IBERS hosts 2 National bioscience facilities: The National Plant Phenomics Centre –a state of the art automated plant growth facility that allows the high throughput evaluation of growth and morphology in defined environments, and the BEACON Centre of Excellence for Biorefining - a £20 million partnership between Aberystwyth, Bangor and Swansea Universities set up to help Welsh businesses develop new ways of converting biomass feedstocks and waste streams into products for the pharmaceutical, chemicals, fuel and cosmetic industries.

IBERS has a track record of working with academic and industrial partners to develop and translate innovative bioscience research into solutions that help mitigate the impacts of climate change, animal and plant disease, and deliver renewable energy and food and water security.

Course structure and content

In the first 2 semesters the course focuses on 2 key areas of biotechnology: industrial fermentation (manufacturing processes, feedstock pretreatment, fermentation, and the biorefining of low cost feedstocks to high value products) and plant biotechnology (synthetic biology, gene editing, precision genome modification, transformation technologies, up and down gene regulation and silencing, and gene stacking). In addition you will receive practical training in state of the art molecular and analytical bioscience techniques and technologies, and learn of marine, food and health biotechnology, and how the sustainable use of bio-resources and bioscience can help meet the needs of the growing human population. All course modules are delivered by academics and professional practitioners at the forefront of activity in the field.

In the final semester you will work on your own research project with your dissertation supervisor. This could be a project of your own design and will focus on an aspect of biotechnology that you found particularly interesting; it may even be something that you want to develop as a business idea in the future. During your dissertation project you will use the knowledge and the skills that you gained during the first 2 semesters. Your dissertation project will give you an opportunity to become an expert in your topic and to develop research skills that will prepare you for your future career in biotechnology. Your tutor will mentor you in hypothesis driven experimental design, train you in analytical techniques e.g. gas and liquid chromatography, mass spectrometry, vibrational spectroscopy, fermentation, product isolation, biomass processing, analysis of complex experimental data, and the formation of robust conclusions. You will also be guided in writing your dissertation.

Core modules:

- Bioconversion and Biorefining
- Frontiers in Biosciences
- Research Methods in the Biosciences
- Current Topics in Biotechnology
- Crop Biotechnology
- Biotechnology for Business
- Dissertation

Employability

There is great demand nationally and internationally for skilled graduates in Biotechnology, indeed the UK Biotechnology and Biological research Council (BBSRC) have made ‘Bioenergy and Biotechnology’ a strategic priority for science funding. The sector is expanding rapidly and provides excellent employment opportunities for biotechnology graduates. A recent report for the British research councils estimated that in the financial year 2013/14, British industrial biotechnology and bioenergy activities involved around 225 companies and generated £2.9billion of sales. The biotechnology industry makes a significant contribution to the United Kingdom’s net exports, equivalent to £1.5 billion and offsetting 4% of the country’s total trade deficit. In this year alone, biotechnology attracted £922 million in investment (4.6% of investment in the UK by the private sector). In the same year the biotechnology industry employed approximately 8,800 jobs in the UK in jobs ranging from scientists, technicians and analytical staff, and an extimated 11,000 additional jobs in UK suppliers and support industries - see http://www.bbsrc.ac.uk/documents/capital-economics-biotech-britain-july-2015/. These figures are typical of international trends and students graduating from the Biotechnology MSc at IBERS will be very well placed to follow a career in the Biotechnology sector.

Read less
Biotechnology is defined as the industrial exploitation of living organisms or the exploitation of components derived from these organisms. Read more

MSc Biotechnology

Biotechnology is defined as the industrial exploitation of living organisms or the exploitation of components derived from these organisms.

Programme summary

During the master Biotechnology you learn more about the practical applications of biotechnology, including age-old techniques such as brewing and fermentation, which are still important today. In recent decades, gene modification has revolutionized the biotechnology industry, spawning countless new products and improving established processes. Modern biotechnology has become an applied area of science with a multidisciplinary approach embracing recombinant DNA technology, cellular biology, microbiology, biochemistry, as well as process design and engineering.

Specialisations

Cellular and Molecular Biotechnology
This specialisation focuses on the practical application of cellular and molecular knowledge with the aim of enhancing or improving production in micro-organisms or cell cultures. Possible majors: molecular biology, biochemistry, microbiology, virology, enzymology and cell biology. The knowledge and skills gained can be applied in food biotechnology, medicine and vaccine development, environmental and bio-based technology.

Process Technology
This specialisation focuses on engineering strategies for developing, enhancing or improving production in fermentation, bioconversion and enzymatic synthesis. Possible majors: bioprocess engineering, food or environmental engineering, applied biotechnology and system and control techniques. The knowledge and skills gained can be applied in food biotechnology, medicine and vaccine development, environmental and bio-based technology.

Marine Biotechnology
This specialisation focuses on the use of newly- discovered organisms from the sea in industrial processes. Applications include production of new medicines, fine chemicals, bio-based products and renewable energy.

Medical Biotechnology
This specialisation focuses on the use of modern biotechnology in the development and production of new vaccines and medicines. Advanced molecular and cellular techniques are used to study diagnostic and production methods for vaccines and medicines. Possible majors: molecular biology, microbiology, virology and cell biology.

Food Biotechnology
This specialisation focuses on the application from biotechnology to food processing. The approach includes microbial and biochemical aspects integrated with process engineering and chemistry. Possible majors: food microbiology, food chemistry and process engineering.

Environmental and Biobased Technology
This specialisation focuses on the design and development of biotechnological processes for solving environmental problems by removing waste products or by producing renewable energy. Possible majors: environmental technology, bioprocess engineering, microbiology and biobased chemical technology.

Your future career

Graduates in biotechnology have excellent career prospects. More than 60 percent begin their careers in research and development. Many of these Master graduates go on to earn their PhD degrees and often achieve management positions within a few years. Approximately 30 percent of our graduates start working for biotechnology companies immediately. Relatively few begin their careers outside the private sector or in a field not directly related to biotechnology. In the Netherlands, some graduates work for multinational companies such as Merck Schering Plough, DSM, Heineken, Unilever and Shell, while others find positions at smaller companies and various universities or research centres such as NKI and TNO.

Alumnus Sina Salim.
In America and Brazil, production of maize and sugar cane for bio ethanol takes up enormous swathes of arable land that could otherwise be used for food production. This leads to the well-known food versus fuel dilemma. An alternative method for producing biodiesel is the use of algae. Currently, too much energy is consumed during the growth and harvesting of algae, but huge efforts are being made to reduce these energy requirements. Sina Salim is trying to develop a cheap and energy efficient harvesting method to ultimately produce biodiesel from algae, a competitor of fossil fuel. Now he is operational scientist at Bioprocess Pilot Facility B.V.

Related programmes:
MSc Molecular Life Sciences
MSc Food Technology
MSc Bioinformatics
MSc Plant Biotechnology
MSc Environmental Sciences.

Read less
This new programme offers an expansion of our already successful MSc in biotechnology into industrial biotechnology and business management, jointly run with Adam Smith Business School. Read more
This new programme offers an expansion of our already successful MSc in biotechnology into industrial biotechnology and business management, jointly run with Adam Smith Business School.

Why this programme

◾Ranked world top 100 for Biological Sciences.
◾If you wish to improve your knowledge of modern molecular, biochemical, cell biological and genetic techniques for biotechnological applications, this programme is designed for you.
◾You will gain a sound understanding of the nature of business based on bioscience knowledge and research, opportunities for innovation and regulatory requirement constraints, intellectual property and ethical issues.
◾You will learn how to assess the current literature, be encouraged to form opinions based on scientific merit, and implement these ideas in future research planning.
◾You will be taught by experts in the field of Biotechnology who run active, internationally recognised, research groups here at Glasgow.
◾The course involves extensive interaction with industry, through site visits, guest lectures and an "Industrial Networking Symposium" where representatives from the European biotechnology and pharmaceutical industry will discuss their companies and answer your questions on working in the industrial sector.
◾This course has a strong laboratory component, with courses that run throughout the year, giving you hands on experience of diverse biotechnological research skills.
◾The flexible independent research project provides valuable training for students wishing to proceed to a PhD or into an industrial career; this may also be completed as a business based project.
◾Additional programme components include industrial networking sessions and a dedicated career workshop on progression planning.
◾Our Masters in Biotechnology provides an advanced practical knowledge of how research and industry are being applied to solve real world problems.

Programme structure

Semester 1

You will be based in the Adam Smith Business School, developing knowledge and skills in management principles and techniques. We offer an applied approach, with an emphasis on an informed critical evaluation of information, and the subsequent application of concepts and tools to the core areas of business and management.

Core courses

◾Contemporary issues in human resource management
◾Managing creativity and innovation
◾Managing innovative change
◾Marketing management
◾Operations management
◾Project management.

Semester 2

You will study biotechnology courses, which aim to enhance your understanding of using biological processes, organisms, or systems to manufacture products intended to improve the quality of human life. These courses will provide training in state-of-the-art biotechnology applications what have resulted in ground-breaking developments in the areas of medicine, pharmaceuticals, agriculture and food production, environmental clean-up and protection and industrial processes.

Core course

◾Biotechnology Applications

Optional course

◾Omic Technologies for the biomedical sciences
◾Synthetic Biology: Concepts and Applications
◾Bioimaging
◾Biosensors and diagnostics
◾Plant Genetic Engineering
◾Crop Biotechnology.

Project or dissertation

If you are studying for an MSc you will undertake individual project in the summer period (May–August). This will give you an opportunity to apply and consolidate the course material and enhance your ability to do independent work, as well as present results in the most appropriate format. Project options are closely linked to staff research interests.

The aims of the courses are:
◾To enable students to study state-of-the-art biotechnology topics in depth;
◾To allow students to benefit from leading-edge research-led teaching;
◾To provide a critical appreciation of relevant theoretical, methodological and technical literature from the central business disciplines;
◾To develop students’ ability to critically appraise published research related to biotechnology;
◾To cultivate analytical and interpretive abilities and enable students to integrate these with essential managerial and business skills.
◾To develop students laboratory skills relevant to biotechnology;
◾To enhance students’ conceptual, analytical and presentation skills and to apply them to biotechnology problems;
◾To prepare students for management positions in the biotechnology industry or entry into PhD programmes.

Core and optional courses

Core

◾Contemporary Issues in HR
◾Managing Creativity and Innovation
◾Managing Strategic Change
◾Marketing Management
◾Operations Management
◾Project Management

Optional

◾Biotechnology Applications
◾Omic technologies for the biomedical sciences: from genomics to metabolomics
◾Synthetic Biology: Concepts and Applications
◾Bioimaging
◾Biosensors and diagnostics
◾Plant Genetic Engineering
◾Crop Biotechnology
◾Biotechnology project

Career prospects

This programme will prepare you for a career in the pharmaceutical or biotechnology industrial sectors or for entry into PhD programmes.

Read less
This programme will give you hands-on practical experience of both laboratory and bioinformatics techniques. You will also be trained in biotechnology research strategies. Read more
This programme will give you hands-on practical experience of both laboratory and bioinformatics techniques. You will also be trained in biotechnology research strategies. A strong practical foundation is provided in the first semester (Semester A) when you study two modules: 'Cellular Molecular Biology' and 'Core Genetics and Protein Biology'. These modules concentrate on the basic principles and the techniques used in modern molecular biology investigations, and on aspects of cellular molecular biology and development.

The second semester (Semester B) has a problem-based learning approach to the application of the knowledge you gained in Semester A. You will study two modules: 'Industrial Biotechnology' and 'Molecular Biotechnology'. These modules will give you an in depth understanding of the application of molecular biological approaches to the production of industrial and medicinal proteins. You will also learn how to apply and design industrial and environmental biotechnology processes, such as process kinetics and design, reactor design and oxygen transfer, sterilization kinetics and the application of biotechnology processes for the bioremediation of contaminated sites.

In the third semester (Semester C) you undertake a research project to develop your expertise further. The research project falls into different areas and may include aspects of fermentation biotechnology, genetic manipulation and protein engineering, bioinformatics, microbial physiology and environmental biotechnology.

Why choose this course?

-This course gives in-depth knowledge of biotechnology and molecular biology for biosciences or biological chemistry graduates
-It has a strong practical basis giving you training in biotechnology research strategies and hand-on experience of laboratory and bioinformatics techniques
-It equips you for research and development positions in the biotechnology and pharmaceutical industries, as well as a wide range of non-research roles in industry
-Biosciences research facilities cover fermentation biotechnology, high performance liquid chromatography, (HPLC), cell culture, molecular biology and pharmacology
-There are excellent facilities for chemical and biomedical analysis, genetics and cell biology studies and students have access to the latest equipment for chemical synthesis and purification, PCR, qPCR and 2D protein gel analysis systems for use during their final year projects
-The School of Life and Medical Science will move into a brand new science building opening in September 2015 providing us with world class laboratories for our teaching and research. At a cost of £50M the new building provides spacious naturally lit laboratories and social spaces creating an environment that fosters multi-disciplinary learning and research

Careers

On successful completion of the programme you will be well qualified for research and development positions in the biotechnology and pharmaceutical industries, to progress to a research degree or to consider non-research roles in industry such as management, manufacturing and marketing.

Teaching methods

The course consists of five modules including a research project:
-Cellular Molecular Biology
-Core Genetics and Protein Biology
-Industrial Biotechnology
-Molecular Biotechnology
-Biosciences Research Methods for Masters
-Research project

All modules are 100% assessed by coursework which includes in-course tests.

Structure

Core Modules
-Biosciences Research Methods for Masters
-Cellular Molecular Biology
-Core Genetics and Protein Biology
-Industrial Biotechnology
-Molecular Biotechnology
-Project-Mol Biology, Biotechnology, Pharmacology

Read less
Biotechnology is a rapidly expanding global industry. Read more

Why take this course?

Biotechnology is a rapidly expanding global industry. It's driven by the development of new tools for molecular biological research, the expansion of the ‘green economy’ seeking biotechnical solutions to energy and industrial needs, and remarkable advances in the application of biotechnology to medical diagnosis, therapeutics and to biomedical research.

The MSc in Medical Biotechnology will give you sought-after advanced skills in molecular biotechnology in the context of diagnostics, therapeutics and in biomedical research. You will also gain a vital understanding of how these are applied in molecular medicine.

What will I experience?

On this course you can:

Develop practical and theoretical understanding of the molecular techniques used in the biotechnology sector
Learn how these are applied in diagnostics, therapeutics and molecular medicine
Develop your practical skills on high tech research equipment
Conduct your own medical biotechnology research

What opportunities might it lead to?

This Master's degree in Medical Biotechnology will prepare you for a role within either research or industry in the biotechnology sector and, more generally, in the bioscience and pharmaceutics areas.

Here are some routes our graduates can pursue:

product development
research scientist
diagnostics and pathology lab work
PhD

Module Details

The Medical Biotechnology course is made up of core and optional units so that you can tailor your learning. The core units give you both practical and research skills as well as the knowledge that would be expected of an advanced course in molecular biotechnology. The optional units allow specialisation towards pathology, drug development, business or bioinformatics. Further options are included through a wide choice of subjects for your research project.

Core units include:

Medical Biotechnology Diagnostics
Medical Biotechnology Therapeutics
Molecular Medicine
Medical Biotechnology Research Skills and Project
Options to choose from include:

Clinical Pathology
Business Skills for Biotechnology
Drug Design and Clinical Trials
Bioinformatics and Omics

Programme Assessment

The course is delivered to develop your practical and theoretical skills in Medical Biotechnology. Teaching is typically in small groups with a mixture of lectures, seminars, workshops and practical work that includes case and problem-based learning. The course is delivered by a team of expert scientists who publish regularly in international journals. In the research project that forms a third of the course you will work alongside other researchers in a laboratory setting.

Assessment will cover all aspects of what is required to be a professional scientist using a variety of methods:

written exams
practical work
problem solving
presentations
essay
project work

Student Destinations

This Master's degree in Medical Biotechnology will equip you to meet the needs of small and medium-sized enterprises and global business in the area of Biotechnology, as well as public and private health service providers. The course covers the practical as well as theoretical skills for your new career.

Roles our graduates might take include:

product development
research scientist
diagnostics and pathology lab work
PhD student
sales
teaching

Read less
Whether you are a new graduate or already employed and seeking to further your career prospects, this course offers a solid career development path. Read more

Whether you are a new graduate or already employed and seeking to further your career prospects, this course offers a solid career development path. You can also choose this course if you wish to pursue research in biotechnology at PhD level.

Biotechnology is the application of biological processes and is underpinned by • cell biology • molecular biology • bioinformatics • structural biology. It encompasses a wide range of technologies for modifying living organisms or their products according to human needs.

Applications of biotechnology span medicine, technology and engineering.

Important biotechnological advances including

  • the production of therapeutic proteins using cloned DNA, for example insulin and clotting factors
  • the application of stem cells to treat human disease
  • the enhancement of crop yields and plants with increased nutritional value
  • herbicide and insect resistant plants
  • production of recombinant antibodies for the treatment of disease
  • edible vaccines, in the form of modified plants
  • development of biosensors for the detection of biological and inorganic analytes

You gain

  • up-to-date knowledge of the cellular and molecular basis of biological processes
  • an advanced understanding of DNA technology and molecular biotechnology
  • knowledge of developing and applying biotechnology to diagnosis and treatment of human diseases
  • practical skills applicable in a range of bioscience laboratories
  • the transferable and research skills to enable you to continue developing your knowledge and improving your employment potential

The course is led by academics who are actively involved in biotechnology research and its application to the manipulation of proteins, DNA, mammalian cells and plants. Staff also have expertise in the use of nanoparticles in drug delivery and the manipulation of microbes in industrial and environmental biotechnology.

You are supported throughout your studies by an academic advisor who will help you develop your study and personal skills.

What is biotechnology

Biotechnology is the basis for the production of current leading biopharmaceuticals and has already provided us with the 'clot-busting' drug, tissue plasminogen activator for the treatment of thrombosis and myocardial infarction. It also holds the promise of new treatments for neurodegeneration and cancer through recombinant antibodies.

Genetically modified plants have improved crop yields and are able to grow in a changing environment. Manipulation of cellular organisms through gene editing methods have also yielded a greater understanding of many disease states and have allowed us to understand how life itself functions.

Course structure

You begin your studies focusing on the fundamentals of advanced cell biology and molecular biology before specialising in both molecular and plant biotechnology. Practical skills are developed throughout the course and you gain experience in molecular biology techniques such as PCR and sub cloning alongside tissue culture.

Core to the program is the practical module where you gain experience in a range of techniques used in the determination of transcription and translational levels, for example.

All practicals are supported by experienced academic staff, skilled in the latest biotechnological techniques.

Research and statistical skills are developed throughout the program. Towards the end of the program you apply your skills on a two month research project into a current biotechnological application. Employability skills are developed throughout the course in two modules.

The masters (MSc) award is achieved by successfully completing 180 credits.

The postgraduate certificate (PgCert) is achieved by successfully completing 60 credits.

The postgraduate diploma (PgDip) is achieved by successfully completing 120 credits. 

Core modules:

  • Cell biology (15 credits)
  • Biotechnology (15 credits)
  • Plant biotechnology (15 credits)
  • Molecular biology (15 credits)
  • Applied biomedical techniques (15 credits)
  • Professional development (15 credits)
  • Research methods and statistics (15 credits)
  • Research project (60 credits)

Optional modules :

  • Human genomics and proteomics (15 credits)
  • Cellular and molecular basis of disease (15 credits)
  • Cellular and molecular basis of cancer (15 credits)

Assessment

As students progress through the course they are exposed to a wide range of teaching and learning activities. The assessment strategy of the postgraduate course considers diverse assessment methods. Some modules offer dedicated formative feedback to aid skills development with assessments going through several rounds of formative tutor and peer feedback. Summative assessment methods are diverse, with examinations present in theory-based modules to test independent knowledge and data analysis. Several modules are entirely coursework-based, with a portfolio of skills such laboratory practical's and research proposals generated throughout the course forming the summative tasks. In all cases, the assessment criteria for all assessed assignments are made available to student prior to submission. 

Employability

The course is suitable for people wishing to develop their knowledge of molecular and cell biotechnology and its application to solving health and industrial problems.

You can find career opportunities in areas such as

  • biotechnology research
  • medical research in universities and hospitals
  • government research agencies
  • biotechnology industry
  • pharmaceutical industry.

Students on this course have gone on to roles including experimental officers in contract research, research and development in scientists, diagnostics specialists and applications specialists. Many of our graduates also go on to study for PhDs and continue as academic lecturers.



Read less
This Masters in Biotechnology programme provides you with an advanced practical knowledge of biotechnology and molecular genetic technologies underpinning modern biotechnology and how they can be applied to solve real world problems. Read more
This Masters in Biotechnology programme provides you with an advanced practical knowledge of biotechnology and molecular genetic technologies underpinning modern biotechnology and how they can be applied to solve real world problems. The programme offers training in a broad range of topics including; environmental biotechnology, synthetic biology, plant engineering, stem cell therapies and vaccine development.

Why this programme

◾Ranked world top 100 for Biological Sciences
◾If you wish to improve your knowledge of modern molecular, biochemical, cell biological and genetic techniques for biotechnological applications, this programme is designed for you.
◾You will gain a sound understanding of the nature of business based on bioscience knowledge and research, their opportunities for innovation and regulatory requirement constraints, intellectual property and ethical issues.
◾We have exciting scholarship opportunities.
◾You will learn how to assess the current literature, be encouraged to form opinions based on scientific merit, and implement these ideas in future research planning.
◾You will be taught by experts in the field of Biotechnology who run active, internationally recognised, research groups here at Glasgow.
◾The course involves extensive interaction with industry, through site visits, guest lectures and an "Industrial Networking Symposium" where representatives from the European biotechnology and pharmaceutical industry will discuss their companies and answer your questions on working in the industrial sector.
◾This course has a strong laboratory component, with courses that run throughout the year, giving you hands on experience of diverse biotechnological research skills.
◾The flexible independent research project provides valuable training for students wishing to proceed to a Ph.D. or into an industrial career; this may also be completed as a business based project.
◾Additional programme components include industrial networking sessions and a dedicated career workshop on progression planning.
◾Our Masters in Biotechnology provides an advanced practical knowledge of how research and industry are being applied to solve real world problems.

Programme structure

The programme is made up of five teaching modules and a dissertation project. Each module explores different aspects of Biotechnology. The dissertation allows you to specialise the degree through a chosen field of research. You will undertake this project with the support and guidance of your chosen academic expert.

The aims of the course are:
◾To enable students to study a wide range of biotechnology topics in depth;
◾Allow students to benefit from leading-edge research-led teaching;
◾To enhance students' conceptual, analytical and generic skills and to apply them to biotechnology problems;
◾To prepare students for leading positions in the biotechnology industry or entry into PhD programmes.

Core and optional courses

◾Molecular Research Skills
◾Industrial and Environmental Microbiology
◾Bioscience Commercialisation
◾Recombinant Protein Expression
◾Omics Technologies
◾Synthetic Biology
◾Bioimaging for Researchers
◾Plant Biotechnology
◾Biotechnology Research Project

Career prospects

This programme will prepare you for a career in the pharmaceutical or biotechnology industrial sectors or for entry into PhD programmes.

Read less
Pharmaceutical Biotechnology is the science that covers all technologies required for the production, manufacturing and registration of biological drugs. Read more
Pharmaceutical Biotechnology is the science that covers all technologies required for the production, manufacturing and registration of biological drugs. Advances in recombinant genetics facilitate the routine cloning of genes and the creation of genetically modified organisms that can be used in industrial production. Pharmaceutical Biotechnology is a rapidly evolving and multidisciplinary field and our MSc Pharmaceutical Biotechnology programme will focus on the new developments in the production of proteins, organisms, DNA-based vaccines, therapeutic proteins, downstream processing and characterisation, bioinformatics, advanced molecular principles, and research methods.

Our MSc Pharmaceutical Biotechnology programme produces graduates with a critical and analytical capability and a flexible approach to problem solving. These skills will enhance your laboratory and professional competence at a supervisory level and you will be able to work independently and use your initiative to solve the diverse problems you may encounter. You will also be able to bring a creative approach to the development and promotion of new biotechnology products. Biotechnology is developing rapidly; there is a major emphasis on product- and process-oriented biotechnological research and development for applications in agriculture, industry and the health sector. These applications will bring benefits for society and are increasingly recognised by governments, industry and financial institutions. Our programme helps to address the expanding demand from international markets for graduates with an excellent knowledge of biotechnology.

The aims of the programme are:

- To provide students with an understanding of the subject specific knowledge, as well as a critical, analytical and flexible approach to problem-solving in the field of pharmaceutical biotechnology

- To provide students with enhanced practical and professional skills and thus prepare students effectively for professional employment or doctoral studies in the field of biotechnology

- To enable students to work independently and use initiative in solving the diverse problems that may be encountered

- To instill a critical awareness of advances at the forefront of biotechnology.

Visit the website http://www2.gre.ac.uk/study/courses/pg/sci/pb

Science - General

We offer a range of sciences programmes from biotechnology to formulation science. Whatever you choose to study you will be taught by experienced staff in state-of-the-art laboratories and gain the skills you need to succeed in your chosen field. Employability is central to all our programmes and you will benefit from our strong links with employers, industry work placements and professional accreditations.

What you'll study

Full time
- Year 1:
Students are required to study the following compulsory courses.

Pharmaceutical Biotechnology (30 credits)
Biotechnology Research Projects (60 credits)
Bioinformatics (30 credits)
Research Methods and Data management (30 credits)
English Language Support (for Postgraduate students in the School of Science)
Applied Molecular Biology (30 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Find out more about our fees and the support available to you at our:
- Postgraduate finance pages (http://www.gre.ac.uk/finance/pg)
- International students' finance pages (http://www.gre.ac.uk/finance/international)

Assessment

Coursework, examinations, presentations, thesis, on-line assessment. This programme involves a series of lectures, seminars and workshops.Case studies will provide you with exposure to up-to-date problems and enhance your problem solving and team-work in a way that simulates an industrial setting. A research project in a well equipped department led by staff with a diversity of research experience will give you the opportunity to carry out novel research and enhance your practical skills, analytical thinking and independence.

Career options

Biotechnology and pharmaceutical industries, intellectual property industry (IP), academics, bio-informatics/IT, health services, research and higher degrees (PhD).

Find out about the teaching and learning outcomes here - http://www2.gre.ac.uk/?a=643706

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
Biotechnology uses living cells and materials produced by cells to create products to benefit society. The science of biotechnology is also used to alter genetic information in animals, plants and microbes to improve them in some way that benefits people. Read more
Biotechnology uses living cells and materials produced by cells to create products to benefit society.

The science of biotechnology is also used to alter genetic information in animals, plants and microbes to improve them in some way that benefits people. Because biotechnology essentially uses the basic ingredients of life to make new products, it is both a cutting-edge technology and an applied science. Analysts have predicted that biotechnology will be one of the most important applied sciences of the 21st century.

This course is intended for life science graduates who wish to develop their knowledge and skills in biosciences with an emphasis on biotechnology.

The MSc Biotechnology with Professional Experience, is an extended full-time Masters programme with a substantive professional experience component. Within the professional experience modules, students have the option of undertaking an internship with a host organisation or, alternatively, campus-based professional experience. Internships are subject to a competitive application and selection process and the host organisation may include the University.

Internships may be paid or unpaid, and this will depend on what is being offered and agreed with the host organisation. Students who do not wish to undertake an internship or are not successful in securing an internship will undertake campus-based professional experience, which will deliver similar learning outcomes through supervised projects and activities designed to offer students the opportunity to integrate theory with an understanding of professional practice.

WHY CHOOSE THIS COURSE?

The aim of the course is to produce scientists who will be able to contribute to a range of careers including academic, commercial, industrial and healthcare applications of biotechnology. This course is also an excellent foundation for those wishing to pursue research in biotechnology at PhD level.

WHAT WILL I LEARN?

You will cover:
-Genomes and DNA technology
-Current topics in biotechnology and drug discovery
-Cell culture and antibody technology
-Biotechnology in disease diagnosis
-Pharmaceutical discoveries
-Research methods and project

Additionally, the understanding gained from these modules will be demonstrated and applied in either the University-based project (12 months full-time or 24 months part-time, on course HLST083), or the professional experience modules giving students the option of undertaking an internship with a host organisation or, alternatively, campus-based professional experience.

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

Within the life sciences, biotechnology is a rapidly growing sector and it is predicted that the global expansion in biotechnology will be a key driver in the world economy. The MSc Biotechnology is designed to provide the training and development necessary to meet the needs of the growing number of employers within the biotechnology sector. The course will also equip graduates to pursue careers in research institutes or to progress to a research degree.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
The MSc in Biotechnology is a one-year course designed to provide you with the theoretical and practical skills for employment in the industries of biomedical research, biopharmaceuticals, agrochemicals and biotechnology. Read more
The MSc in Biotechnology is a one-year course designed to provide you with the theoretical and practical skills for employment in the industries of biomedical research, biopharmaceuticals, agrochemicals and biotechnology. The course curriculum consists of six months of lectures, laboratory practical sessions, career service workshops, industry-based seminars and a six-month research project. The curriculum has been developed with input from staff in local biotechnology and biopharmaceutical industries, to provide you with the necessary skills required by employers. Students have the choice to complete the six-month research project in a national or international industry or university environment.

Visit the website: http://www.ucc.ie/en/ckr01/

Course Details

This is the most established MSc in Biotechnology course in Ireland and is the most popular MSc course in UCC. The international success of this course is attributed to the industry-led curriculum offered to students and the opportunity to complete a six-month placement in industry or an academic research lab. The global recognition of the course is also evident from our international alumni and receipt of several industry-sponsored scholarships available to students entering and on completion of the course.

The course will:

- introduce you to the theory and practice of bioanalytical chemistry?
- introduce you to molecular biotechnology, eukaryotic-, prokaryotic- and plant-biotechnologies, recombinant DNA technologies and their - application in the biotechnology and biopharmaceutical industries
- introduce you to the principles of process and biochemical engineering?
- introduce you to the role of process validation and quality assurance in the pharmaceutical industry, and give you an awareness of the - - latest trends in good manufacturing, laboratory and validation practices
- introduce you to the principles of food and industrial microbiology
- provide you with the opportunity to conduct and complete a body of independent research in a biotechnology-related area and present your research findings in a minor dissertation.

Format

The curriculum consists of approximately 250 contact hours over two academic terms (October to December and January to March), consisting of eight course modules, set practical sessions, career service workshops and an industry lecture series.

During the third academic term (April to September), students complete a six-month research project on a topic related to biotechnology, biopharmaceutical or biomedical research. Industry-based projects in these areas are managed by a dedicated placement officer who facilitates career workshops during which you prepare for and are interviewed by staff from companies interested in hosting students. For students interested in a career in biomedical research or PhD, projects are offered in a broad range of research areas utilising modern research techniques. All research projects are undertaken in consultation with an academic supervisor and examiner.

The MSc in Biotechnology degree course consists of eight course modules, set practical sessions, career service workshops, an industry lecture series and a six-month research project.

Students study the following eight modules and complete a research project:

- Advanced Molecular Microbial Biotechnology
- Biopharmaceuticals: formulation design, secondary processing and regulatory compliance
- Bioprocess Engineering
- Cell and Molecular Biology
- Functional Foods for Health
- Genetic Engineering
- Modern Methods in Analytical Chemistry
- Plant Genetic Engineering

Research Project and Industry Placement

You will be required to complete a six-month research project based on your individual research and development in a selected field of modern science. You carry out your research in UCC’s laboratories or at an approved academic or industrial partner.

When you complete your research dissertation in an industrial setting, it provides the company with an opportunity to assess your skills and abilities and to screen potential future full-time employees.

Students who secure employment upon graduation fit into the organisation and contribute productively much sooner that other graduates. For students with an interest in biomedical research and future careers as PhD researchers, research projects are offered across a broad range of topics including but not limited to; cancer biology, neuroscience, immunology, microbiology and plant biotechnology.

Further details on the content and modules are available on the Postgraduate College Calendar - http://www.ucc.ie/calendar/postgraduate/Masters/science/page05.html#4%20

Assessment

The MSc in Biotechnology is awarded after passing written examinations across taught course units, the continuous assessment of practical work and completion of a six-month research project, which has to be written up in the form of a dissertation and approved by an external examiner. All students must complete written examinations (typically held over a two week period in March) and submit a research project. Full details and regulations governing examinations for each course will be contained in the Marks and Standards 2013 Book and for each module in the Book of Modules, 2015/2016 - http://www.ucc.ie/modules/

Careers

The course is suitable for students wishing to extend their specific undergraduate degree knowledge in biotechnology, and for those wishing to bridge their undergraduate degree and gain more specialised knowledge and training in biotechnology. The course allows you to follow a number of career pathways. Each year, over 70 per cent of our students gain employment while approximately 20 per cent of graduates progress to international PhD opportunities.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
Biotechnology encompasses all aspects of the industrial application of living organisms and/ or biological techniques. It is a collection of technologies that capitalise on the attributes of cells and biological molecules, such as DNA, to work for us. Read more
Biotechnology encompasses all aspects of the industrial application of living organisms and/ or biological techniques. It is a collection of technologies that capitalise on the attributes of cells and biological molecules, such as DNA, to work for us. The primary biotechnology activity carried out in Ireland is research and development. Ireland has experienced massive growth across the biotechnology sector including food, environmental and pharmaceutical industries in the last decade. Ireland is home to nine of the top 10 global pharmaceutical and biotechnology companies, such as GlaxoSmithKline, Pfizer, Merck, BristolMyers Squibb and Genzyme, with seven of the 10 world blockbuster pharmaceuticals made here. The MSc in Biotechnology is taught by leading
academics in the UCD School of Biomolecular and Biomedical Science and focuses on broadening your knowledge and understanding of the current technologies and processes in the biotechnology industry, including approaches being applied to further advance the discovery and design of new and highly innovative biotech and pharmaceutical products and technologies. It also provides modules on food and environmental biotechnology, as well as industrially relevant expertise in facility design, bioprocess technology, regulatory affairs and clinical trials.

Key Fact

During the third semester you will conduct research in an academic or industrial lab. Projects will be carried out within research groups of the UCD School of Biomolecular and Biomedical Science using state-of-the-art laboratory and computational facilities or in Irish and multinational biotechnology companies, across the spectrum of the dynamic biotechnology industry in Ireland.

Course Content and Structure

Taught masters Taught modules Individual research project
90 credits 60 credits 30 credits
You will gain experimental and theoretical knowledge in the following topics:
• Pharmacology and Drug Development
• Medical Device Technology
• Biomedical Diagnostics
• Recombinant DNA Technology
• Microbial and Animal Cell Culture
• Food Biotechnology
• Facility Design
• Environmental Biotechnology
• Regulatory Affairs
• Drug Development and Clinical Trials
• Bioprocessing Laboratory Technology
Assessment
• Your work will be assessed using a variety
of methods including coursework, group
and individual reports, written and online
exams, and presentations

Career Opportunities

This advanced graduate degree in Biotechnology has been developed in consultation with employers and therefore is recognised and valued by them. A key feature is the opportunity to carry out a project in industry which will allow graduates to develop connections with prospective employers, thereby enhancing chances of employment on graduation. You will also have the opportunity to become part of a network of alumni in the fi eld of Biotechnology. Prospective employers include Abbott; Allergan; Amgen; Baxter Healthcare; Beckman Coulter; Biotrin International Ltd.; Boston Scientifi c; Elan Corporation; Eli Lilly and Co.; Celltech; GlaxoSmithKline; Icon Clinical Research; Johnson & Johnson Ltd.; Kerry Group Plc.; Merck Sharp & Dohme; Quintiles; Sandoz; Serology Ltd.

Facilities and Resources

• The UCD School of Biomolecular and Biomedical Science is closely linked to the UCD Conway Institute of Biomolecular and Biomedical Research, which provides cutting edge core technologies including the premier Mass Spectrometry Resource in the country, NMR spectroscopy, real time PCR, electron microscopy, light microscopy, digital pathology and fl ow cytometry.

Read less
Biotechnology constitutes one of the key disciplines of the 21st century, with enormous potential for growth and professional development. Read more

State of The Art

Biotechnology constitutes one of the key disciplines of the 21st century, with enormous potential for growth and professional development. On the one hand that is due to progress made in biomedical research, leading to the development of new diagnostic and therapeutic procedures. At the same time the chemical industry is showing a growing interest in biotechnological processes to reduce its environmental footprint and increase the efficiency of the methods employed. In addition to the pharmaceutical, chemical and food industries, which make use of biotechnological processes in varying degrees, there is now a biotechnology-based industry in its own right, in which added value is generated primarily with the help of biotechnological principles.

Curriculum

The Master’s program in Biotechnology is designed to communicate the knowledge, methodological skills and problem-solving competence needed to tackle a very wide range of scientific and engineering problems.

Excellent Education Guarantee

First-class faculty from the worlds of science, engineering and business, a strong industry orientation and the limited number of places guarantee excellent conditions for study and student support in keeping with the MCI’s motto “Mentoring the Motivated” plus attractive prospects for the future. As a technical university program positioned at the interface with business and management, the Master’s program satisfies the highest international standards.

Contents

With its focus on industrial and pharmaceutical biotechnology, the study program is designed to enable graduates to convert laboratory
results in the field of bioscience into full-scale industrial processes.

The Master’s program combines various methodological modules – such as molecular biotechnology, bioprocess engineering, biotechnological separation processes, bioanalytics and bioinformatics – with applications-oriented modules covering the whole field of biotechnology, including pharmaceutical biotechnology, food biotechnology and industrial biotechnology.

The program is also designed to take account of the growing interest shown in trade and industry in graduates with the ability to fulfill overarching functions like quality, project and process management, including the relevant key competences (working methods, social competence, team working skills, etc). In addition to solving technical problems, graduates are also in a position to evaluate the economic impacts of the decisions taken. Thanks to project-based learning, industry visits, practicals and laboratory work, the study program also has a strong focus on practical relevance.

Find out more about this course of study:

https://www.mci.edu/en/study-program/master/biotechnology

Admission

Applications for this study program can be submitted at any time. Applications for admission to the Master of Engineering, Environmental & Biotechnology program must be submitted online using the standardized application form accompanied by the required documents within the period stipulated. You can sign up for the upcoming semester here:

https://tasks.mci.edu/index.php?option=com_onlinebewerbung&view=register&lang=en&fromstg=Master-MAUVBT

Download the latest brochure here:

https://www.mci.edu/index.php?option=com_phocadownload&view=category&download=224&Itemid=1115

Read less
The MSc Biotechnology programme aims to provide participants with the skills, knowledge and experience that are needed to pursue a successful career in biotechnology. Read more
The MSc Biotechnology programme aims to provide participants with the skills, knowledge and experience that are needed to pursue a successful career in biotechnology. Through tutorials, lectures, assignments and a four-month research project, the programme focuses on the adaptation and application of biological processes for commercial and industrial use. This course would be suitable for graduates with a primary degree in the Biological Sciences who wish to extend their knowledge and skills for a career in the biotechnology sector.

Graduates have found employment in the pharmaceutical and food industries, and in diagnostic and research services, with companies such as Abbott, Allergan, ICON Clinical Research, Norbrook Laboratories and Pfizer. They are pursuing careers in manufacturing, quality assurance, product development and research, as well as the broader sectors of sales, marketing, and regulatory affairs.

Programme Content:

Core Modules

Research Project:

Five-month laboratory project with an academic research team on a biotechnology topic.

Frontiers in Biotechnology:

An interactive tutorial-based module that will develop students' transferable skill and knowledge of recent advances in biotechnology.

Current Methodologies in Biotechnology:

Experts will teach methodologies fundamental to biotechnological research and application.

Diagnostic Biotechnology:

A comprehensive overview of immunological and molecular diagnostics applied in current biotechnological applications.

Fundamental Concepts in Pharmacology:

Fundamental understanding of how drugs work and how they are discovered and developed.

Protein Technology:

Enhancing protein production and function of biopharmaceutical and industrial proteins on a commercial scale.

Introduction to Business:

Concepts of marketing, management and accountancy and their application in biotechnology businesses.

Optional Modules (Choose 2)

Advanced Industrial Process:

This module is designed to develop an awareness of microbial technologies and their applications to biotechnology.

Applied Concepts of Pharmacology:

This module introduces students to autonomic pharmacology and drug discovery and development.

Scientific Writing:

This module aims to provide students with an in-dept understanding of the process of scientific publications.

Immunology:

Emphasis on the clinical value of manipulation of the immune system.

Quality Management Systems:

QMS for the efficient and safe running of commercial and industrial biotechnology enterprises.

Cell & Molecular Biology: Advanced Technologies

This module outlines the fundamentals of cell and molecular biology.

Read less
The Master of Biotechnology gives you a core competency in advanced molecular biotechnology approaches including molecular biology, protein biochemistry, proteomics and applied microbiology. Read more

Overview

The Master of Biotechnology gives you a core competency in advanced molecular biotechnology approaches including molecular biology, protein biochemistry, proteomics and applied microbiology. In addition it offers you advanced skills in critical thinking, experimental design and writing for peer-reviewed scientific literature.

See the website http://courses.mq.edu.au/international/postgraduate/master/master-of-biotechnology

Key benefits

- Gives you a strong interdisciplinary and practical focus reflective of the needs of the marketplace
- Draws on expertise from the Departments of Chemistry and Biomolecular Sciences, Biological Sciences, Computing and Statistics
Incorporates Macquarie University’s expertise in proteomics

Suitable for

Those already working in or wanting to advance in the biotechnology
area, and those wanting to gain an understanding of a multidisciplinary
approach to biotechnology practice and research.

English language requirements

IELTS of 6.5 overall with minimum 6.0 in each band, or equivalent

All applicants for undergraduate or postgraduate coursework studies at Macquarie University are required to provide evidence of proficiency in English.
For more information see English Language Requirements. http://mq.edu.au/study/international/how_to_apply/english_language_requirements/

You may satisfy the English language requirements if you have completed:
- senior secondary studies equivalent to the NSW HSC
- one year of Australian or comparable tertiary study in a country of qualification

Recognition of prior learning

Course Duration
- 2 year program
Bachelor degree in any discipline;
Bachelor degree in any discipline and work experience in a relevant area at a senior level and evidence of active engagement in science.

- 1.5 year program
Bachelor degree in a relevant discipline;
Bachelor degree in any discipline and more than 5 years work experience in a relevant area;
Bachelor degree in any discipline and Graduate Certificate in a relevant discipline.

- 1 year program
Honours, Graduate Diploma, Masters (coursework), or Higher Degree Research in a relevant discipline;
Bachelor degree in a relevant discipline and relevant work experience.

- Relevant disciplines
Botany, Ecology and Evolution, Marine Science, Zoology, Forestry Studies, Land, Parks and Wildlife Management.

- Relevant areas
Scientific officer, advisor, consultant or researcher in such areas as biological research, environmental management, wildlife management, zoos and botanical gardens, natural history museums, ecological consulting, forestry, fisheries, ecological restoration and conservation policy (government or non-government organisations).

Careers

- Career Opportunities
As an industry, biotechnology is expanding rapidly. This expansion requires a workforce of graduates that have scientific and technical skills, as well as skills in problem solving, teamwork and critical and analytical thinking.

Examples of areas where biotechnology is applied include pharmaceutical discovery and production, exploiting biodiversity for new bioactive compounds, exploring alternative energy sources and developing improved crop varieties for sustainable food production.

- Employers
Graduates in biotechnology continue on to a diverse range of positions at institutions ranging from small biotechnology companies to large pharmaceutical concerns and universities. Recent graduates have gone on to PhD programs in Australia, the US and Europe, staff positions at local biotechnology companies and pharmaceutical production companies in India and Europe, and research positions in universities in the Asia-Pacific region.

See the website http://courses.mq.edu.au/international/postgraduate/master/master-of-biotechnology

Read less
How can biological processes and organisms be used in the development of new technologies? Biotechnology enables us to improve practices in diverse fields including genetics, agriculture, bioremediation, immunology, diagnostics, energy production, and age-assisted living. Read more
How can biological processes and organisms be used in the development of new technologies? Biotechnology enables us to improve practices in diverse fields including genetics, agriculture, bioremediation, immunology, diagnostics, energy production, and age-assisted living.

Our course provides you with knowledge, understanding and hands-on experience in modern biotechnology, and with practical insights into current commercial applications. It creates access to a broad range of career opportunities in this rapidly growing key technology.

You will learn about and appraise the approaches that can be used to address the challenges facing our planet, including:
-The development of biofuels, pharmaceuticals and crops to support and feed the growing human population
-Industrial, plant and medical biotechnology
-Gene and protein technology
-Synthetic biology
-Bioinformatics

The course has a very high proportion of practical work that provides valuable experience for your career, and in addition to this, our optional module Creating and Growing a New Business Venture challenges you to think creatively. This increases your value to organisations, including small enterprises, which are a growing part of the biotechnology sector.

Your research project is a major component of this course, for which you perform novel laboratory and/or bioinformatic research in one of our academic laboratories, or (subject to approval) carry out research in an industrial or hospital setting.

Two-thirds of our research is rated “world-leading” or “internationally excellent” (REF 2014), and you learn from and work alongside our expert staff.

Our expert staff

As one of the largest schools at our University, we offer a lively, friendly and supportive environment with research-led study and high quality teaching. You benefit from our academics’ wide range of expertise and research on important national and international problems using cutting-edge techniques.

The University of Essex has a Women's Network to support female staff and students and was awarded the Athena SWAN Institutional Bronze Award in November 2013 in recognition of its continuing work to support women in STEM.

Specialist facilities

Recent investment has provided modern facilities for functional genomics, computational biology, and imaging biological systems. On our course you have the opportunity to:
-Work in an open and friendly department, with shared staff-student social spaces
-Conduct your research alongside leading academics and PhD students in shared labs
-Learn to use state-of-the-art equipment

Your future

Our graduates are well placed to find employment in the ever-growing bio-based economy, and postgraduate study is often a requirement for becoming a researcher, scientist, academic journal editor and to work in some public bodies or private companies.

Many of our Masters students progress to study for their PhD, and we offer numerous studentships to support our students in their studies.

We work with our university’s Employability and Careers Centre to help you find out about further work experience, internships, placements, and voluntary opportunities.

Example structure

Postgraduate study is the chance to take your education to the next level. The combination of compulsory and optional modules means our courses help you develop extensive knowledge in your chosen discipline, whilst providing plenty of freedom to pursue your own interests. Our research-led teaching is continually evolving to address the latest challenges and breakthroughs in the field, therefore to ensure your course is as relevant and up-to-date as possible your core module structure may be subject to change.

Biotechnology - MSc
-Research Project: MSc Biotechnology
-Protein Technologies
-Gene Technology and Synthetic Biology
-Genomics
-Professional Skills and the Business of Biotechnology
-Creating and Growing a New Business Venture (optional)
-Industrial Biotechnology: Enzymes, Biochemicals and Biomaterials (optional)
-Molecular Medicine and Biotechnology (optional)
-Plant Biotechnology (optional)
-Rational Drug Design (optional)

Read less

Show 10 15 30 per page



Cookie Policy    X