• University of Edinburgh Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
Middlesex University Featured Masters Courses
University of Reading Featured Masters Courses
Imperial College London Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Glasgow Featured Masters Courses
0 miles
Biological Sciences×

Masters Degrees in Biological Sciences

We have 1,767 Masters Degrees in Biological Sciences

Masters degrees in Biological Sciences explore the nature, development and behaviour of living organisms, from plants and animals to microorganisms and fungi. They provide expertise in advanced branches of biology as well as other applied fields.

It’s no cliché to say that this discipline is as diverse as life itself, exploring all aspects of human, animal, plant and micro-biology. Some courses also cross over into other disciplines, with specialisms including Biotechnology, Biophysics and Sport and Exercise Science.

Programmes may be either taught or research-based, with MSc, MRes and MPhil qualifications available, as well as Postgraduate Certificates and Diplomas.

Why study a Masters Degree in Biological Sciences?

Read more...

  • Biological Sciences×
  • clear all
Showing 1 to 15 of 1,767
Order by 
Through the ethos of research-led teaching, our MSc in Advanced Biological Sciences will provide you with an innovative and rewarding experience within… Read more
Through the ethos of research-led teaching, our MSc in Advanced Biological Sciences will provide you with an innovative and rewarding experience within an excellent environment of state-of-the-art research laboratories, cutting-edge provision for proteomics, genomics, advanced genome sequencing and analysis, a cell imaging suite, transgenic plants facility and an NMR centre for protein structure analysis.

The School has developed bespoke pathways to MSc awards across all of its research areas, affording applicants the opportunity to develop their own postgraduate degree programmes. These new programmes can therefore be based around your particular areas of interest. The title of your degree award will reflect your pathway of choice, which in turn reflects the research interest of the research grouping, for example, MSc Advanced Biological Sciences (Molecular Oncology).

You will be able to choose from a series of taught modules to ensure that you develop the correct academic background and skills to excel in research. You will also be offered a flexible but guided programme of study, which will enable you to develop your leadership, information technology and professional skills.

Pathways include:

Advanced Biological Sciences (Animal Sciences)
Advanced Biological Sciences (Bioinformatics)
Advanced Biological Sciences (Biotechnology)
Advanced Biological Sciences (Cell Signalling)
Advanced Biological Sciences (Chemical Biology)
Advanced Biological Sciences (Conservation Biology)
Advanced Biological Sciences (Evolution and Behavioural Biology)
Advanced Biological Sciences (Food Security)
Advanced Biological Sciences (Functional and Comparative Genomics)
Advanced Biological Sciences (Host: Parasite Biology)
Advanced Biological Sciences (Human Immunity)
Advanced Biological Sciences (Microbiology)
Advanced Biological Sciences (Molecular Oncology)
Advanced Biological Sciences (Plant Sciences)
Advanced Biological Sciences (Post-Genomic Science)
Advanced Biological Sciences (Structural Biology)

Projects

Research projects offered in previous years include:

Combining species-specific and site-specific conservation: towards a more integrated conservation effort
Interference interactions between Staphylococcus aureus and other members of the nasal microflora
Preparation of recombinant S100P protein for interaction studies
Investigating the activity of potential malarial therapeutics
From mate choice to partner preference
MCL-1 as a regulator of apoptosis in myeloid cell lines
Using experimental evolution to test diffuse coevolution theory in host-symbiont interactions.

Read less
The Institute of Integrative Biology has developed bespoke pathways to MRes awards across all of its research interests, affording applicants the opportunity to develop their own postgraduate degree programmes. Read more
The Institute of Integrative Biology has developed bespoke pathways to MRes awards across all of its research interests, affording applicants the opportunity to develop their own postgraduate degree programmes.

These new programmes can therefore be based around your particular areas of interest. The title of your degree award will reflect your pathway of choice.

Example Pathways

Advanced Biological Sciences (Animal Sciences)
Advanced Biological Sciences (Bioinformatics)
Advanced Biological Sciences (Biotechnology)
Advanced Biological Sciences (Cell Signalling)
Advanced Biological Sciences (Chemical Biology)
Advanced Biological Sciences (Conservation Biology)
Advanced Biological Sciences (Evolution and Behavioural Biology)
Advanced Biological Sciences (Food Security)
Advanced Biological Sciences (Functional and Comparative Genomics)
Advanced Biological Sciences (Host: Parasite Biology)
Advanced Biological Sciences (Microbiology)
Advanced Biological Sciences (Molecular Oncology)
Advanced Biological Sciences (Plant Sciences)
Advanced Biological Sciences (Structural Biology)

You will be able to choose from a series of taught modules to ensure that you develop the correct academic background and skills to excel in research. An important component of the programme will be the opportunity for non-native English speakers to take a specially designed module in communication skills. This module is taught by members of our English Language Unit and will be designed to improve your English in a scientific context. Please see http://www.liv.ac.uk/elu for details.

Read less
With programs leading to a research Master of Science (MS) and a non-thesis Master of Arts (MA), graduate studies in the Department of Biological Sciences provide students the knowledge and skills necessary to pursue successful careers in the life sciences. Read more
With programs leading to a research Master of Science (MS) and a non-thesis Master of Arts (MA), graduate studies in the Department of Biological Sciences provide students the knowledge and skills necessary to pursue successful careers in the life sciences. Offering a competitive breadth of knowledge while remaining sensitive to the needs of individual students, the department delivers a diverse academic experience that includes extensive faculty-student interactions and freedom to undertake interdisciplinary studies. Students will find themselves surrounded by a variety of opportunities that enrich their studies such as weekly seminars, research symposia and individual and team research options.

The graduate program in biological sciences has two tracks: biochemical, cell and molecular biology (BCMB) or ecology, evolution and behavior (EEB). These tracks can be combined or pursued concurrently with other academic interests. Students are encouraged to explore faculty profile and research areas before applying and to read the department FAQ for more information about the program:

Students studying the BCMB track are trained in fundamental research approaches and techniques and are exposed to a diverse range of research topics. Research programs are problem-oriented, rather than driven by a single, specialized laboratory technology. Students may work in two or three laboratories simultaneously to pursue a research question. Many students conduct research on-site at biotechnology companies across the nation on a contract basis.

Students studying EEB receive a well-rounded and vibrant academic experience without the dangers of overspecialization. Students often begin conducting research during their first year of study. In addition to opportunities for cross-departmental research, students can also take advantage of the University’s unique interdisciplinary Evolutionary Studies (EvoS) program and take courses on evolutionary studies or even earn a certificate in conjunction with their master’s or doctoral degree.

All applicants must submit the following:

- Online graduate degree application and application fee
- Transcripts from each college/university which you attended
- Three letters of recommendation
- Personal statement (2-3 pages) describing your reasons for pursuing graduate study, your career aspirations, your special interests within your field, and any unusual features of your background that might need explanation or be of interest to your program's admissions committee
- Resume or Curriculum Vitae (max. 2 pages)
- Official GRE scores

And, for international applicants:
- International Student Financial Statement form
- Official bank statement/proof of support
- Official TOEFL, IELTS, or PTE Academic scores
◾Biological sciences minimum TOEFL score: 100 on the iBT
◾Biological sciences minimum IELTS score: 7.0
◾Biological sciences minimum PTE Academic score: 68

Read less
Best of all worlds. Biological sciences gives you expertise in a broad range of biological and fundamental sciences. Find out more about the . Read more

Best of all worlds

Biological sciences gives you expertise in a broad range of biological and fundamental sciences.

Find out more about the Master of Science parent structure.

When you study Massey’s Master of Science with a major in biological sciences you don’t have to focus on one particular type of science, but will gain expertise across a range of your interests.

If you are interested in subjects like microbiology, genetics and biochemistry, but don’t have all the prerequisites you need to specialise, or you want to open the door to a broader range of careers, a major in biological sciences gives you a broad-based degree that keeps your options open.

Within the degree you can focus on one particular area of science, or keep your study broad - the choice is yours!

Flexibility and industry links

At Massey you have the flexibility to choose from different locations for your study - either Manawatu or the Auckland campuses - as well as other research institutes such as AgResearch, Scion, and Plant & Food Research. This flexibility provides a great deal of project choice, as well as providing important industry linkages that enhance job prospects.

World-class facilities

Whether you study on the Auckland or Palmerston North campuses, you will have access to world-class facilities. These include the Manawatu Microscopy and Imaging Centre and the Massey Genome Service (part of New Zealand Genomics Limited), our controlled environment plant growth facilities, the unique and extensive university orchards and state-of-the-art plant physiology and biology equipment. We have large animal units and there are extensive Massey farms that operate as commercial beef, dairy and sheep farms. 

Massey has a dedicated tissue culture facility, real-time PCR instruments, specialised fluorescence microscopes and plate readers, as well as a microscopy centre, offering confocal, and scanning, transmission and epifluorescence microscopy services.

Genome sequencing services are also readily accessible with both the Massey Sequencing Service and a New Zealand Genome Limited laboratory housed on the university’s Manawatu campus. This service center is equipped with ABI3730 and Illumina MiSeq instruments and associated expertise. We house a full suite of protein purification, separation and analysis equipment, including DIGE imaging and access to mass spectrometers. There is also an X-ray diffraction laboratory and access to the Australian Synchrotron in Melbourne.

Make our expertise yours

Massey offers a very broad range of research areas in chemistry, biochemistry, genetics, microbiology and all the biological sciences, Genetics ranges from classical through molecular, biomedical, genomic and computational projects. These utilise a wide range of biological systems including microbial, plant, animal and human species.

You will also be able to utilise Massey’s broad range of expertise in the sciences, working with other departments and experts as you need to for your research.

Friendly environment - passionate scientists

A critical part of the postgraduate experience at Massey is being part of the vibrant, well-established community of fundamental scientists and students. We have active student groups where we work together to share discoveries and research and provide peer support.

Why postgraduate study?

Postgraduate study is hard work but hugely rewarding and empowering. The Master of Science will push you to produce your best creative, strategic and theoretical ideas. The workload replicates the high-pressure environment of senior workplace roles. Our experts are there to guide but if you have come from undergraduate study, you will find that postgraduate study demands more in-depth and independent study.

Not just more of the same

Postgraduate study is not just ‘more of the same’ undergraduate study. It takes you to a new level in knowledge and expertise especially in planning, time management, setting goals and milestones and undertaking research.



Read less
Researchers in the School of Biological Sciences conduct cutting-edge research across a broad range of biological disciplines. genomics, biotechnology, cell biology, sensory biology, animal behaviour and evolution, population biology, host-disease interactions and ecosystem services, to name but a few. Read more
Researchers in the School of Biological Sciences conduct cutting-edge research across a broad range of biological disciplines: genomics, biotechnology, cell biology, sensory biology, animal behaviour and evolution, population biology, host-disease interactions and ecosystem services, to name but a few.

In 2014 the school relocated to a new £54 million, state-of-the-art Life Sciences building. Our new laboratory facilities are among the best in the world, with critical '-omics' technologies and associated computing capacity (bioinformatics) a core component. The new building is designed to foster our already strong collaborative and convivial environment, and includes a world-leading centre for evolutionary biology research in collaboration with key researchers from earth sciences, biochemistry, social medicine, chemistry and computer sciences. The school has strong links with local industry, including BBC Bristol, Bristol Zoo and the Botanic Gardens. We have a lively, international postgraduate community of about 150 research students. Our stimulating environment and excellent graduate school training and support provide excellent opportunities to develop future careers.

Research groups

The underlying theme of our research is the search for an understanding of the function, evolution, development and regulation of complex systems, pursued using the latest technologies, from '-omics' to nanoscience, and mathematical modelling tools. Our research is organised around four main themes that reflect our strengths and interests: evolutionary biology; animal behaviour and sensory biology; plant and agricultural sciences; and ecology and environmental change.

Evolutionary Biology
The theme of evolutionary biology runs through all our research in the School of Biological Sciences. Research in this theme seeks to understand organismal evolution and biodiversity using a range of approaches and study systems. We have particular strengths in evolutionary genomics, phylogenetics and phylogenomics, population genetics, and evolutionary theory and computer modelling.

Animal Behaviour and Sensory Biology
Research is aimed at understanding the adaptive significance of behaviour, from underlying neural mechanisms ('how', or proximate, questions) to evolutionary explanations of function ('why', or ultimate, questions). The approach is strongly interdisciplinary, using diverse physiological and biomechanical techniques, behavioural experiments, computer modelling and molecular biology to link from the genetic foundations through to the evolution of behaviour and sensory systems.

Plant and Agricultural Sciences
The global issue of food security unifies research in this theme, which ranges from molecular-based analysis of plant development, signal transduction and disease, to ecological studies of agricultural and livestock production systems. We have particular strengths in functional genomics, bioinformatics, plant developmental biology, plant pathology and parasite biology, livestock parasitology and agricultural systems biology. Our research is helped by the LESARS endowment, which funds research of agricultural relevance.

Ecology and Environmental Change
Research seeks to understand ecological relations between organisms (plant, animal or microbe) at individual, population and community levels, as well as between organisms and their environments. Assessing the effect of climate change on these ecological processes is also fundamental to our research. Key research areas within this theme include community ecology, restoration ecology, conservation, evolutionary responses to climate change and freshwater ecology. Our research has many applied angles, such as ecosystem management, wildlife conservation, environmental and biological control, agricultural practice and informing policy.

Careers

Many postgraduate students choose a higher degree because they enjoy their subject and subsequently go on to work in a related area. An Office of Science and Technology survey found that around three-quarters of BBSRC- and NERC-funded postgraduates went on to a job related to their study subject.

Postgraduate study is often a requirement for becoming a researcher, scientist, academic journal editor and for work in some public bodies or private companies. Around 60 per cent of biological sciences doctoral graduates continue in research. Academic research tends to be contract-based with few permanent posts, but the school has a strong track record in supporting the careers of young researchers by helping them to find postdoctoral positions or develop fellowship applications.

Read less
This is a one-year Masters Research degree programme beginning in September. Read more

The programme

This is a one-year Masters Research degree programme beginning in September. It offers students with a good BSc degree in Biochemistry, Biology or related disciplines the opportunity to acquire a wide range of advanced research techniques through carrying out a one-year laboratory based research project under the direction of a member of staff selected by the student. Students will advance their research skills (including data analysis, bioinformatics tools and presentation skills).

This course is designed to equip students with the necessary skills of a researcher in biomedical sciences, ecology, evolution and behaviour or plant molecular sciences.

The aims of this degree programme are:
• to provide training in the key generic skills required to be a scientific researcher;
• to provide advanced training in a specialised branch of biological sciences research;
• to ensure familiarity with a range of transferable, advanced research skills;
• to provide practice in communicating results of research both by oral presentation and by
preparation of a Master thesis.

Students are offered: a major supervised research project lasting approximately eight months, the opportunity to work with a leading scientist in a chosen field, experience of working as part of a research team and development of high level practical research skills in the lab or field.

Teaching, learning and assessment

Although this is a research degree there is a taught component with lectures being delivered throughout the first two terms. As part of this there is a requirement to complete coursework, prepare and present your research to a School audience by means of a poster as well as a 20 minute oral presentation in the summer term. All elements of the programme must be passed in order to be able to submit the final project for assessment in summer.

Students receive regular, scheduled, feedback on their performance in taught modules, their project plan, literature review/draft introduction (autumn term), draft materials and methods write up (spring term), preparatory oral presentation (spring term); oral presentation (summer term); and draft project write up (summer term).

Applying

Before applying you will need to peruse and then identify academic staff members whose projects you are interested in. https://www.royalholloway.ac.uk/biologicalsciences/study-here/postgraduate/home.aspx

The project will be selected from one of three major research areas within the School: Biomedical Sciences (BMS), Plant Molecular Sciences (PMS), and Ecology Evolution and Behaviour (EEB).
Once you have identified your area of interest, you should contact potential supervisors (via e-mail) to discuss details of the projects and availability of placement. Having made contact remember to state at least 2 the supervisors and project names in the 'supporting statement' section of our online application.

Places/projects on our course are limited. In order to secure your place and confirm your acceptance to our programme, it is advisable to pay a tuition fee deposit after you receive our offer.

Further learning and career opportunities

The programme prepares students for future careers in Biological Sciences research, including doctoral degrees, and related areas of employment. Students are provided with training in a range of subject specific and transferable skills.

If you wish to discuss the MSc informally, please contact the MSc Programme Director Dr Pavlos Alifragis () (01784 444988).

Read less
Our M.Sc program is intended for students seeking training in the biological sciences beyond the B.Sc. degree. Emphasis is on research, resulting in presentation and defense of a thesis. Read more
Our M.Sc program is intended for students seeking training in the biological sciences beyond the B.Sc. degree. Emphasis is on research, resulting in presentation and defense of a thesis. Master's students take two or more courses and deliver two departmental seminars. Outstanding students enrolled in the M.Sc. program may transfer directly into the Ph.D. program.

Outstanding Facilities

The Biology Building occupies over 6,040 square meters of office and laboratory space. We have numerous special facilities that support outstanding research across the biological sciences. For studies in cell, molecular, and developmental biology:
• Molecular biology core facility
• State-of-the-art confocal microscopy facilities
• Automated sequencers and DNA cloning technology
• Microarray technology and a bioinformatics server
• Cell culture rooms
• Laboratories that meet international standards for recombinant DNA technology procedures

For studies in ecology, evolution, environmental, and behavioural biology:
• Facilities for the care of mammals, birds, amphibians, and fishes
• Incubators and environmental walk-in chambers
• Access to research stations throughout Canada and the tropics
• Multi-passenger vans and boats
• An extensive greenhouse facility
• An experimental fish hatchery
• The Pelee Environmental Research Centre

The Department of Biological Sciences shares a close association with the Great Lakes Institute for Environmental Research (GLIER) which is housed on campus, and with the nearby Harrow Research Station of Agriculture Canada.

Read less
The one-year course, tailored to your particular interests, is a stepping stone to further study at PhD level or a gateway to many careers in industry (e.g agriculture, pharmaceutical and the healthcare sector), scientific services, science communication, the teaching profession or in scientific policymaking. Read more

Summary

The one-year course, tailored to your particular interests, is a stepping stone to further study at PhD level or a gateway to many careers in industry (e.g agriculture, pharmaceutical and the healthcare sector), scientific services, science communication, the teaching profession or in scientific policymaking.

We offer MRes courses in Biological Sciences with a focus in one of the following research areas:

- Biodiversity, Ecology and Ecosystem services
- Biotechnology
- Developmental Biology
- Microbiology
- Neuroscience
- Molecular and Cellular Biosciences
- Plant Biology
- Zoology

Read less
Taught at our Parkgate Road Campus in Chester, this is a research-focused Master's training course in Wildlife Behaviour and Conservation. Read more

Taught at our Parkgate Road Campus in Chester, this is a research-focused Master's training course in Wildlife Behaviour and Conservation.

Robust scientific evidence is a critical tool for conservation scientists responding to the challenges of mitigating biodiversity loss. This course focuses on developing investigative research skills while addressing applied questions in wildlife behaviour and conservation.

The course provides a strong foundation, giving you the opportunity to develop a career in academic or applied wildlife science. Our lecturers work with a diverse range of study species, including mammals, birds, fish, amphibians and invertebrates, both in the wild and ex situ. Members of the team are recognised as conservation specialists by the International Union for Conservation of Nature, and manage two European Endangered Species Programmes.

Why Study Biological Sciences: Wildlife Behaviour and Conservation with us?

Our lecturers work with a diverse range of study species, including mammals, birds, fish, amphibians and invertebrates, both in the wild and ex situ. Members of the team are recognised as conservation specialists by the International Union for Conservation of Nature, and manage two European Endangered Species Programmes.

Your project will contribute directly to one of our partnerships with national and international in situ and ex situ conservation programmes.

Your individual supervisor will guide your acquisition of professional skills and facilitate networking and engagement in your specialist field. Our proactive, diverse and expanding research community provides extensive opportunities for peer-learning and collaboration in conservation research.

What will I learn?

A compulsory wildlife research methods taught module provides advanced training in core specialisations, including project design, field techniques, statistical analysis and geographical information systems.

You will select a further taught specialist module relevant to your research project, which may include conservation genetics, wildlife behaviour or wildlife health.

The individual research project is undertaken throughout the year and is the primary focus of this course.

International Field Projects

  1. Study of Desert Birds on Lanzarote: An Example of how Geodiversity Underpins Biodiversity (with Lanzarote Island Council and Desert Watch).
  2. Habitat Usage of Re-introduced Scarlet Macaws on the Pacific Coast of Costa Rica (with ASOMACAO Friends of the Scarlet Macaw).

Please note these projects will require a student contribution in addition to course fees of a maximum of £3000. 

UK Based Native Species Field Projects

  1. Newt occupancy on Black Isle - with Scottish Natural Heritage.
  2. Pond colonisation on Black Isle - with Scottish Natural Heritage.
  3. Conservation genetics of the Natterjack Toad - with Cheshire Wildlife Trust.

Desk based Projects

  1. Using atlas data to estimate bird density and occupancy.
  2. Conservation of the endangered Ibis species in Cambodia’s dry forests - with Wildlife Conservation Society.
  3. The global conservation status and threats to Rails (Rallidae) - with Royal Society for the Protection of Birds and Mississippi State University.

How will I be taught?

Teaching is delivered through lecturers, laboratory practicals, field trips and seminars supplemented by online materials such as discussion boards and analytical exercises.

You will contribute to research seminars, a journal club and tutorials.

Modules consist of 32 hours of taught activities and 168 hours of self study.

How will I be assessed?

Taught modules are assessed through coursework assignments.

The dissertation projects consists of at least 1,400 hours' study to produce a paper suitable for peer review publication.

Study Abroad Opportunities

Students apply to specific projects which change on an annual basis, but in recent years studies have studied in Ghana, Cambodia, the Philippines, across Europe and in the UK.

Postgraduate Visit Opportunities

If you are interested in this courses we have a number of opportunities to visit us and our campuses. To find out more about these options and to book a visit, please go to: https://www1.chester.ac.uk/study/postgraduate/postgraduate-visit-opportunities

Request a Prospectus

If you would like to know more about the University please request a prospectus at: http://prospectus.chester.ac.uk/form.php



Read less
This is a research-focused Master's training course in Stem Cells and Regenerative Biology. It is ideal preparation for future PhD progression or early career industrial entry. Read more
This is a research-focused Master's training course in Stem Cells and Regenerative Biology. It is ideal preparation for future PhD progression or early career industrial entry.

This course focuses on developing investigative laboratory-based research skills while addressing theoretical and applicable questions in stem cells and regenerative biology. The course provides an intensive research-led environment, which will give you the opportunity to develop a career in academic or applied biomedical or biological sciences.

Why study Stem Cell and Regenerative Biology with us?

Our lecturers have specialist knowleadge and work with a diverse range of skill sets that have application in the field of stem cell research and regenerative biology.

The Faculty of Medicine, Dentistry and Life Sciences at Chester is unique in having academic staff who’s research involves a variety of relevant model organisms. As well as humans, the team researches into fundamental biology of a variety of other mammallian species, birds, fish, amphibians and invertebrates. Students undertaking the MRes are able to draw on this expertise.

In addition, Chester is an active member of the Mercia Stem Cell Alliance and the UK Mesenchymal Stem Cell research community.

What will I learn?

In the module Models of Regenerative Biology, you will attend lectures, small group teaching and practical sessions relating to:

- various model systems of regeneration, with cell culture based models and in vivo systems, e.g. planaria; responses to injury;
- regulatory factors governing tissue regeneration;
- aspects of regenerative medicine.

In the module on Stem Cells and Tissue Engineering, you will attend lectures, small group teaching and practical sessions relating to:

- how to define stem cells;
- stem cell culture and maintenance;
- the principles of tissue engineering;
- the application of stem cell and tissue engineering, e.g. in the clinic or in drug screening and development.

The individual research project is undertaken following completion of these two taught modules and is the primary focus of this course.

Read less
The Master of Science (M.Sc.) program offers students in a wide range of disciplines the opportunity to earn a master’s degree by writing a Thesis and successfully completing a limited number of courses. Read more
The Master of Science (M.Sc.) program offers students in a wide range of disciplines the opportunity to earn a master’s degree by writing a Thesis and successfully completing a limited number of courses. The number and details of the courses are determined within the first semester of the student's program.

Students may complete their degrees in either a full- or part-time capacity. Full-time students complete a 24-month program while part-time students complete a 48-month program. Part-time students will normally complete all required course work in the first 24 months, with the subsequent months committed to continued research and production of the Thesis.

Although degrees are awarded in specific disciplines, the program is administered centrally by the School of Graduate Studies, rather than by individual departments or Faculties.

Course detail

Graduate degrees traditionally have been awarded for the successful completion of a satisfactory thesis. The thesis route expresses the fundamental tradition of academic scholarship. It also relates to the University’s undergraduate programs, because the creation of a thesis in any discipline calls for a range of skills which are central to the liberal education tradition, including analysis and synthesis of ideas, empirical investigations, the construction and articulation of arguments, and writing skills.

Because of the nature of the M.Sc. program, the thesis forms the central requirement of the program. At the master’s level, a thesis involves close collaboration between supervisor and student. Consequently, it is necessary for a candidate to establish contact with potential supervisors prior to application for admission. Candidates seeking potential supervisors should contact either the relevant academic department or the School of Graduate Studies.

About the Faculty

The Department of Biological Sciences provides you with hands-on learning, moving you beyond textbooks and lectures to engaging research projects. Biology is a research-intensive science that can lead to a wide range of study areas, like environmental work, medicine, microbiology or agriculture.

Today’s biologists require a strong background in cellular and molecular biology, organismal biology, genetics, evolution and ecology. Additionally, you will be required to complete courses in Chemistry, Physics and Mathematics, ensuring a strong foundation in the core sciences.

You will also have access to state-of-the-art science and research facilities, like the Alberta Ingenuity Centre for Water Research. This facility provides the infrastructure to support the research interests of our award-winning faculty—your instructors—as they investigate diverse areas within Behavioural and Evolutionary Ecology, Plant Biology and Systemic Biology, Cellular and Molecular Biology and Genetics.

Why study at the University of Lethbridge?

As a graduate student at the University of Lethbridge, you’ll find yourself at the centre of a student-focused environment that nurtures innovation, critical thinking and creativity.

The University of Lethbridge is one of Canada’s top-ranked universities and leading research institutions.

At the foundation of our graduate programs is a multidisciplinary and personalized experience. A collaborative environment is encouraged between faculty and students. This means you have flexibility in decisions regarding the research and learning path you take.

At the U of L, we are committed to helping every one of our students thrive. From aiding with financial support to one-on-one mentorship to individualized career advice, you’ll find support every step of the way.

When you graduate, you will have the confidence you need to succeed in whatever you do, whether that means pursuing further education, teaching in an academic setting or establishing a professional career.

We’re here to help as you find the answers to your questions. As Alberta’s Destination University, the U of L gives you room to think, create and explore, providing a university experience unlike any other.

How to apply

In order to apply, you will need to provide the following documentation:

• Academic Transcripts
• Curriculum Vitae
• Three Letters of Reference
• Letter of Intent
• English Language Proficiency (ELP)

All applications and supporting documents must be provided through the online portal: https://www.uleth.ca/future-student/graduate-studies/apply

Co-operative Education & Internships Option

The Co-operative Education/Internship Option is available to students for the Master of Arts (MA) and Master of Science (MSc) programs. Co-operative education is an educational model that formally integrates academic study at the master’s level with relevant, paid work experience in appropriate employment fields such as government, institutions, and industry. The University, the employer, and the student are in partnership to ensure an enriching experience toward the student's professional development.

For more information, visit the website: http://www.uleth.ca/artsci/coop/co-operative-education-internship-option-graduate-studies

Funding

Find information on Scholarships here http://www.uleth.ca/graduate-studies/award-opportunities

Read less
We are a community of scholars who share a commitment to insightful, innovative and integrative research in diverse areas of life sciences, from biomolecules to the biosphere, and to the development of future leaders in the basic and applied biological sciences through excellence in our undergraduate and graduate programs.. Read more
We are a community of scholars who share a commitment to insightful, innovative and integrative research in diverse areas of life sciences, from biomolecules to the biosphere, and to the development of future leaders in the basic and applied biological sciences through excellence in our undergraduate and graduate programs.

Read less
The one-year Master of Research (MRes) programme is an innovative route to starting out on a research career. The MRes will provide you with a unique opportunity to experience research projects over a broad range of disciplines and laboratory environments. Read more
The one-year Master of Research (MRes) programme is an innovative route to starting out on a research career. The MRes will provide you with a unique opportunity to experience research projects over a broad range of disciplines and laboratory environments.

Our MRes programme allows you to gain research experience and professional skills, sometimes in a different area to your first degree, before deciding on a future career in industry or academic research. This will allow you to make an informed choice about the research area you want to invest your scientific career in.

You choose two laboratory placements which can be in any of our areas of research within the biological and biomedical sciences. As we have over 200 research active labs we can offer you a wide range of projects to choose from. For an idea of the breadth of available projects, browse our Research section.

The programme also helps to develop your transferable skills in essential areas such as experimental design, statistics, bioethics and science communication.

Course description

The one-year Master of Research (MRes) programme is an innovative route to starting out on a research career. The MRes will provide you with a unique opportunity to experience research projects over a broad range of disciplines and laboratory environments.

Our MRes programme allows you to gain research experience and professional skills, sometimes in a different area to your first degree, before deciding on a future career in industry or academic research. This will allow you to make an informed choice about the research area you want to invest your scientific career in.

You choose two laboratory placements which can be in any of our areas of research within the biological and biomedical sciences. As we have over 200 research active labs we can offer you a wide range of projects to choose from. For an idea of the breadth of available projects, browse our Research section.

The programme also helps to develop your transferable skills in essential areas such as experimental design, statistics, bioethics and science communication.

Teaching and learning

The programme comprises four compulsory components:

Research projects: Your two projects will provide experience in carrying through a substantive research project including the planning, execution and communication of original scientific research. They are assessed by written report.

Tutorials and Workshop Unit : Tutorials give you the opportunity to learn about research being carried out in the Faculty of Biology, Medicine and Health and thereby to acquire a broad knowledge of biological sciences. The Bioethics Workshop gives you experience of exploring and debating some of the ethical issues that surround current scientific research. Activities for the Tutorials and Bioethics unit include preparative directed reading, private study and preparation of oral presentations. This unit is assessed by members of staff for the tutorial session and staff assessment of oral presentation during the tutorial and written reports

Science Communication Unit: This unit allows you to acquire the ability to listen to a presentation, understand the key concepts and record important details, and then summarise its contents in a brief written report. Activities include private study and preparation of written assignment. For each of 5 seminar presentations, a 500 word precis has to be written. You are assessed on these assignments plus a poster and an oral presentation.

Experimental Design and Statistics Unit: This unit aims to introduce you to the procedures and tools used in the design of experiments and the methods and tools used in statistical data analysis. Activities include lectures, workshops, group discussions and e-learning. Assessment is through multiple choice exam, critical assessment of literature and online statistics exercises.

Career opportunities

MRes graduates acquire a vast array of subject specific and transferable skills and gain extensive laboratory research experience. The University of Manchester has a strong record of placing students in PhD programmes at Manchester and other universities and several of our graduates have pursued research careers in industry.

Read less
Taught at our Parkgate Road Campus in Chester, this course is designed to give a comprehensive training in the research and analytical skills in cell and molecular biology. Read more
Taught at our Parkgate Road Campus in Chester, this course is designed to give a comprehensive training in the research and analytical skills in cell and molecular biology.

This MRes has been designed to enhance knowledge of recent advancements in cellular and molecular biology, as well as to develop subject-specific practical and analytical skills. In addition, you will gain experience of undertaking an extended period of research (6-7 months), which will aid your career progression as a molecular bio-scientist.

The programme will involve undertaking two core 20 credit taught modules, followed by an extended period of laboratory research, and submission of a Research report and review, 140 credits.

Why Study Cell and Molecular Biology Pathway with us?

Our lecturers range from enthusiastic early career academics through to internationally acknowledged senior researchers. We are actively involved in undertaking innovative research projects using ‘cutting-edge’ approaches, within the field of molecular and cellular life sciences.

Some of our current projects are listed below:
- Environmental toxicology
- Protection against the ageing
- Calcium signalling
- Biochemistry & pharmacology of intracellular Ca2+ transporters
- Stem cells
- Tissue regeneration
- Pathology of bone disease
- Progression of kidney and bladder cancers
- Novel drug delivery systems via nanoparticles and cell penetrating peptides
- Molecular basis of cancer development
- Novel approaches to cancer therapies
- Molecular immunology
- Development of analytical approaches to detect biomarkers of disease

What will I learn?

The MRes will involve undertaking two core 20 credit taught modules which consists of a mixture of lectures, workshops and practical classes in:
- Advances in Cell and Molecular Biology (BI7144)
- Skills for Molecular and Cellular Bioscientists (BI7145)

Followed by an extended period of laboratory research (140 credits) in an area that allies with the interests of our academic staff.

How will I be taught?

The two taught modules will each comprise of a series of lectures, small group discussion sessions, workshops and practical classes. Nominally each taught module has about 30-40 of contact hours associated with them. The rest of the time allocated for these modules will be for further reading, coursework preparation and revision.

The remainder of the programme will comprise of the 6 to 7 month research project which will involve regular meetings and guidance with your research supervisor. This is followed by the preparation of two reports.

How will I be assessed?

The research dissertation will be assessed by the production of a research report in the format of a scientific paper and a research review (80%).

The taught modules will be assessed by the production of practical and theoretical reports and class tests (20%).

Postgraduate Visit Opportunities

If you are interested in this courses we have a number of opportunities to visit us and our campuses. To find out more about these options and to book a visit, please go to: https://www1.chester.ac.uk/study/postgraduate/postgraduate-visit-opportunities

Request a Prospectus

If you would like to know more about the University please request a prospectus at: http://prospectus.chester.ac.uk/form.php

Read less
The MSc by Research (MScRes) is a one-year full-time research programme that differs from a taught Masters programme by placing more emphasis on research, and by being examined much more like a PhD, by viva voce (oral) examination, rather than by grading of coursework and dissertation. Read more
The MSc by Research (MScRes) is a one-year full-time research programme that differs from a taught Masters programme by placing more emphasis on research, and by being examined much more like a PhD, by viva voce (oral) examination, rather than by grading of coursework and dissertation. This degree will equip you with confidence and competence in the latest research skills (including generic skills such as literature searching, legal and ethical aspects, project planning, grant proposal writing, and statistical manipulation of data) and allow you to apply for further research training (PhD) programmes, or to directly apply for research positions in universities or research institutes.

The first three months will be spent refining your project proposal and conducting a thorough Literature review. You will also present your proposal to the rest of the cohort and supervisors. Feedback obtained will enable you to improve the final project and thesis. You will also be expected to take advantage of the training programme provided by the College of Natural Sciences Graduate School and the University Doctoral School in both subject- specific and generic postgraduate-level skills.

Specific funded projects leading to this degree may be advertised from time to time, but you are welcome to discuss options at any time with potential supervisors. Details of research specialisms and contact details for staff can be found on the School Research pages. As well as offering strong support for research activities, the School offers unique opportunities for students to conduct project work under internationally recognised supervisors. Students also benefit from our extensive local, national and international links with state and private sector organisations.

Read less

Show 10 15 30 per page



Cookie Policy    X