• University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Aberystwyth University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • Birmingham City University Featured Masters Courses
De Montfort University Featured Masters Courses
Vlerick Business School Featured Masters Courses
Durham University Featured Masters Courses
Xi’an Jiaotong-Liverpool University Featured Masters Courses
University of Glasgow Featured Masters Courses
0 miles
Chemistry×

Masters Degrees in Bio-Organic Chemistry

We have 12 Masters Degrees in Bio-Organic Chemistry

Masters degrees in Bio-Organic Chemistry develop an advanced understanding of the structure and function of natural organic compounds (particularly carbon molecules).

As research is continually developing in the field, research-oriented MRes and MPhil programmes are most popular, though taught MSc courses are also available. Entry requirements normally include an undergraduate degree in a relevant subject, such as Biochemistry or Chemical Engineering.

Why study a Masters in Bio-Organic Chemistry?

Read more...

  • Chemistry×
  • Bio-Organic Chemistry×
  • clear all
Showing 1 to 12 of 12
Order by 
The Master’s programme Organic Synthesis and Medicinal Chemistry provides knowledge on the design, synthesis and evaluation of low-weight organic substances. Read more

The Master’s programme Organic Synthesis and Medicinal Chemistry provides knowledge on the design, synthesis and evaluation of low-weight organic substances. It also covers protein chemistry and biomolecular design, preparing you for a career in the pharmaceutical industry.

Biologically active substances with low molecular weight represent the core of life-science research. Knowledge of molecular structures and their properties are crucial to our understanding of vast scientific areas, from pharmaceutically active compounds in designer drugs to organic electronics and their incorporation into diagnostic tools such as biosensors. Our research facilities are well equipped with all the necessary analytical and diagnostic tools found in industrial research facilities, which will advance your practical capabilities.

Organic and medicinal chemistry

This master’s programme aims to provide students with knowledge on the design, synthesis and evaluation of low molecular weight biologically active organic substances. The programme begins with courses in organic chemistry and organic synthesis, building from the basic concepts to the advanced level, followed by an introduction in medicinal chemistry and pharmaceutical technology. It also covers protein chemistry and biomolecular design, which broadens your knowledge in the field of bio-organic chemistry. A key part of the programme is a one-year degree project, undertaken either in a research group at LiU or in industry.



Read less
Help improve human or animal health through creating new or more effective drugs and medicines. Learn the research processes used to identify drug targets and develop new therapeutics. Read more

Help improve human or animal health through creating new or more effective drugs and medicines. Learn the research processes used to identify drug targets and develop new therapeutics.

Your studies will combine the biological sciences with chemistry, giving you the skills to target, design, synthesise, create and assess new drugs. You'll also learn about protecting intellectual property, assessing the financial viability of drugs and the pre-clinical and clinical trial processes.

Tailor your studies to your strengths, interests and career goals. You'll learn a mix of academic and practical skills that are closely aligned to the needs of industry.

The Master of Drug Discovery and Development is best suited to very able students with backgrounds in chemistry or relevant life-science subjects such as biochemistry, biomedical science, pharmacy or pharmacology. It is an intensive one-year taught programme, unique in New Zealand.

Learn from the best

Learn from academics and professionals who are leaders in the field and have experience in successfully taking drugs to market. Each course is taught by at least three academics so you'll be exposed to a wide range of expertise.

Drug Discovery and Development is taught by the Schools of Chemical and Physical Sciences and Biological Sciences in collaboration with the University's Ferrier Research Institute and the Centre for Biodiscovery.

You'll be able to take advantage of the research expertise of the Ferrier Research Institute in drug design and development, and if you're doing a Master's, you'll be working alongside the more than 30 scientists who make up the largest carbohydrate research team in the world. The Institute also has its own manufacturing facility so you'll have the opportunity to observe the drug development process from discovery to product.

You'll also benefit from the programme's links with the Centre for Biodiscovery where you will interact with the research teams that are actively discovering, designing and assessing novel bioactive compounds.

Drugs in the real world

Get wise to the real-world issues facing pharmaceutical development and make the most of the hard-earned experiences of staff who have worked in the local and international biotech industry. Learn not only how to handle chemicals on a large scale, but to develop the mindset to do this in a way that is safe, reliable and robust—so you end up providing medicines that will change people’s lives.

Victoria offers three postgraduate qualifications in Drug Discovery and Development. Choose the one that suits your career goals, time constraints and financial situation.

  • Master of Drug Discovery and Development
  • Postgraduate Diploma in Drug Discovery and Development
  • Postgraduate Certificate in Drug Discovery and Development

If you begin by enrolling in the Certificate or Diploma programme you can continue on to complete your Master's. Or if you enrol in the Master's but can't complete it, for whatever reason, you may have completed enough points to be awarded a Certificate or Diploma.

What you'll study

Each qualification includes the core courses DRGD 401 Chemical Biology and Drug Discovery, and a choice between DRDG 402 Drug Design or CHEM 421 Organic Chemistry and Bio-organic Chemistry.

After that you'll choose from selected courses from the study areas of Drug Discovery and Development, Biomedical Science, Biotechnology, Chemistry, Clinical Research and Microbiology.

All three qualifications give you the opportunity to do at least some research.

Postgraduate Certificate

You'll complete four courses worth 60 points made up of the two core courses and two further choices.

Postgraduate Diploma

You're likely to take seven courses that will include the two core courses, your elective options and the 30-point Research Preparation course.

Master's

You'll study for your Master's in two parts over three trimesters. In Part 1, the first two trimesters, you're likely to take seven courses that will include the core courses and a 30-point Research Preparation course.

In Part 2, you'll complete a full research project. Choose between DRDG 561 Applied Research Project, where you'll complete one or more problem-solving projects, or DRGD 590 Research Project, where you'll focus on medicinal chemistry and the formulation of active pharmaceutical products. In some cases you may be able to replace the research project with the thesis course DRGD 595.

Your Master's may be endorsed with a specialisation in either Drug Discovery, Drug Development or Chemical Biology. Check the requirements to find out what you need to do for these.

Workload and duration

You can expect a workload of 40–45 hours a week for much of your studies.

The MDDD can be completed in 12 months full time, or in two years of part-time study but you'll need to discuss this option with the programme directorfirst. The Diploma will take you two trimesters and the Certificate one trimester.

Location

You'll study at Wellington's Kelburn campus where you will have access to state-of-the-art research facilities. Students doing a research programme will also work in partnership the world-renowned Ferrier Research Institute in Lower Hutt.

Research topics

Be part of a dynamic and collaborative scientific research community. Past students' research areas in drug discovery and development have included:

  • development of a new scaled-up catalytic process for a high value fine chemical
  • isolation and characterisation of a novel bioactive from a New Zealand marine organism
  • formulation of a novel therapeutic for cancer immunotherapy.

Community

Become part of an active community of scientists. Postgraduate study at Victoria will help you build valuable relationships and networks with peers, university staff and future colleagues. You'll have unprecedented access to world industry leaders who visit as guest lecturers and run seminars with students.

Careers

You'll have the broad skills you need to work in drug discovery in companies, universities, research institutes or with drug regulatory authorities. You might work within the pharmaceutical, bioanalytical or chemical industries, or take your skills into nutraceuticals or agrichemicals.



Read less
The MSc in Chemical Research (Bioloigcal Chemistry) course has been tailored to meet the demands of graduating chemists who wish to further their training in chemical research or who wish to use this qualification as a route into a PhD programme. Read more
The MSc in Chemical Research (Bioloigcal Chemistry) course has been tailored to meet the demands of graduating chemists who wish to further their training in chemical research or who wish to use this qualification as a route into a PhD programme.

The course is designed to match the professional demand for highly-skilled personnel in industry and provides specific training in core areas of chemistry as well as specialised expertise in Biological Chemistry.

Read less
Your programme of study. If you are interested in how drugs metabolise, small molecule discovery and biologics this programme will provide an advanced level of study and challenge to ensure you have sound skills to innovate within the drug development industry. Read more

Your programme of study

If you are interested in how drugs metabolise, small molecule discovery and biologics this programme will provide an advanced level of study and challenge to ensure you have sound skills to innovate within the drug development industry. This industry area is rapidly expanding due to new discoveries across biotechnology, biologics, Internet of Things, customised drug treatments and diagnostics at source. This has lead to many new companies being formed, customised and small batch medicines apart from large batch pharmaceutical research and production.

University of Aberdeen is world renowned in this area with the invention of Insulin to treat diabetes which won a Nobel Prize and strengths in medical research areas which also include food and nutrition and disease treatment. You learn about bio-business, how drugs are developed and managed. The university has strong links with GSK, Pfizer, and AstraZeneca plus Novabiotics and others.

In our MSc in Drug Discovery and Development we train students in major areas of biochemical and molecular pharmacology and therapeutics relevant to the drug discovery and development business. This includes training in molecular pharmacology, drug metabolism and toxicology, therapeutics, pharmacokinetics, pharmacovigilance, regulatory affairs and clinical pharmacology.

Courses listed for the programme

Semester 1

  • Introduction to Bio-Business and Commercialisation of Bioscience Research
  • Drug Metabolism and Toxicology
  • Generic Skills
  • Basic Skills - Introduction
  • Small Molecule Drug Discovery

Semester 2

  • Advanced Bio- Business and the Commercialisation of Bioscience Research 2
  • Pharmokinetics
  • Basic Research Methods
  • Biologic Drug Discovery

Semester 3

  • Research Project

Find out more detail by visiting the programme web page

Why study at Aberdeen?

  • We work closely with industry and our research strengths have spanned over 50 years with many coming from the inception of the   University in 1495
  • The degree will give you the skills and knowledge to work in the pharmaceutical industry but you may wish to continue your research towards drug discovery and start up
  • You learn bio-business but you also learn how bio-business is commercialised

Where you study

  • University of Aberdeen
  • 12 Months or 24 Months
  • Full Time or Part Time
  • September start
  • 12 months or 24 months

International Student Fees 2017/2018

Find out about fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs



Read less
The Organic Chemistry. Drug Discovery MRes at UCL offers students the opportunity to follow an integrated course of research and interdisciplinary study. Read more

The Organic Chemistry: Drug Discovery MRes at UCL offers students the opportunity to follow an integrated course of research and interdisciplinary study. Students gain outstanding training in synthetic organic chemistry applied to drug design, together with a breadth of experience in several areas of synthetic methodology and chemical biology.

About this degree

The programme provides a thorough foundation in drug design, advanced organic synthesis and biological chemistry, together with modules on research techniques, professional development and entrepreneurship. Students will carry out a substantial research project on organic/medicinal chemistry or chemical biology over a ten-month period.

MRes students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits) and a research project /dissertation (105 credits).

Core modules

Students take five 15-credit modules including two Master's-level chemistry modules, one transferable/research skills module, one analytical chemistry module, and one professional development module.

  • Transferable/Research Skills
  • Analytical Chemistry
  • Biological Chemistry
  • Principles of Drug Design
  • Professional Development

Optional modules

There are no optional modules for this programme.

Dissertation/report

Students will undertake a laboratory-based research project lasting 10months. An interim report is submitted after five months, and at the end of the project each student writes a dissertation, gives a short presentation and has a viva voce examination.

Teaching and learning

The programme is delivered through a combination of lectures, problem classes, workshops and projects. Assessment is through unseen written examination, coursework, project reports and presentations.

Further information on modules and degree structure is available on the department website: Organic Chemistry: Drug Discovery MRes

Funding

Students can be self-funded or find sponsorship from funding agencies such as research councils, the European Union, industry or charities.

There are also a number of Graduate School Scholarships and departmental bursaries and prizes available.

For a comprehensive list of the funding opportunities available at UCL, including funding relevant to your nationality, please visit the Scholarships and Funding website.

Careers

The MRes has been developed in response to the needs of the pharmaceutical and biotechnology sectors for highly qualified students as leaders in the discovery of new medicines. The pharmaceutical sector is a major employer in the UK and high-quality graduates with an understanding of the sector are always in demand. Our recent graduates have taken up PhD positions, are working in industry and have entered teacher training.

Why study this degree at UCL?

This degree involves a cutting-edge research project in the laboratory a member of research staff at UCL Chemistry. This is one of the leading research departments in the UK with staff undertaking world-leading research in all areas of chemistry and chemical biology.



Read less
Your programme of study. If you want to discover a cure for a major disease or lesser known disease this programme will help you towards that goal. Read more

Your programme of study

If you want to discover a cure for a major disease or lesser known disease this programme will help you towards that goal. Aberdeen is well know for drug discovery as Insulin was developed at the university and there has always been a strong research focus within the medical sciences to continue finding major innovations in health sciences. You learn how to formulate drugs to understand how they are regulated and the bio-business area. This area has been in rapid growth since the discovery of customised drugs which rely on individual genetic make up to define, small batch drugs which larger drug companies don't manufacture for reasons of scale and economy, and the understanding of biologics to treat diseases.

Drug Discovery is one of the few areas which have continued to expand over the last 5 years, in fact there is a major revolution in treating disease processes with other disciplines assisting. The pharmaceutical industry in the UK is one of the largest contributors of income and it is being disrupted by a combination of easy process and scale up using innovation centre facilities, and customised treatments. Drug discovery involves multidisciplinary teams working in academia, biotechnology and pharmaceutical industries. Our MRes in Drug Discovery provides training in across all aspects of drug discovery and development, clinical pharmacology and medical biotechnology. The degree programme consists of one term of taught courses (3 months) followed by 2 individual research projects lasting 16 weeks each.

Courses listed for the programme

Semester 1

  • Molecular Pharmacology
  • Small Molecule Drug Discovery
  • Introduction to Bio-Business and the Commercialisation of Bioscience Research
  • Basic Skills-Induction
  • Generic Skills

Optional

  • Introduction to Molecular Biology
  • Applied Statistics
  • Drug Metabolism & Toxicology

Semester 2

  • Research Project

Optional

  • Advanced Bio-Business and the Commercialisation of Bioscience Research
  • Biologic Drug Discovery
  • Basic Research Methods

Semester 3

Why study at Aberdeen?

  • The university is highly regarded and known as a 'centre for excellence' in drug discovery and commercialisation
  • Researchers that teach are active opinion leaders and regulators with further interdisciplinary researchers in other countries and two British Pharmacological Society Wellcome Gold Medal winners on staff
  • The university won the Nobel Prize for the treatment of diabetes and invention of insulin

Where you study

  • University of Aberdeen
  • Full Time or Part Time
  • 12 Months or 24 Months
  • September

International Student Fees 2017/2018

Find out about fees

*Please be advised that some programmes have different tuition fees from those listed above and that some programmes also have additional costs.

Scholarships

View all funding options on our funding database via the programme page

Living in Aberdeen

Find out more about:

Your Accommodation

Campus Facilities

Find out more about living in Aberdeen and living costs



Read less
USF’s Master of Science in Chemistry is designed for graduate students seeking a research-based degree with personalized direction from research advisers and training from experienced full-time faculty. Read more
USF’s Master of Science in Chemistry is designed for graduate students seeking a research-based degree with personalized direction from research advisers and training from experienced full-time faculty. Hands-on training opportunities prepare our students for a future in professional research and development, further studies in a PhD program or health-related professional programs, and teaching positions at the high school and community college level.

Full-Tuition Merit Scholarships

Students admitted to the program are funded, including a full graduate scholarship, and most earn a salary earned through teaching or research assistantships.

Research Areas

Students are accepted into specific research groups and immediately join a research project supervised by their assigned research adviser, with whom they develop a program of directed scientific research. To qualify for admission to the program, you must be interested in pursuing research in one of the following areas:

Analytical Chemistry: Lawrence Margerum & Ryan West
Biochemistry: Megan Bolitho & Janet Yang
Inorganic Chemistry: Lawrence Margerum
Medicinal Chemistry: Jie Jack Li
Organic Chemistry: Megan Bolitho & Jie Jack Li
Physical Chemistry: Giovanni Meloni & Ryan West

Read less
This course will extend your existing knowledge of chemical engineering to provide you with advanced chemical engineering and process technology skills for exciting and challenging careers in the chemical and related process industries. Read more

This course will extend your existing knowledge of chemical engineering to provide you with advanced chemical engineering and process technology skills for exciting and challenging careers in the chemical and related process industries.

You’ll develop advanced knowledge in key areas such as reaction engineering, product development, process modelling and simulation, and pharmaceutical formulation or energy technology.

The course has been designed to provide a greater depth of knowledge in aspects of advanced chemical engineering and a range of up-to-date process technologies. These will enable you to design, operate and manage processes and associated manufacturing plants, and to provide leadership in innovation, research and development and technology transfer.



Read less
This course will build upon your existing scientific/engineering knowledge and skills to convert to a specialisation in chemical engineering. Read more

This course will build upon your existing scientific/engineering knowledge and skills to convert to a specialisation in chemical engineering. This MSc course will provide you with chemical engineering and process technology skills for exciting and challenging careers in the chemical and related process industries.

The course has been designed to provide a depth of knowledge in core and aspects of advanced chemical engineering and a range of up-to-date process technologies. These will enable you to design, operate and manage processes, and associated manufacturing plants, and to provide leadership in innovation, research and development, and technology transfer.

You’ll undertake a large research project and study a series of compulsory taught modules covering: chemical engineering principles; chemical process technology; chemical reaction processes, separation processes; plant design; batch process engineering; and chemical products design and development.



Read less
Chemistry research at Swansea University is vibrant and covers a wide range of research areas and interests, and will be growing at a fast pace over the next 2-3 years. Read more

Chemistry research at Swansea University is vibrant and covers a wide range of research areas and interests, and will be growing at a fast pace over the next 2-3 years. It is focused on 4 themes: Energy, Health, New and Advanced Molecules and Materials, and Water and the Environment. These research initiatives transcend the traditional discipline boundaries, integrate the core areas of inorganic, organic, physical and analytical chemistries and intersect with other scientific disciplines, engineering and medicine.

Key Features of MSc by Research in Chemistry

The new Department of Chemistry has excellent, purpose-built modern laboratories and has access to a diverse type of laboratories research infrastructures to develop its research. For example, high-quality, high-impact chemistry research is already taking place in World Class Centres based in Swansea such as The Centre for NanoHealthThe Institute of Mass SpectrometryThe Institute of Life SciencesThe Energy Safety Research InstituteMultidisciplinary Nanotechnology CentreThe Centre for Water Advanced Technologies and Environmental Research and The Materials Research Centre. The integration of the new Chemistry Department with Engineering, the Medical School and other departments in the College of Science provides an environment of research excellence and allows our chemistry students and research staff to invent, innovate and develop products in a way that is best suited to research in the 21st century and the need to generate disruptive, step-change advances with impact on current global challenges.

Department of Chemistry Research Group:

Energy: One of the key areas where advances in chemistry will be needed is in providing solutions to the global energy challenge. Chemistry research in Swansea University is participating in fundamental and applied research initiatives focused on: 

  • Conversion and storage of electrochemical and solar energy 
  • Capture, storage, and chemical conversion of carbon dioxide 
  • Development of new molecules, materials and nanotechnologies related to energy production, conversion, transport, and storage and their incorporation into devices.
  • Electron transfer reactions
  • Development and implementation of advanced characterisation techniques for acquiring in-depth understanding of photovoltaics, batteries and processes, which enable improvement in performance.
  • Routes for rapid processing and manufacturing at scale.
  • Optimized utilization of fossil energy 
  • Hydrogen as an energy vector

Health: Chemistry research provides new routes to more effective, cheaper and less toxic therapies and to non-invasive disease detection and diagnosis tools – a requirement to transform the entire landscape of drug discovery, development and healthcare, which is unaffordable and needs to benefit more patients. The chemistry research laboratories for this theme are adjacent to Swansea Medical School – which ranked 1st in the UK for research environment, and 2nd for overall research quality in the REF 2014.

Current chemistry research includes: 

  • Nanoparticle-based drug delivery
  • Antibody-drug conjugates
  • Nanoparticle-enabled chemoimmunotherapy and immunoengineering
  • Chemical systems for cell and tissue imaging
  • Stimuli-responsive and adaptive systems for drug activation and release
  • Construction of biofunctional artificial motor systems
  • Bioelectronic medicines and sensors
  • Mass spectrometric analysis of clinical samples, lipids, proteins and natural products
  • Pharmaceutical analysis and analytical technologies for medical/chemical analysis
  • Magnetic nanoparticles for magnetic resonance and multimodal imaging
  • Silicon processing, microfabrication and microelectronic fabrication
  • Self-assembly of colloids at interfaces and the use of colloids and nanoparticles dispersed in complex biological fluids
  • Microneedles for transdermal blood sampling and drug delivery
  • Biosensors – surface functionalization, fluorescence detection, electrochemistry, chemical sensing and lab-on-a-chip
  • Microfluidics and MEMS 
  • Studying structure, dynamics and function of enzymes as a route to understanding and controlling nature's chemistry
  • Natural products biosynthesis (particularly involving compounds with antibiotic, antifungal, or other medically relevant activity).

New and Advanced Molecules and Materials: There is major interest in synthesing, designing and controllling molecular and macromolecular assemblies at multiple length scales. In Swansea this research involves use of: 

  • Soft condensed matter including surfactants, colloids and polymers
  • Synthesis and characterization of transition metal-based and organic dye molecules for application in dye sensitized solar cells
  • Materials for efficient multiphoton absorption and upconversion 
  • Natural products
  • Molecular recognition and self-assembly to generate novel materials
  • Continuous flow synthesis
  • Molecular scale and nanoscale characterisation of ordered and amorphous assemblies
  • Development of nanocomposites comprising metallic nanoparticles and hydrogels
  • Autonomous and remotely guided micro- and nanoscale objects
  • Studying and tuning the characteristics of nanomaterials and biomaterials 

Water and the Environment: Chemistry at Swansea university has a strong profile in the development of analytical tools for measuring environmental impact, environmental impact assessment of polymer-based materials through their lifetime (including the effects of recycling and biopolymers), technologies for the efficient removal of environmentally harmful materials (and thus reduced emissions per output of discharge), membrane technologies and new methodologies for desalination, and for dewatering and killing pathogens for sanitation applications and the use of new molecules and materials for photocatalytic water splitting and development of self-propelled micro and nanomotor systems for environmental remediation. In collaboration with the Biocontrol and Natural Products (BANP) group in the Department of Biosciences, there is also growing research interest around the characterisation and application of natural products, in particular those derived from fungi and microalgae, to provide therapeutics and nutraceuticals and to act as agents for biocontrol and bioremediation.

Facilities in the Department of Chemistry

Our new state-of-the-art teaching laboratories are being built as part of a multi-million pound investment to create a chemistry hub for the high quality Chemical Sciences research being carried out across the Colleges of Science, Engineering and Medicine.

Careers for Chemistry Graduates

A chemistry qualification opens the door to a wide range of careers options, both in and out of the lab. There are endless interesting and rewarding science-based jobs available – these can be in research, outdoors or in other industries you might not have thought of. Please visit the Royal Society of Chemistry website for details. 

Find out more about the huge range of jobs in chemistry by exploring the job profiles on the Royal Society of Chemistry website (eg Cancer Researcher, Flavourist & Innovation Director, Chief Chemist, Sustainability Manager, Fragrance Chemist, Household Goods Senior Scientist, Analytical Scientist, and many more).



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X