• University of Oxford Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Southampton Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Vlerick Business School Featured Masters Courses
Coventry University Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
0 miles
Chemistry×

Masters Degrees in Biomolecular Chemistry

We have 29 Masters Degrees in Biomolecular Chemistry

Masters degrees in Biomolecular Chemistry provides advanced postgraduate training in the chemical science of biological materials at the molecular level. It includes theory, practical techniques and research modelling, from the micromolecular to the macromolecular level.

Programmes range from taught MSc courses, to research based MRes and MPhil programmes. Entry requirements normally include an appropriate undergraduate degree such as Chemistry, Biochemistry or Chemical Engineering.

Why study a Masters in Biomolecular Chemistry?

Read more...

  • Chemistry×
  • Biomolecular Chemistry×
  • clear all
Showing 1 to 15 of 29
Order by 
The Master is conceived as a multidisciplinary and research-oriented programme. The programme also aims to develop the state of mind to perform and manage research in a multidisciplinary and international context. Read more

Developing a state of mind

The Master is conceived as a multidisciplinary and research-oriented programme. The programme also aims to develop the state of mind to perform and manage research in a multidisciplinary and international context. Therefore, our students will also be trained in different aspects of research communication and research management.

Discovery-based laboratory

The two-year programme has a strong emphasis on performing research. Its concept will require full-time attendance and will involve active participation in lectures and discovery-based laboratory work to develop the state of mind that drives the progress of science.
The program of the first year is composed of 4 modules, all of which have to be followed. The courses within each module are at advanced level and consist of 26 class hours and 6 days of practical training. The practical trainings link up with the advanced courses and will take place in the research labs under the guidance of experienced postdocs.
Protein structure and function (3x5 ECTS)
Applied Immunology (3x5 ECTS)
Advanced Molecular Biology (4x5 ECTS)
Bioinformatics (2x5 ECTS)
The program of the second year pays much attention to the acquisition of research competences. The program consists of three modules:
Elective courses (4x5 ECTS)
Master Proof (30 ECTS)
Research Communication and Management (10 ECTS)

Master Proof/Thesis

To obtain a Master degree, a student must carry out, under the direction and supervision of a promoter, an independent research project and prepare a dissertation, that is, a written account of the research and its results.

Research Communication and Management

This part of the program includes the writing of the results of the dissertation in a publication format, seminars on intellectual property rights, scientific writing, project development and the writing of a research proposal.
The latter can be a proposal for a continuation of the topic of the Master Proof, a proposal for a PhD project, or a proposal for another research project in Biomolecular Sciences, and is intended to help the students to continue their career in biomolecular research.

Read less
This course offers advanced training for biological, chemical and physical scientists (pure and applied) for careers in the pharmaceutical, food/nutrition, health-care, biomedical, oil and other important industries or as a basis for entry to MRes or PhD. Read more
This course offers advanced training for biological, chemical and physical scientists (pure and applied) for careers in the pharmaceutical, food/nutrition, health-care, biomedical, oil and other important industries or as a basis for entry to MRes or PhD.

Biomolecular Technology underpins the production of drug delivery systems, the making of healthier food products, the design of health-care products, the making of antisera and vaccines - and even the efficient extraction of oil from the harsh environment of a deep well: these are among the biotechnology processes which depend in fundamental terms on our ability to handle giant molecular complexes of living origin. Furthermore, molecular biologists and chemists are now increasingly able to ‘engineer’ new types of proteins and complexes over and beyond those which 3 billion years of evolution have provided.

Industry needs skilled personnel capable of understanding how these molecules may be used in an industrial context and the processes of gene cloning and protein engineering.

It is taught by the School of Biosciences in conjunction with the University's Schools of Pharmacy, Biomedical Sciences and Clinical Sciences and The School of Biosciences at the University of Leicester. Experts from local and national industry also contribute, ensuring access to the latest developments in the field.

A 3 month industrial placement module offers an exciting opportunity to discover first hand the needs of modern industry and provides advanced training for employment and further academic studies.
By suitable arrangement non-UK students can do this in their normal country of residence.

Applicants should hold first degrees at honours level in any Biological, Chemical or Physical Science subject (e.g. Biochemistry, Chemistry, Pharmacy, Genetics, Food Sciences, Plant Sciences, Physics). Suitably motivated candidates with Engineering or Mathematics degrees will also be considered.

A number of scholarships and European bursaries may be available.

Read less
Chemical Biology is an emerging discipline that sits at the interface of traditional chemistry and biology. It draws on the tools and ideas of modern Physical Sciences (e.g. Read more
Chemical Biology is an emerging discipline that sits at the interface of traditional chemistry and biology.

It draws on the tools and ideas of modern Physical Sciences (e.g. Chemistry, Mathematics, Physics and Engineering) and applies these to the solution of biological problems at the molecular level.

It is a discipline that is perfectly poised to address the next great challenge in biological science – to understand how gene products are used in and interact with the cellular environment.

The research element provides physical scientists with the ability to bridge disparate fields and gain the confidence to grapple with biomolecular research in a multidisciplinary environment.

Read less
The MSc in Chemical Research (Bioloigcal Chemistry) course has been tailored to meet the demands of graduating chemists who wish to further their training in chemical research or who wish to use this qualification as a route into a PhD programme. Read more
The MSc in Chemical Research (Bioloigcal Chemistry) course has been tailored to meet the demands of graduating chemists who wish to further their training in chemical research or who wish to use this qualification as a route into a PhD programme.

The course is designed to match the professional demand for highly-skilled personnel in industry and provides specific training in core areas of chemistry as well as specialised expertise in Biological Chemistry.

Read less
Bioimaging sciences have played a vital role in improving human life. Read more
Bioimaging sciences have played a vital role in improving human life. A wide range of imaging techniques such as magnetic resonance imaging (MRI), positron emission tomography (PET), ultrasound and optical imaging are now important tools for the early detection of disease, understanding basic molecular aspects of living organisms and the evaluation of medical treatment.

This one-year MRes course covers the fundamentals of modern imaging methodologies, including their techniques and application within medicine and the pharmaceutical industry, along with the chemistry behind imaging agents and biomarkers.

Imperial's research strength in imaging sciences is recognised both nationally and internationally, as exemplified by the creation of Imperial's Imaging Sciences Centre (ISC).

The course will progress interdisciplinary development in imaging sciences and create a multidisciplinary team involving chemists, immunologists, radiologists, image scientists, physicists, biomedical scientists and computer scientists.

Read less
This internationally recognised course will prepare you for a fulfilling career as a biomedical scientist in the rapidly developing bioscience and healthcare sectors. Read more
This internationally recognised course will prepare you for a fulfilling career as a biomedical scientist in the rapidly developing bioscience and healthcare sectors.

This course is designed to enable you pursue a career as a professional biomedical scientist in a variety of research, development and leadership roles.

You'll be supported by an internationally recognised and highly active biomedicine science group with varied research interests and links with healthcare industries, research institutes and the NHS.

See the website http://www.napier.ac.uk/en/Courses/MSc-Biomedical-Science-Postgraduate-FullTime

What you'll learn

This course provides detailed knowledge of key concepts in immunology, toxicology, pharmacology and disease biology and how these disciplines are applied in biomedical science.

You’ll gain critical understanding of specialist research areas and unique insights into the challenges currently facing biomedical science. You’ll also acquire an in-depth appreciation of research and development practices in the healthcare industries through guest lectures and site visits to specialised laboratories. These experiences will allow you to explore and critique issues of relevance to professional working practice, enhancing your skills in evidence based decision making.

There is an emphasis on developing your practical laboratory skills with various opportunities for hands-on experience in a range of current techniques and practices. In your final trimester you’ll undertake an independent project within a vibrant biomedical research team, allowing you to apply and further develop your technical, research and professional skills. There may be the opportunity to conduct your research project externally in a relevant organisation or industry.

You’ll also develop key skills including communication, problem solving, team work, project management, and leadership. You’ll learn through interactive lectures, workshops, tutorials and laboratory sessions, and by engaging with guided independent study. A variety of assessment tools are used to enhance and evaluate your learning.

This is a full-time course over one year and is split up into three trimesters. You can choose to start in either January or September There may also be some opportunities to study abroad.

This programme is also available as a Masters by Research: http://www.napier.ac.uk/research-and-innovation/research-degrees/courses

Modules

• Advanced immunology
• Biology of disease and therapeutics
• Molecular pharmacology and toxicology
• Research skills
• Molecular pathogenesis of microbial Infection
• Drug design and chemotherapy
• Research project

Study modules mentioned above are indicative only. Some changes may occur between now and the time that you study.

Careers

You’ll be prepared for employment in the rapidly developing bioscience and healthcare sectors. This may be in hospitals, NHS, local government or health and safety divisions in various roles including research, R&D support management and consultancy.

Opportunities also exist for qualified biomedical scientists in a range of industrial settings from smaller medical biotechnology enterprises to global pharmaceutical companies.

If you currently work in the biomedical sector, this programme will enhance your prospects for career progression. Graduates will also be qualified to continue their studies at PhD level and follow an academic career.

How to apply

http://www.napier.ac.uk/study-with-us/postgraduate/how-to-apply

SAAS Funding

Nothing should get in the way of furthering your education. Student Awards Agency Scotland (SAAS) awards funding for postgraduate courses, and could provide the help you need to continue your studies. Find out more: http://www.napier.ac.uk/study-with-us/postgraduate/fees-and-funding/saas-funded-courses

Read less
This. MRes Advanced Materials Engineering. course will provide you with the advanced knowledge, skills and attributes required for a career in analytical chemistry and its sub-disciplines, or act as a base for entry to PhD studies. Read more

This MRes Advanced Materials Engineering course will provide you with the advanced knowledge, skills and attributes required for a career in analytical chemistry and its sub-disciplines, or act as a base for entry to PhD studies.

This course enables you to develop and further your knowledge of materials with a carefully put together range of core modules. You can expand your interests further by selecting a materials research project within one of the diverse range of internationally recognised material engineering research groups (alongside PhD students and post doctoral research fellows).

We have links with scientists from AstraZeneca and Vectura who deliver some of the module content relevant to their workplace. Other guest lecturers from a variety of other companies and universities also present their research.

Modules

  • Physical Properties of Solid-state and Nano-composite Materials
  • Inorganic Chemistry Beyond the Molecule
  • Research Methods and Independent Study
  • Research Project

COME VISIT US ON OUR NEXT OPEN DAY!

Visit us on campus throughout the year, find and register for our next open event on http://www.ntu.ac.uk/pgevents.

The course is a part of the School of Science and Technology which has first-class facilities.



Read less
Your programme of study. If you are interested in how drugs metabolise, small molecule discovery and biologics this programme will provide an advanced level of study and challenge to ensure you have sound skills to innovate within the drug development industry. Read more

Your programme of study

If you are interested in how drugs metabolise, small molecule discovery and biologics this programme will provide an advanced level of study and challenge to ensure you have sound skills to innovate within the drug development industry. This industry area is rapidly expanding due to new discoveries across biotechnology, biologics, Internet of Things, customised drug treatments and diagnostics at source. This has lead to many new companies being formed, customised and small batch medicines apart from large batch pharmaceutical research and production.

University of Aberdeen is world renowned in this area with the invention of Insulin to treat diabetes which won a Nobel Prize and strengths in medical research areas which also include food and nutrition and disease treatment. You learn about bio-business, how drugs are developed and managed. The university has strong links with GSK, Pfizer, and AstraZeneca plus Novabiotics and others.

In our MSc in Drug Discovery and Development we train students in major areas of biochemical and molecular pharmacology and therapeutics relevant to the drug discovery and development business. This includes training in molecular pharmacology, drug metabolism and toxicology, therapeutics, pharmacokinetics, pharmacovigilance, regulatory affairs and clinical pharmacology.

Courses listed for the programme

Semester 1

  • Introduction to Bio-Business and Commercialisation of Bioscience Research
  • Drug Metabolism and Toxicology
  • Generic Skills
  • Basic Skills - Introduction
  • Small Molecule Drug Discovery

Semester 2

  • Advanced Bio- Business and the Commercialisation of Bioscience Research 2
  • Pharmokinetics
  • Basic Research Methods
  • Biologic Drug Discovery

Semester 3

  • Research Project

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • We work closely with industry and our research strengths have spanned over 50 years with many coming from the inception of the   University in 1495
  • The degree will give you the skills and knowledge to work in the pharmaceutical industry but you may wish to continue your research towards drug discovery and start up
  • You learn bio-business but you also learn how bio-business is commercialised

Where you study

  • University of Aberdeen
  • 12 Months or 24 Months
  • Full Time or Part Time
  • September start
  • 12 months or 24 months

International Student Fees 2017/2018

Find out about fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs

https://abdn.ac.uk/study/student-life



Read less
The Molecular Modelling and Materials Science MRes programme provides training in the key area of the application of state-of-the-art computer modelling and experimental characterisation techniques to determine the structure, properties and functionalities of materials and complex molecules. Read more
The Molecular Modelling and Materials Science MRes programme provides training in the key area of the application of state-of-the-art computer modelling and experimental characterisation techniques to determine the structure, properties and functionalities of materials and complex molecules.

Degree information

The programme provides specific training in molecular modelling methods and structure determination and characterisation techniques applicable to the materials sciences, together with tuition in research methods and the use of literature sources. The taught modules cover both specialist scientific topics and general project management and professional skills training relevant to the industrial environment.

Students undertake modules to the value of 180 credits.

The programme consists of two core modules (45 credits), two optional modules (30 credits) and a research project (105 credits).

Core modules - students take both modules listed below (45 credits) and submit a research dissertation (105 credits).
-Simulation Methods in Materials Chemistry
-The Scientific Literature

Optional modules - students take 30 credits drawn from the following:
-Researcher Professional Development
-Mastering Entrepreneurship
-Transferable Skills for Scientists
-Numerical Methods

Dissertation/report
All students undertake an independent research project which culminates in a substantial dissertation of approximately 12,000 to 15,000 words, and an oral presentation.

Teaching and learning
The programme is delivered through a combination of lectures, tutorials, practical classes and seminars. Assessment is through unseen examination, presentation, coursework and the research project.

Careers

This MRes provides the ideal foundation for employment in a range of industries or further doctoral research, with increasing career opportunities in sectors including sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals.

Top career destinations for this degree:
-PhD Chemistry, The University of Oxford
-Engineer, Mohan Boiler and Fraser Vessel Inspection Institute
-PhD Nanomaterials, University College London (UCL)
-Phd Physics, University College London (UCL)
-PhD Chemistry, Technische Universität Berlin (Technical Universit

Employability
The training provided by this program will enable the student to enter into a wide range of fields. Students may continue in academia to complete a PhD or pursue teaching as a profession. Students with the skills obtained during this study are highly sought after by the industrial sector, including IT, sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals. Students are very likely to be welcome in the financial sector.

Why study this degree at UCL?

UCL Chemistry's interests and research activities span the whole spectrum of chemistry from the development of new drugs to the prediction of the structure of new catalytic materials.

This programme was established by the Engineering and Physical Sciences Research Council in response to the needs of industry for highly qualified research leaders with industrial experience and it provides for significant collaboration between academic institutions and industry.

Read less
There is a growing need by industry for staff trained in computational molecular sciences. Read more
There is a growing need by industry for staff trained in computational molecular sciences. This new multidisciplinary MSc will teach simulation tools used in a wide range of applications, including catalysis and energy materials, nanotechnology and drug design, and will provide skills transferable to other fields, thereby broadening employment prospects.

Degree information

Students will gain detailed knowledge and skills in molecular modelling, focusing on the state-of-the art simulation techniques employed to research the molecular level properties that determine the macroscopic behaviour of matter. They will also gain key research skills and will learn the basic concepts in business and entrepreneurship as applied to high-tech industries.

Students undertake modules to the value of 180 credits. The programme consists of two core modules (45 credits), three optional module (45 credits) and a research project (90 credits).

Core modules - students take the two modules listed below (45 credits) and submit a research dissertation (90 credits).
-Simulation Methods in Materials Chemistry
-The Scientific Literature

Optional modules - students take 45 credits drawn from the following:
-Mastering Entrepreneurship
-Numerical Methods in Chemistry
-Researcher Professional Development
-Transferable Skills for Scientists
-Choice of one postgraduate lecture module at UCL

Dissertation/report
All students undertake a computational research project which culminates in a substantial dissertation of approximately 10,000 to 12,000 words.

Teaching and learning
The programme is delivered through a combination of lectures, seminars and laboratory classes. Assessment is through unseen examination, coursework, individual and group projects, poster creation, presentation and the research project.

Careers

There are increasing career opportunities in the field of molecular modelling in sectors including sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals. This MSc will train students in the skills necessary for future employment in the industrial and public sector communities, together with specific training in career development and transferable skills.

The majority of students on the programme have moved on to PhD study.

Top career destinations for this degree:
-Chemistry, University College London (UCL)

Employability
The training provided by this program will enable the student to enter into a wide range of fields. Students may continue in academia to complete a PhD or pursue teaching as a profession. Students with the skills obtained during this study are highly sought after by the industrial sector, including IT, sustainable energy, catalysis, nanotechnology, biomedical materials and pharmaceuticals. Students are very likely to be welcome in the financial sector.

Why study this degree at UCL?

UCL Chemistry has a world-leading position in molecular modelling research.

Molecular modelling techniques are having increasing impact in the industrial sector, as evidenced by the partnership between UCL's Industrial Doctorate Centre in Molecular Modelling and Materials Science and a range of national and international industrial sponsors.

This multidisciplinary programme offers a wide range of options, thereby enabling each student to tailor the programme to their own needs and interests.

Read less
Programme description. This programme offers you an academically-challenging and career-developing study of biological systems at the molecular and cellular level. Read more

Programme description

This programme offers you an academically-challenging and career-developing study of biological systems at the molecular and cellular level.

Biochemistry is fundamental to most areas of life-science; it has a major impact on modern medical research and is essential in the pharmaceutical, nutrition, forensic, bioengineering, agricultural and environmental industries.

The programme is designed to produce highly skilled and motivated biochemists that are suitable for employment in the life-sciences or for further academic research.

You will be taught to apply chemical and physical principles to biological molecules in complex living systems in order to expand your understanding of the molecular basis of the processes which take place within these organisms.

Through a combination of taught courses, practical skills training and laboratory-based research, you will explore the structures, dynamics, interactions and metabolic pathways of biological molecules, from small molecules to large macromolecular complexes.

Programme structure

Teaching and learning activities include:

  • lectures
  • tutorials
  • workshops
  • presentations
  • laboratory work
  • practical skills training and a research project
  • literature and database searching
  • discussion groups and project groups
  • seminars

Students will have practical skills training and will attend problem and computer-based tutorials and workshops.

Research

Those students progressing to MSc level will carry out their own research project at the frontier of knowledge and can make a genuine contribution to the progress of original research. This also involves reviewing relevant papers, analysing data, writing a dissertation and giving a presentation.

Learning outcomes

The programme aims to develop:

  • knowledge and understanding of biochemistry and awareness of the current state of research
  • enhanced practical skills in biochemical methods
  • ability to design, perform and record experiments independently
  • analytical skills to interpret data accurately and critically
  • ability to communicate biochemical information effectively in a wide range of contexts

Career opportunities

You will enhance your career prospects by acquiring knowledge of contemporary biochemistry from world experts in the field, by being trained in advanced analytical and presentation skills, and by having independent research experience in a modern, world-class laboratory.



Read less
Your programme of study. Read more

Your programme of study

The UK is one of the largest innovators and producers within biotechnology and pharmaceutical products with known multinationals providing treatments for large scale disease issues, newer companies providing batch customer medication and newer companies working with data and biotechnology researchers to provide customised medicines down to the individual level. The data and information now available with the advent of the Internet of Things and smart technologies has radically changed the way in which medicine and pharmacy can potentially be delivered in the future, opening up not just the possibility of customised medicines but also customised and specialist entrepreneurs within the field of biotech, pharmacy, and similar disciplines to provide high growth start up companies which address a real need for innovation within pharmacological areas and offer therapeutic treatments whilst we go about our every day lives.

Developed in conjunction with the industrial partners of the Stratified Medicine Scotland Innovation Centre (SMS-IC) one of five innovation centres in Scotland some of which cross over in terms of innovation and technologies.Stratified Medicine holds huge potential to enhance timely development of new treatments for human disease. It is among the most important concepts to emerge in 21st century clinical science and will be a crucial component of the global drive to increase the efficacy, safety and cost effectiveness of new medicines.

If you are a person with ideas and a constant stream of research backing up your ideas and you have potential to be a company start up in this area the programme is directly aimed at getting your ideas off the ground and towards becoming a fully functioning enterprise in your own right in Scotland. You learn all there is to know about process innovation in order to progress your idea and samples through to small scale production testing whilst learning anything you didn't know about genome enabled medicines, biologic drug discovery, Pharmacokinetics and more. You get the best researchers to teach you as this programme is delivered in conjunction with the Stratified Medicine Scotland Innovation Centre partners.

You may be interested in reading about the Scottish Innovation Centres- to find out more information.

England Innovation Centres

Courses listed for the programme

Introduction

  • Science Basis to Stratified Medicine
  • Commercialisation of Science
  • Application of Research and Evaluation Technologies

Options

  • Pharmaceutical Medicine
  • Drug Disposition
  • Advanced Bio-Business
  • New Venture Creation
  • Applied Health Economics
  • Clinical Trials: Principles and Methods
  • Developing Research and Evaluation Skills
  • Spatial Epidemiology
  • Quantitative Research Methods
  • Systemic Reviews
  • Genome Enabled Medicine
  • Pharmacokinetics and Toxicokinetics
  • Biologic Drug Discovery

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • You gain from ground breaking science innovations at Aberdeen within Pharmacology and historical game changing innovations such as the development of Insulin at the University
  • Not only do you apply your previous degree to learning rapidly about stratified medicine but you are also learning how to commercialise new innovations and produce them, getting you read to start your business or keep researching to start up
  • You learn about regulation and novel stratified approaches and you undertake an industry placement for your main project to potentially partner with organisations and companies in the area.

Where you study

  • University of Aberdeen
  • Full Time
  • 12 Months
  • September start

International Student Fees 2017/2018

Find out about fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

  • Your Accommodation
  • Campus Facilities
  • Aberdeen City
  • Student Support
  • Clubs and Societies

Find out more about living in Aberdeen and living costs



Read less
The Master of Science (M.Sc.) program offers students in a wide range of disciplines the opportunity to earn a master’s degree by writing a Thesis and successfully completing a limited number of courses. Read more
The Master of Science (M.Sc.) program offers students in a wide range of disciplines the opportunity to earn a master’s degree by writing a Thesis and successfully completing a limited number of courses. The number and details of the courses are determined within the first semester of the student's program.

Students may complete their degrees in either a full- or part-time capacity. Full-time students complete a 24-month program while part-time students complete a 48-month program. Part-time students will normally complete all required course work in the first 24 months, with the subsequent months committed to continued research and production of the Thesis.

Although degrees are awarded in specific disciplines, the program is administered centrally by the School of Graduate Studies, rather than by individual departments or Faculties.

See the website http://www.uleth.ca/graduate-studies/master-science/majors/biochemistry#

Course detail

Graduate degrees traditionally have been awarded for the successful completion of a satisfactory thesis. The thesis route expresses the fundamental tradition of academic scholarship. It also relates to the University’s undergraduate programs, because the creation of a thesis in any discipline calls for a range of skills which are central to the liberal education tradition, including analysis and synthesis of ideas, empirical investigations, the construction and articulation of arguments, and writing skills.

Because of the nature of the M.Sc. program, the thesis forms the central requirement of the program. At the master’s level, a thesis involves close collaboration between supervisor and student. Consequently, it is necessary for a candidate to establish contact with potential supervisors prior to application for admission. Candidates seeking potential supervisors should contact either the relevant academic department or the School of Graduate Studies.

Our faculty and their research

Faculty members are happy to involve students in their research projects, using state-of-the-art facilities and equipment, often collaborating with other departments, community members and employers, giving you the opportunity to get hands-on experience.

Students in Biological Sciences have the opportunity to participate in field studies or gain employment with local researchers at Agriculture and Agri-Food Canada, The Canadian Food Inspection Agency, Health Canada, various industries and other institutions.

Why study at the University of Lethbridge?

As a graduate student at the University of Lethbridge, you’ll find yourself at the centre of a student-focused environment that nurtures innovation, critical thinking and creativity.

The University of Lethbridge is one of Canada’s top-ranked universities and leading research institutions.

At the foundation of our graduate programs is a multidisciplinary and personalized experience. A collaborative environment is encouraged between faculty and students. This means you have flexibility in decisions regarding the research and learning path you take.

At the U of L, we are committed to helping every one of our students thrive. From aiding with financial support to one-on-one mentorship to individualized career advice, you’ll find support every step of the way.

When you graduate, you will have the confidence you need to succeed in whatever you do, whether that means pursuing further education, teaching in an academic setting or establishing a professional career.

We’re here to help as you find the answers to your questions. As Alberta’s Destination University, the U of L gives you room to think, create and explore, providing a university experience unlike any other.

How to apply

In order to apply, you will need to provide the following documentation:

• Academic Transcripts
• Curriculum Vitae
• Three Letters of Reference
• Letter of Intent
• English Language Proficiency (ELP)

All applications and supporting documents must be provided through the online portal: http://www.uleth.ca/graduate-studies/master-science/apply

Co-operative Education & Internships Option

The Co-operative Education/Internship Option is available to students for the Master of Arts (MA) and Master of Science (MSc) programs. Co-operative education is an educational model that formally integrates academic study at the master’s level with relevant, paid work experience in appropriate employment fields such as government, institutions, and industry. The University, the employer, and the student are in partnership to ensure an enriching experience toward the student's professional development.

Funding

Find information on Scholarships here http://www.uleth.ca/graduate-studies/award-opportunities

Read less
Goal of the pro­gramme. A Master’s degree in chemistry qualifies you for expert positions in a wide range of fields, such as industry, research or education. Read more

Goal of the pro­gramme

A Master’s degree in chemistry qualifies you for expert positions in a wide range of fields, such as industry, research or education. The chemicals industry is a major employer and one of the largest export industries in Finland. Your work could also involve applications of environmental or biological sciences, the manufacture of pharmaceutical products, or the development of technological materials or new energy solutions. In the private sector, your duties might include research and development, quality management, training or commerce. Customs and forensic chemists, and chemists working in environmental control, analyse samples as part of their duties. Chemical research often requires interdisciplinary and international cooperation. As a chemist, you can be a part of developing new inventions and serve as an expert in your field and as a connoisseur of natural phenomena!

After completing the Master’s Programme in Chemistry and Molecular Sciences, you will:

  • Be profoundly familiar with experimental research methods in one or more fields of chemistry, such as analytical and synthetic chemistry, radiochemistry, molecular research, and spectroscopy.
  • Have an in-depth knowledge of the theoretical basis of your field and be able to apply this knowledge to broader topics.
  • Know how to search for and manage chemical research data and use them to plan and perform demanding duties in chemical laboratories.
  • Be able to act as a chemical expert in project planning and management, both independently and as a member of a team.
  • Be able to present your results accurately in accordance with the practices of the field, both orally and in writing, and prepare extensive papers and reports.

Further information about the studies on the Master's programme website.

Pro­gramme con­tents

In the Master’s programme, you will deepen the knowledge and skills acquired during your Bachelor’s degree studies. Depending on your choices, you will familiarise yourself with one or more branches of chemistry and learn modern research methodology. The studies include lecture courses, examinations and contact teaching, laboratory courses, presentation series and seminars. Compared to the Bachelor’s degree, these studies require more independent work. The Master’s degree culminates in an extensive Master’s thesis that includes practical research.

You can find further information about the studies on the Master's programme website.

Students are automatically granted admission to the Master’s programme through the Bachelor’s Programme in Chemistry at the University of Helsinki. You can also apply for the programme after completing an applicable Bachelor’s degree in a different programme or university.



Read less
This innovative master program enables you to meet the demands of employers in the scientific field worldwide. You will be trained in all aspects of cutting edge molecular stem cell biology including legal and ethical aspects, good medical practice and acquisition of third party funding. Read more

Overview

This innovative master program enables you to meet the demands of employers in the scientific field worldwide. You will be trained in all aspects of cutting edge molecular stem cell biology including legal and ethical aspects, good medical practice and acquisition of third party funding. The course combines cutting edge approaches such as iPSC and bioprinting with traditional basic disciplines such as histology to secure an in-depth understanding towards innovative translational approaches in medicine. The course is entirely taught in English.

Learning outcome

Holding our degree means you have acquired a robust expertise in theory and practice in one of the most scientifically and ethically demanding biomedical fields of today.

During the first year of the program, students achieve a fundamental understanding of developmental processes that are linked to the current progress of stem cell research. This theoretical knowledge is further deepened and expanded on by hands-on experience in the relevant laboratories.

The inclusion of local national and international guest lecturers gives students the opportunity to get an idea what is going on in the field of stem cell research and which labs can be chosen for specialized practicals.

During the second year, the curriculum emphasizes application-oriented courses suited to understand the cellular and molecular basis of human diseases and to familiarize with the complex demands of modern medicine. The 4th semester is reserved for the master thesis; multiple international collaborations and a mobility window offer the chance to perform practicals and master thesis abroad.

Modules

The major modules in the program are listed below:

Stem Cell Physiology (I and II)
3x Lecture Series on recent developments in stem cell research (by national and international experts)
Bioinformatics
Stem Cell Practical Courses- 2 weeks-long practical courses (4 times)
Molecular Tracing Methods
Molecular Genetic Methods
Tissue Engineering
Lab Rotation
Pathology of Degenerative Diseases
Course in Animal Care and Handling
Scientific Responsibility in Biomedicine
Lab Bench Project & Grant Writing
Master Project
Language Courses

Possibility for International Double degree program `Stem Cell Biology and Regenerative Medicine´

In addition to the regular master program, we also offer a double degree master program in `Stem Cell Biology and Regenerative Medicine’ in collaboration with Jinan University in China. This program is supported by the DAAD (Deutscher Akademischer Austauschdienst) with a stipend of 800, -- Euros/month plus travel expenses (flight) for every participating student. The selection for this program will be made from the regular master students. More information is available on our website.

Ruhr University Bochum (RUB)

Ruhr University Bochum (RUB) has a very international outlook and it is closely interconnected with the thriving research and business initiatives of the surrounding Ruhr region. Aside from the RUB, the surrounding Ruhr region offers a lot of opportunities to young researchers, such as 15 universities, 4 Fraunhofer institutes, 4 Leibnitz institutes and 3 Max-Planck institutes, which makes it easy for the students to interact with the experts and get hands-on experience in the state-of-the-art laboratories.

Read less

Show 10 15 30 per page



Cookie Policy    X