• University of Surrey Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Birmingham City University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
De Montfort University Featured Masters Courses
EURECOM Featured Masters Courses
University of Birmingham Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
University of Birmingham Featured Masters Courses
0 miles
Engineering×

Masters Degrees in Biomaterials

We have 19 Masters Degrees in Biomaterials

Masters degrees in Biomaterials offers advanced training in the design and construction of materials devices or technologies which interact with living systems, such as medical materials.

Courses range from taught MSc degrees, to research-based MRes and MPhil programmes. Entry requirements normally include an undergraduate degree in an appropriate engineering or medical subject.

Why study a Masters in Biomaterials?

Read more...

  • Engineering×
  • Biomaterials×
  • clear all
Showing 1 to 15 of 19
Order by 
The Masters course in Biomaterials is multi-disciplinary. It provides students with a rich understanding of about current clinically used biomaterials and state of the art advances in research to improve these. Read more

The Masters course in Biomaterials is multi-disciplinary. It provides students with a rich understanding of about current clinically used biomaterials and state of the art advances in research to improve these. The clinical application of these biomaterials will be demonstrated along with indepth description of materials structure and processing (e.g. polymer, composite and ceramic). The project component will allow hands-on training for the student in further developing novel biomaterials.

Special features

Who is this programme for?

Students from an engineering or medically related background who wish to pursue a career in biomaterials.

Teaching and learning

Semester 1 (Sept - Dec):

Research Methods course unit (15 credits); Lectures and workshops detailing transferable skills such as project management, time management, essay writing, oral presentation.

Master Class Course Unit (15 credits); Lectures specific to biomaterials design, characterization, manufacture and characterization. Lectures on use of stem cells with biomaterials and tissue engineering applications also included.

Structure & Mechanical Properties of Polymers (15 credits); Module covers masters level detail of polymer technology.

Clinical Applications of Biomaterials (15 credits); lectures series detailing current clinical applications of biomaterials. The module also covers a case study exercise.

Semester 2 (Jan - March):

Composite Materials (15 credits); students will learn about composite material design and implementation for biomaterials.

Nanobiomaterials (15 credits); lecture series on nanobiomaterials manufacture, characterization and use as biomaterials

Summer ( March- Sept): 

Research project (90 credits); 5 month research project studying specific biomaterials design or characterisation. Student will have specifically allocated supervisor to provide training in biomaterials. Assessment: Oral presentation and write up: Research aims, hypothesis, Gantt chart, milestones, Write up project in form of journal publication for `Biomaterials' journal.

Course unit details

The MSc in Biomaterials will provide students the opportunity to increase knowledge and skills in the areas of specific materials design and testing for clinical application. Students will have the opportunity to take 90 taught credits with training in state of the art biomaterials design (ceramics, polymers, composites, hydrogels etc with information relating to biological assessment of these materials (e.g. stem cell response, ISO / FDA regulations). Students also have the opportunity to gain 90 credits through a specific research project where they will gain analytical skills and data processing skills relevant to biomaterials design / use.

The full MSc programme is made up of seven taught course units and a four month research project. The taught units are:

Semester 1 (Sept - Dec):

  • Research Methods course unit (15 credits); Lectures and workshops detailing transferable skills such as project management, time managent, essay writing, oral presentation.
  • Master Class Course Unit (15 credits); Lectures specific to biomaterials design, manufacture and characterisation. Lectures on use of stem cells with biomaterials and tissue engineering applications also included.
  • Structure & Mechanical Properties of Polymers (15 credits); Module covers masters level detail of polymer technology.
  • Clinical Applications of Biomaterials (15 credits); lectures series detailing current clinical applications of biomaterials. The module also covers a case study excercise.

Semester 2 (Jan - March):

  • Composite Materials (15 credits); students will learn about composite material design and implementation for biomaterials.
  • Nanobiomaterials (15 credits); lecture series on nanobiomaterials manufacture, characterisation and use as biomaterials.

Summer (March - Sept):

  • Research project (90 credits); 5 month research project studying specific biomaterials design or characterisation. Student will have specifically allocated supervisor to provide training in biomaterials. Assessment: Oral presentation and write up; research aims, hypothesis, Gantt chart, milestones, write up project in the form of a journal publication for 'Biomaterials' journal.

The programme aims to further your knowlege base in biomaterial structure, manufacture and use, and to develop your critical analysis of biomaterial development and methods of application.

Disability support

Practical support and advice for current students and applicants is available from the Disability Advisory and Support Service. Email: 

Career opportunities

The medical device industry is estimated to be increasing at a rate of ~15% per year (Grammenou, 2006). As such it is important to provide scientists that are equipped with the knowledge and skills for the workplace to advance this important clinical need.

The majority of graduates of this programme go on to fill key posts as biomaterials scientists, managers and consultants in academia, industry and research and development. Some advance to PhD programmes within The University of Manchester or external institutes.

Accrediting organisations

Accredited by the Institute of Minerals, Materials and Mining (IOM 3 ) as meeting the Further Learning requirements for registration as a Chartered Engineer.



Read less
Biomaterials save lives, relieves suffering and improve the quality of life for a large number of patients every year�. (Technology Foresight, UK). Read more
Biomaterials save lives, relieves suffering and improve the quality of life for a large number of patients every year�. (Technology Foresight, UK)

People are living longer and expect to be more mobile and active after injury or as they get older, therefore the demands for biomaterials and devices are increasing. Biomaterials combine engineering expertise with medical needs for the enhancement of healthcare. Biomaterials are either modified natural or synthetic materials which find application in a spectrum of medical implants for the repair, augmentation and replacement of body tissues. Queen Mary University of London has been a pioneer and led the field in teaching and research of biomaterials for over 28 years. In the early 1980s we were the first UK department to teach biomaterials modules and in 1991 the first to offer an undergraduate degree in the subject. This MSc programme will provide students with the knowledge in the field of biomaterials necessary to participate in biomaterials research or product development.

The MSc in Biomaterials has been designed for those with conventional materials expertise, or with expertise in engineering or medically related disciplines, who wish to facilitate their development into the biomaterials field. It provides an advanced level of understanding and appreciation of the principles and applications of biomaterials and their functional properties. You will learn about the function and application of biomaterials, their characteristics and their surface, physical and mechanical properties. You will study materials- and medicine-based modules, as well as those written specifically for the biomaterials programme. There are significant research elements in this programme including a research project based on the research interests of academic staff working in the field of biomaterials.

Read less
This MSc will equip you with state-of-the-art knowledge of biomaterials, bioengineering, tissue engineering, medical engineering and related management topics. Read more

This MSc will equip you with state-of-the-art knowledge of biomaterials, bioengineering, tissue engineering, medical engineering and related management topics. Delivered by experts from across UCL and eminent visiting lecturers from industry and medical charities, this interdisciplinary programme attracts physical sciences, engineering and life sciences graduates, including those with qualifications in medicine.

About this degree

You will develop an advanced knowledge of topics in biomaterials and tissue engineering alongside an awareness of the context in which healthcare engineering operates, in terms of safety, environmental, social and economic aspects. You will also gain a wide range of intellectual, practical and transferable skills necessary for a career in this field.

Students undertake modules to the value of 180 credits.

The programme consists of eight core modules (120 credits) and a research dissertation (60 credits).

Core modules

  • Biomaterials
  • Tissue Engineering
  • Biofluids and Medical Devices
  • Biomechanics and Biostructures
  • Applications of Biomedical Engineering
  • Bioengineering
  • Medical Imaging (ionising and non-ionising)
  • Evaluation and Planning of Business Opportunities

Optional modules

There are no optional modules for this programme.

Dissertation/report

Culminating in a substantial dissertation and oral presentation, the research project focuses your research interests and develops high-level presentation, critical thinking and problem-solving skills. The project can be based in any relevant UCL department.

Teaching and learning

This dynamic programme is delivered through lectures, tutorials, individual and group projects, and practical laboratory work. Assessment is through written, oral and viva voce examinations, the dissertation and coursework (including the evaluation of laboratory reports, technical and project reports, problem-solving exercises, assessment of computational and modelling skills, and oral presentations).

Further information on modules and degree structure is available on the department website: Biomaterials and Tissue Engineering MSc

Careers

There are many career opportunities and the programme is suitable for students wishing to become academics, researchers or professionals and for those pursuing senior management careers, in manufacturing or healthcare engineering

Recent career destinations for this degree

  • Dentist, Dental Life
  • Good Manufacturing Process Scientist, RMS (Regenerative Medical System)
  • Postgraduate Research Assistant, University of Cambridge
  • PhD in Biomaterials and Tissue Engineering, UCL
  • PhD in Surgery, UCL

Employability

Delivered by leading researchers from across UCL, as well as industrial experts, you will have plenty of opportunities to network and keep abreast of emerging ideas in biomaterials and tissue engineering. Collaborating with companies and bodies such as the NHS, JRI Orthopaedics and Orthopaedics Research (UK) is key to our success and you will be encouraged to develop networks through the programme itself and through the department’s careers programme which includes employer-led events and individual coaching. We equip our graduates with the skills and confidence needed to play a creative and leading role in the professional and research community.

Careers data is taken from the ‘Destinations of Leavers from Higher Education’ survey undertaken by HESA looking at the destinations of UK and EU students in the 2013–2015 graduating cohorts six months after graduation.

Why study this degree at UCL?

There are internationally renowned research groups in biomaterials and bioengineering in UCL Engineering and you will have access to a state-of-the-art research portfolio.

In recent years, UCL Mechanical Engineering has seen unprecedented activity in refurbishing and re-equipping our laboratories. For example, six new biomaterials and bioengineering laboratories have been set up with funding from the Royal Society and Wolfson Foundation. A new biomaterials processing and forming laboratory is also available in the Materials Hub in the Engineering Building.

The programme is also delivered by leading researchers across UCL's Division of Medicine, Eastman Dental Institute, the Institute of Biomedical Engineering and visiting experts from other UK organisations.

Research Excellence Framework (REF)

The Research Excellence Framework, or REF, is the system for assessing the quality of research in UK higher education institutions. The 2014 REF was carried out by the UK's higher education funding bodies, and the results used to allocate research funding from 2015/16.

The following REF score was awarded to the department: Mechanical Engineering

90%: Aeronautical, Mechanical, Chemical and Manufacturing Engineering subjects; 95%: General Engineering subjects rated 4* (‘world-leading’) or 3* (‘internationally excellent’)

Learn more about the scope of UCL's research, and browse case studies, on our Research Impact website.



Read less
About the course. A multi-disciplinary course, students will be introduced to the field of biomaterials, and important factors in the selection, design, and development of biomaterials for clinical applications. Read more

About the course

A multi-disciplinary course, students will be introduced to the field of biomaterials, and important factors in the selection, design, and development of biomaterials for clinical applications. You’ll develop an understanding of biomaterials science, engineering, regenerative medicine and associated specialisms.

This course will be of particular interest to students interested in facilitating their development into the medical field aiming to contribute in the health care sector.

A welcoming department

A friendly, forward-thinking community, our students and staff are on hand to welcome you to the department and ensure you settle into student life.

Your project supervisor will support you throughout your course. Plus you’ll have access to our extensive network of alumni, offering industry insight and valuable career advice to support your own career pathway.

Your career

Prospective employers recognise the value of our courses, and know that our students can apply their knowledge to industry. Our graduates work for organisations including Airbus, Rolls-Royce, the National Nuclear Laboratory and Saint-Gobain. Roles include materials development engineer, reactor engineer and research manager. They also work in academia in the UK and abroad.

90 per cent of our graduates are employed or in further study 6 months after graduating, with an average starting salary of £27,000, the highest being £50,000.

Equipment and facilities

We have invested in extensive, world-class equipment and facilities to provide a stimulating learning environment. Our laboratories are equipped to a high standard, with specialist facilities for each area of research.

Materials processing

Tools and production facilities for materials processing, fabrication and testing, including wet chemical processing for ceramics and polymers, rapid solidification and water atomisation for nanoscale metallic materials, and extensive facilities for deposition of functional and structural coatings.

Radioactive nuclear waste and disposal

Our £3million advanced nuclear materials research facility provides a high-quality environment for research on radioactive waste and disposal. Our unique thermomechanical compression and arbitrary strain path equipment is used for simulation of hot deformation.

Characterisation

You’ll have access to newly refurbished array of microscopy and analysis equipment, x-ray facilities, and surface analysis techniques covering state-of-the-art XPS and SIMS. There are also laboratories for cell and tissue culture, and facilities for measuring electrical, magnetic and mechanical properties.

The Kroto Research Institute and the Nanoscience and Technology Centre enhance our capabilities in materials fabrication and characterisation, and we have a computer cluster for modelling from the atomistic through nano and mesoscopic to the macroscopic.

Stimulating learning environment

An interdisciplinary research-led department; our network of world leading academics at the cutting edge of their research inform our courses providing a stimulating, dynamic environment in which to study.

Teaching and assessment

Working alongside students and staff from across the globe, you’ll tackle real-world projects, and attend lectures, seminars and laboratory classes delivered by academic and industry experts.

You’ll be assessed by formal examinations, coursework assignments and a dissertation.

Core modules

  • Scientific Writing and Health Informatics
  • Polymers Materials Chemistry
  • Materials for Biological Applications
  • Bio-imaging and Bio-spectroscopy
  • Tissue Engineering Approaches to Failure in Living Systems
  • Structural and Physical Properties of Dental and Bio-materials
  • Research project in an area of your choice

Examples of optional modules

  • Dental Materials Science
  • Group Projects and Developing Research
  • Tissue Structure and Function


Read less
Biomedical Engineering is a field of engineering that relies on highly inter- and multi-disciplinary approaches to research and development, in order to address biological and medical problems. Read more
Biomedical Engineering is a field of engineering that relies on highly inter- and multi-disciplinary approaches to research and development, in order to address biological and medical problems. Specialists in this area are trained to face scientific and technological challenges that significantly differ from those related to more traditional branches of engineering. Nevertheless, at the same time Biomedical Engineering makes use of more traditional engineering methodologies and techniques, which are adapted and further developed to meet specifications of biomedical applications.

This MSc programme covers the following topics:

• Fundamentals of human physiology;
• Ethics and regulatory affairs in the biomedical field;
• Advanced aspects of tissue engineering, regenerative medicine and biomaterials;
• Advanced techniques to synthesize and/or characterise materials for biomedical engineering;
• Mechanics of tissues, cells and sub-cellular components;
• Biocompatibility of implantable materials and devices;
• Materials and techniques for nanotechnology and nanomedicine.

Applications are welcome from students with a background in physical sciences (Chemistry, Physics, Mathematics and Materials Science) or Engineering.The programme has strong roots within the well-recognised expertise of the academics that deliver the lectures, who have international standing in cutting-edge research on Biomaterials and Tissue Engineering.

This fact ensures that the programme is delivered with the highest standards in the field. The students also benefit from access to state-of-the-art facilities and instrumentation in the areas of Biomaterials and Tissue Engineering, while undertaking research projects in brand-new large laboratories that are the result of a recent multi-million investment from the College.

The programme is designed with a careful balance of diversified learning components, such that, on completion of their studies, the postgraduates acquire extensive knowledge and skills that make them able to undertake careers in a wide range of professional ambits within the biomedical field, including health care services, industry and scientific research

Read less
This course aims to provide science or engineering graduates from a diversity of backgrounds with a solid grounding in modern bioengineering technologies, together with a strong emphasis in biomechanics and biomaterials. Read more
This course aims to provide science or engineering graduates from a diversity of backgrounds with a solid grounding in modern bioengineering technologies, together with a strong emphasis in biomechanics and biomaterials. This course will prepare students for a career in an industrial, clinical or research environment, independent learning, and postgraduate research or careers in industry or hospitals.

This course is one of a suite of four closely related bioengineering masters courses that comprise of a common core with the ability to focus on specific aspects of bioengineering.

The course covers material optimisation and engineering of biomedical devices while addressing biological considerations to optimise device performance. Such an approach has a wide application range, incorporating transitory invasive devices to permanent implants for repair, replacement and regenerative treatments. The principles of the course are highly relevant to both the established medical device sector and the emerging regenerative
medicine industry.

This multidisciplinary MSc covers practical and theoretical aspect of bioengineering, including:
-cell-biomaterial surface interactions
-materials characterisation
-functionalisation of surface
-biomechanics and mathematical modelling

Read less
The Masters in Biomedical Engineering is an interdisciplinary programme that will equip you for employment within the biomedical engineering sector. Read more

The Masters in Biomedical Engineering is an interdisciplinary programme that will equip you for employment within the biomedical engineering sector. This programme addresses all the key aspects of biomedical engineering.

Why This Programme

  • The University of Glasgow’s School of Engineering has been delivering engineering education and research for more than 150 years and is the oldest School of Engineering in the UK.
  • Biomedical Engineering is the newest division of the School, bringing together our long standing expertise. Research covers four themes, Biomaterials and Tissue Engineering, Bionanotechnology, Rehabilitation Engineering, Biosensors and Diagnostics.
  • The course is based on in-depth modules and individual projects, which are designed to give graduates an opportunity to specialise in specific areas of Biomedical Engineering or to cover a more general Biomedical Engineering syllabus.
  • This taught MSc/PG Dip offers a wide exposure to the philosophy and practice of Biomedical Engineering whilst simultaneously enabling the students to deepen their knowledge of specific areas of biomedical engineering disciplines, which have been chosen on the basis of the research strengths of the Discipline. The choice includes Biomaterials and Biomechanics including their application in Tissue Engineering and Regenerative Medicine, Rehabilitation Engineering includes applied within Glasgow hospital and bioelectronics and diagnostic systems, designed to be applied from advanced hospitals to out-in-the-field situations.
  • The compulsory part provides the basic underlying knowledge need throughout biomedical engineering these core courses are taken in both semesters to allow a wide range of optional subjects to be available.
  • You will broaden and/or deepen your knowledge of biomedical engineering disciplines.

Programme structure

Modes of delivery of the MSc in Biomedical Engineering include lectures, seminars and tutorials and allow students the opportunity to take part in lab, team work and study trips in the UK. You will undertake an MSc project working on a specific research area with one of the academics.

Core courses

  • Applications of biomedical engineering
  • Biological fluid mechanics
  • Cellular biophysics
  • Energy in biological systems
  • Medical imaging
  • Statistics for biomedical engineering
  • MSc project.

Optional courses

  • Advanced imaging and therapy
  • Applied engineering mechanics
  • Bioinformatics and systems biology
  • Biomechanics
  • Biosensors and diagnostics
  • Microscopy and optics
  • Nanofabrication
  • Rehabilitation engineering
  • Scaffolds and tissues
  • Signal processing of bio-signatures
  • Tissue and cell engineering.

Career prospects

Career opportunities include positions in rehabilitation engineering, biomaterials for reconstructive surgery, biosensors, device and implant design and development, and biosignal processing.



Read less
The Department of Biomedical Engineering. The Department of Biomedical Engineering. (BME) at BGU, established 2000, conducts vibrant cutting-edge research across a broad spectrum of fields, led by 10 faculty members. Read more

The Department of Biomedical Engineering

The Department of Biomedical Engineering (BME) at BGU, established 2000, conducts vibrant cutting-edge research across a broad spectrum of fields, led by 10 faculty members. Areas of research include biomedical optics, bioelectronics, biomechanics, biomembranes, biomaterials, medical and tele robotics, neuroscience, biopharmaceutics, and physiological signal processing. The department is equipped with state-of-the-art laboratories and research facilities supported by numerous prestigious academic funds. The department invests considerable efforts in providing students with hands-on experience in laboratory classes that develop engineering skills, particularly in two clusters: Biomedical Signal processing and Biomechanics. Many of the biomedical engineers who graduated from the department now hold key positions, nationally and internationally, in academic institutions and the biomed industry.

M.Sc. degree in Biomedical Engineering

The BME Department offers graduate studies towards both M.Sc. and Ph.D. degrees in Biomedical Engineering. The The M.Sc. degree is typically completed within two academic years (four semesters). The program is research oriented and conducted in the BME laboratories under the guidance of our faculty members.  It includes graduate-level coursework and a research thesis that presents the unique scientific contribution of the student.  Many of our M.Sc. students qualify for doctoral studies in the Combined Ph.D.t, such that the M.Sc. thesis can also

Application requirements

Applicants to the M.Sc. Program in the BME Department should hold a B.Sc. degree in Biomedical Engineering or in closely related fields from an accredited institution at a minimum GPA of 80/100, as well as have a TOEFL score of at least 85/120 or an equivalent score in an internationally recognized English proficiency exam. The English proficiency requirement is waived for applicants who received their B.Sc. degree in a program taught in English. GRE is recommended but not required. Additionally, prior to applying to the M.Sc. Program, the applicant is expected to contact a potential advisor among the BME faculty, as well as the director of graduate studies for further information.

The M.Sc. Thesis

The research leading to the M.Sc. thesis is conducted throughout the two years of studies. The student is expected to publish and present the research results in leading international journals and conferences. The thesis is evaluated by a scientific committee through a written report and an oral examination.

How to Apply

Please visit our online application site at: https://apps4cloud.bgu.ac.il/engrg/

Further information

The Department of Biomedical Engineering at BGU:  http://in.bgu.ac.il/en/engn/biomed/Pages/default.aspx

Director of Graduate Studies: Dr. Alberto Bilenca, email :

BGU International - http://www.bgu.ac.il/international

 

 



Read less
About the course. The course is designed to equip students with the know-how and skills for becoming an expert in materials science with nanotechnology specialisation. Read more

About the course

The course is designed to equip students with the know-how and skills for becoming an expert in materials science with nanotechnology specialisation.

You will experience the unique combination of a foundation semester in the general area of science and engineering of materials, followed by a nanoscience and nanotechnology specific semester to result in an unrivalled comprehensive nanomaterials expertise.

The course content reflects the highly interdisciplinary nature of this subject and allows students to specialise via options, and a major project.

A welcoming department

A friendly, forward-thinking community, our students and staff are on hand to welcome you to the department and ensure you settle into student life.

Your project supervisor will support you throughout your course. Plus you’ll have access to our extensive network of alumni, offering industry insight and valuable career advice to support your own career pathway.

Your career

Prospective employers recognise the value of our courses, and know that our students can apply their knowledge to industry. Our graduates work for organisations including Airbus, Rolls-Royce, the National Nuclear Laboratory and Saint-Gobain. Roles include materials development engineer, reactor engineer and research manager. They also work in academia in the UK and abroad.

90 per cent of our graduates are employed or in further study 6 months after graduating, with an average starting salary of £27,000, the highest being £50,000.

Equipment and facilities

We have invested in extensive, world-class equipment and facilities to provide a stimulating learning environment. Our laboratories are equipped to a high standard, with specialist facilities for each area of research.

Materials processing

Tools and production facilities for materials processing, fabrication and testing, including wet chemical processing for ceramics and polymers, rapid solidification and water atomisation for nanoscale metallic materials, and extensive facilities for deposition of functional and structural coatings.

Radioactive nuclear waste and disposal

Our £3million advanced nuclear materials research facility provides a high-quality environment for research on radioactive waste and disposal. Our unique thermomechanical compression and arbitrary strain path equipment is used for simulation of hot deformation.

Characterisation

You’ll have access to newly refurbished array of microscopy and analysis equipment, x-ray facilities, and surface analysis techniques covering state-of-the-art XPS and SIMS. There are also laboratories for cell and tissue culture, and facilities for measuring electrical, magnetic and mechanical properties.

The Kroto Research Institute and the Nanoscience and Technology Centre enhance our capabilities in materials fabrication and characterisation, and we have a computer cluster for modelling from the atomistic through nano and mesoscopic to the macroscopic.

Stimulating learning environment

An interdisciplinary research-led department; our network of world leading academics at the cutting edge of their research inform our courses providing a stimulating, dynamic environment in which to study.

Teaching and assessment

Working alongside students and staff from across the globe, you’ll tackle real-world projects, and attend lectures, seminars and laboratory classes delivered by academic and industry experts.

You’ll be assessed by formal examinations, coursework assignments and a dissertation.

Core modules

  • Science of Materials
  • Materials Processing and Characterisation
  • Practical, Modelling and Digital Skills
  • Nanoscale Magnetic Materials and Devices
  • Nanostructures and Nanostructuring
  • Nanomaterials
  • Research project in an area of your choice


Read less
The programme focuses on biological and artificial interfaces that are of utmost importance and interest in the field of biomedical science. . Read more

The programme focuses on biological and artificial interfaces that are of utmost importance and interest in the field of biomedical science. 

This is an excellent opportunity for you who has a bachelor’s degree in life sciences and would like to advance your skills in biomedical science. The programme offers theoretical as well as practical skills, beyond traditional teaching in biomedicine, biology and chemistry. The education combines cell and molecular biology with surface and colloid chemistry. It offers unique knowledge, useful in biotech applica­tions such as: drug delivery systems, implants, bio-assays, medical nano-technology and food technology. Arranged in close collaboration with regional industry, it provides an up to date overview of research and development in the field of biomedical surface science.

About

The program creates a platform for understanding the involvement of surface science in biomedicine and biotechnology. You will get theoretical knowledge and practical skills in the areas of biomedical activities which require expertise beyond traditional disciplines of biomedicine, chemistry or biology.

Active connections

The program is carried out in close collaboration with regional industry, and provides up to date overview on research and development work in the area of biomedical technology. Education is conducted by researchers and teachers who are participants of an industrially relevant research network called Profile “Biofilms – research center for biointerfaces”. Our experimental facilities combine chemistry, cell and molecular biology, and bioanalytical laboratories.

Forms of study

We use different pedagogical forms, with a strong focus on research questions in development of biomedical products. The collaboration with surrounding biomedical industry is conducted through CDIO, Conceive - Design - Implement - Operate projects.

What is Biomedical Surface Science?

Biomedical surface science refers to the knowledge and understanding of the theoretically and practically integration of surface chemistry in applied aspects of cell biology, immunology, molecular biology and nanotechnology.Biomedical surface science refers to specialised knowledge of surface chemistry in applied areas of cell biology, immunology, molecular biology, nano-biotechnology and colloid chemistry, as well as substantially knowledge on integration of these subject in biomedical surface science.

Major Biomedical industries

Drugs and biotechnology

  • small molecules - synthetic organic molecules
  • biologics - biological molecules made by living organisms (biotechnology)

Devices and diagnostics

  • medical devices industry
  • diagnostics - IVD (in-vitro diagnostics)

Content

Course list:

Degree

Master's Degree (120 credits).

After the education on the programme is accomplished the requirements for the master degree in Biomedical Surface Science are fulfilled. 

The degree certificate states the Swedish title Masterexamen i biomedicinsk ytvetenskap (120 hp)and the English title Degree of Master of Science (120 credits) with a major in Biomedical Surface Science.



Read less
Why this course?. Biofluid Mechanics applies engineering, mathematical and physical principles of fluids to solve complex and multifaceted problems, primarily in biology and medicine, but also in aerospace and robotics. . Read more

Why this course?

Biofluid Mechanics applies engineering, mathematical and physical principles of fluids to solve complex and multifaceted problems, primarily in biology and medicine, but also in aerospace and robotics. 

This newly-launched MSc course is the first one-year taught course dedicated to Biofluid Mechanics. It covers a wide range of multidisciplinary training on the kinematics and dynamics of fluids related to biological systems, medical science, cardiovascular devices, numerical modelling and computational fluid dynamics.

The one-year full-time programme offers you a unique opportunity to lead the next generation of highly-skilled postgraduates that will form a new model worldwide for academia – with world-class research knowledge, industry – with highly-competitive skills in both biomedical engineering and fluid dynamics, and for society – with better training to work with clinicians.

The course is taught by the Department of Biomedical Engineering, with input from other departments across the Faculty of Engineering and the wider University. You'll be supported throughout the course by a strong team of academics with global connections. You'll benefit from a unique training and an innovative teaching and learning environment.

You'll study

In Semesters 1 and 2, you'll take compulsory classes and a choice of optional classes. The remaining months are dedicated to project work, submitted as dissertation (Diploma students) or as a research thesis (MSc students).

Compulsory Classes

  •    Biofluid Mechanics
  •    Industrial Software
  •    Medical Science for Engineering
  •    Research Methodology
  •    Professional Studies in Biomedical Engineering 

Optional Classes

  •    Haemodynamics for Engineers
  •    Numerical Modelling in Biomedical Engineeirng
  •    Cardiovascular Devices
  •    The Medical Device Regulatory Process
  •    Entrepreneurship and Commercialisation in Biomedical Engineering
  •    Introduction to Biomechanics
  •    Finite Element Methods for Boundary Value Problems and Approximation
  •    Mathematical Biology and Marine Population Modelling
  •    Design Management
  •    Risk Management

Masters Research Project

The project provides MSc students with the opportunity to experience the
challenges and rewards of independent study in a topic of their own choice; the project may involve an extended literature review, experimental and/or
computational work.

Postgraduate Diploma Dissertation

The dissertation is likely to take the form of an extended literature review. Your project work will have been supported by a compulsory research methods module and specialist knowledge classes throughout the year designed to assist with technical aspects of methodology and analysis.

Learning & teaching

Classes are organised in lectures, laboratory demonstrations, practical exercises and hands-on experience with industrial software on real biofluid mechanics problems. In addition to the classes, you'll benefit from invited academic and industrial speakers, departmental seminars and knowledge exchange events.

Assessment

Assessment methods include exams, coursework and the research project/thesis.

Careers

Graduates will be highly employable in the following markets and related sectors/companies, among others:

  •    Medical Devices
  •    Simulation and Analysis Software
  •    Academic Research
  •    Biosimulation market
  •    NHS and the Healthcare/Medical Simulation
  •    Life Science Research Tools and Reagents

Key providers have been identified in each of the above markets. Creating links with the relevant industry and monitoring the market and employability trends will enable us to tailor the course content appropriately, and to enhance graduates’ employability.

Industrial Partnerships

We've already established strong partnerships with industrial companies that have offered their support, eg through the provision of software licenses, teaching material and/or collaborative research projects, including:



Read less
Research opportunities. Biofluid mechanics applies engineering, mathematical and physical principles of fluids to solve complex and multifaceted problems primarily in biology and medicine, but also in aerospace and robotics. Read more

Research opportunities

Biofluid mechanics applies engineering, mathematical and physical principles of fluids to solve complex and multifaceted problems primarily in biology and medicine, but also in aerospace and robotics.

Our new MRes course covers a wide range of multidisciplinary training on the kinematics and dynamics of fluids related to biological systems, medical science, cardiovascular devices, numerical modelling and computational fluid dynamics (CFD), focusing on research. The MRes differs from an MSc in that you'll have the opportunity to perform multidisciplinary research for a longer time, preparing you for a research career and equipping you with world-class research knowledge.

The course is taught by the Department of Biomedical Engineering, with input from other departments across the faculty and the University.

During the course, you'll be supported by a strong team of academics with worldwide connections and you'll be offered a unique training and innovative teaching and learning environment.

What you'll study

This one-year programme consists of compulsory and optional classes in the first two semesters. Each class has timetabled contact hours, delivered mainly in lectures, laboratories and tutorials. The MRes research project will be chosen and started in semester one with guidance from a supervisor. Throughout the year you'll be working on your project.

Compulsory classes

  • Professional Studies in Biomedical Engineering
  • Research Methodology
  • MRes project

Elective classes

  • Biofluid Mechanics
  • Industrial Software
  • Medical Science for Engineering
  • Haemodynamics for Engineers
  • Numerical Modelling in Biomedical Engineering
  • Cardiovascular Devices
  • The Medical Device Regulatory Process
  • Entrepreneurship & Commercialisation in Biomedical Engineering
  • Introduction to Biomechanics
  • Finite Element Methods for Boundary Value Problems and Approximation
  • Mathematical Biology & Marine Population Modelling
  • Design Management
  • Risk Management

Support & development

The new MRes course aims to train students in the Biofluid Mechanics field, targeting primarily the academic research market, but also the Medical Devices and Simulation/Analysis software industries and other related and new emerging markets.

Our postgraduates will benefit from acquiring world-class training and competitive skills in both biomedical and fluid dynamics disciplines that will make them highly employable at the following markets and related sectors/companies:

  • academic research
  • medical device market
  • simulation & analysis software market
  • biosimulation market
  • NHS & the healthcare/medical simulation market
  • life science research tools & reagents market

We've identified the current key vendors in each of the above markets and aim to create links with the relevant industry and monitor the changing market and employability trends, in order to adjust teaching modules and approaches and to enhance employability of our graduates.

Industrial partnerships

We've already established strong partnerships with industrial companies that have offered their support, eg through the provision of software licenses, teaching material and/or collaborative research projects, including:



Read less
Programme Description. The Cell Signalling in Health and Disease MRes is a research-based qualification with a taught component that is of an equivalent standard to an MSc. Read more

Programme Description

The Cell Signalling in Health and Disease MRes is a research-based qualification with a taught component that is of an equivalent standard to an MSc. The course provides a springboard into a career that involves a working knowledge of scientific research in academia and industry.

The course is designed for graduates with a BSc in the life sciences or other science disciplines, and for intercalating and fully qualified MBBS or BDS students. It can be taken either as a stand-alone qualification or as an entry route onto a PhD or MD.

The taught component of the course includes subject-specific content in the area of cell signalling in health and disease. You have the flexibility to develop your own bespoke course by selecting additional, complementary modules. You will also participate in training in general research principles, and other professional and key skills.

Your research project comprises the major element of the course. This project will involve 24 weeks of research in an area of cell signalling in health and disease under the supervision of an expert academic researcher in the field.

The course allows you to experience an internationally competitive research area, predominantly in academia but also potentially in industry.

Cell Signalling in Health and Disease MRes is closely linked to a suite of MRes courses that you may also be interested in:

Faculty of Medical Sciences Graduate School

Our Medical Sciences Graduate School is dedicated to providing you with information, support and advice throughout your research degree studies. We can help and advise you on a variety of queries relating to your studies, funding or welfare.

Our Research Student Development Programme supports and complements your research whilst developing your professional skills and confidence.

You will make an on-going assessment of your own development and training needs through personal development planning (PDP) in the ePortfolio system. Our organised external events and development programme have been mapped against the Vitae Researcher Development Framework to help you identify how best to meet your training and development needs.



Read less

Show 10 15 30 per page



Cookie Policy    X