• University of Bristol Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
Middlesex University Featured Masters Courses
Cass Business School Featured Masters Courses
Nottingham Trent University Featured Masters Courses
University of Reading Featured Masters Courses
University of Surrey Featured Masters Courses
Belgium ×
0 miles
Engineering×

Masters Degrees in Environmental Engineering, Belgium

We have 9 Masters Degrees in Environmental Engineering, Belgium

  • Engineering×
  • Environmental Engineering×
  • Belgium ×
  • clear all
Showing 1 to 9 of 9
Order by 
Environmental Technology and Engineering at Ghent. -Learn to design and apply state-of-the-art environmental technology and engineering solutions. Read more
Environmental Technology and Engineering at Ghent:
-Learn to design and apply state-of-the-art environmental technology and engineering solutions.
-Study in three leading European universities and gain a multi-cultural experience.
-Be part of an international network of students, researchers and professionals of different nationalities.
-Possibility of Erasmus Mundus and other scholarships.

In the IMETE Erasmus Mundus programme you will become part of a new generation of environmental scientists. As a graduate, you will be able to design and apply state-of-the-art environmental technology and engineering solutions to tackle today’s global environmental problems. IMETE intensively promotes international networking and exchange of knowledge and experience between students, researchers and professionals of different nationalities.

You will study two years at three leading European universities: Ghent University in Belgium, the UNESCO-IHE Institute for Water Education in the Netherlands and the University of Chemistry and Technology (Prague) in the Czech Republic.

Structure

Semester 1 (Sept-Jan)
-UNESCO-IHE, Netherlands.
-General scientific courses and development of transferable skills.
Semester 2 (Febr-June)
-UCT Prague, Czech Republic.
-Advanced and specialization courses in environmental technology and engineering (e.g. solid waste and water treatment, atmosphere protection, soil remediation).
Semester 3 (Sept-Jan)
-Ghent University, Belgium.
-Specialized courses in environmental technology and engineering (e.g. clean technology, reuse technology, process and control engineering) and elective courses.
Semester 4 (Febr-June)
-Master dissertation at one of the European universities or at numerous research partners in Europe, America, Africa or Asia.

Learning outcomes

Our programme will prepare you to become:
-A creative researcher who develops innovative technologies to protect our environment and safeguard our natural resources.
-A professional in an international company or (non-)governmental organisation, who reduces the environmental impact of human activities by designing environmental technology solutions throughout the entire world.
-A leading policy maker, who is involved in innovative decision-making to guide a sustainable society in safeguarding the environment.

Other admission requirements

The English language proficiency can be met by providing a certificate (validity of 5 years) of one of the following tests:
-TOEFL IBT 86
-TOEFL PBT 570
- ACADEMIC IELTS 6,5 overall score
Language of instruction is not accepted anymore, except applicants who are nationals from or have obtained a bachelor and/or master degree in a higher education institute with English as mode of instruction in USA, Australia, New Zealand, United Kingdom, Republic of Ireland or Canada, and in the latter case a certificate that the mode of instruction was English has to be submitted.

Read less
This programme is jointly organized by the Katholieke Universiteit Leuven and the Vrije Universiteit Brussel. It is one of the International Course Programmes supported by the Flemish Interuniversity Council (VLIR-UOS). Read more

International Course Programme

This programme is jointly organized by the Katholieke Universiteit Leuven and the Vrije Universiteit Brussel. It is one of the International Course Programmes supported by the Flemish Interuniversity Council (VLIR-UOS).

The Master of Water Resources Engineering addresses water-related issues in developed and developing countries, with a focus on problems in the latter. The MSc programme provides multi-disciplinary and high-quality higher education in the field of water resources engineering.

Water Resources Engineering deals with the methods and techniques applied in the study of:
- water needs for agriculture, industry, households, recreation, navigation, hydroelectric power generation;
- problems related to storm water drainage and flood damage mitigation;
- problems related to water quality in streams and aquifers, erosion, sedimentation, protection of ecosystems and other natural resources;
- integrated water management; and
- institutional, socio-economic, and policy issues related to water resources development and management.

This is an initial Master's programme and can be followed on a full-time or part-time basis.

Curriculum

Details available on http://www.iupware.be/

The Interuniversity Programme in Water Resources Engineering offers a two year Master of Water Resources Engineering course, which is intended for graduates (or equivalent) in engineering, agriculture, hydrology and other related subjects. The main goal is to offer comprehensive training in water resources engineering to engineers and scientists from developing as well as industrialized countries. The programme blends various basic and applied courses, hydrology and engineering sciences associated with water resources development with appropriate organizational and managerial skills. The course is specially tailored for those who want to develop their knowledge and understanding of water resources engineering, and are or expect to be involved in the design, operation or day-to-day management of water resources schemes in developing countries or anywhere in the world.

The first year curriculum is common for all participants while in the second year, a common base with optional courses. After successful completion of the 2-year study programme, a Master of Water Resources Engineering degree is offered.

In the 1st year of the study programme a review of the basic knowledge is proposed, in order to achieve a common base level between students with different backgrounds. The 1st year is primarily organized at the K.U.Leuven. This programme consists of a number of courses (Advanced mathematics for water engineering, Statistics for water engineering, Irrigation agronomy, Aquatic ecology, Hydraulics, Surface Hydrology, Groundwater Hydrology and Water quality assessment, monitoring and treatment) and 4 workshops: (1) Hydrological data processing; (2) GIS; (3) Hydrological measurements and (4) Remote sensing.

In the the 2nd year of the Master programme, a broad spectrum of topics is given to ensure the coverage of the main aspects related to water resources engineering. The topics in the second year are intended to broaden the water resources engineering knowledge and to provide a deeper understanding in either Hydrology, Irrigation, Water Quality or Aquatic Ecology depending on the area of specialization. The 2nd year is primarily organized at the V.U.B. The courses in the programme make extensive use of modelling tools relevant to various aspects of the design, operation and management of water resources development projects.

Admission requirements

Candidates must hold a Bachelor's degree from a four-stage programme in agricultural, civil or environmental engineering. Study results should reflect the equivalent of a 70% pass rating in Flanders. Students should have a proven proficiency in English. Applicants from non-English-speaking countries should have a TOEFL score of at least 550 on the written test and 213 on the computer-based test or equivalent results on similar language test.

Students from a 5-stage engineering or equivalent degree, including the prerequisites to the second stage courses, can be exempted from 60 ECTS. Applications are evaluated on an individual basis.

Read less
Agro- and Ecosystems Engineering is about ensuring the prosperity and wellbeing of current and future generations in both the global North and global South. Read more

Agro- and Ecosystems Engineering is about ensuring the prosperity and wellbeing of current and future generations in both the global North and global South. Agro- and ecosystems provide a wide range of essential goods and services such as food, water, energy and biodiversity. Yet, the contemporary context of population growth, rapid urbanisation, economic globalisation, climate change, deforestation, soil pollution and degradation challenges the future provisioning of a sufficient quantity and quality of these goods and services. 

What is the Master of Agro- and Ecosystems Engineering all about? 

The Master of Agro- and Ecosystems Engineering (ACE) provides in-depth knowledge of the functioning and management of natural and production-oriented ecosystems. You can choose to focus on either temperate or (sub)tropical settings, or a combination of both. You complement the interdisciplinary core programme with a major specialisation in one out of four different domains: biological production, abiotic and biotic environment, bio-economics, and bio-geo information

Programme

The production major focuses on agro-ecosystems, and includes specialisation tracks in crop production, production forestry systems (achieved trough a semester in Chile) and hortology (achieved trough a semester in South Africa).

The environment major provides to in-depth understanding of the biophysical functioning of both natural and agro-ecosystems with the aim of improving the management of these ecosystems' biodiversity, soil and water resources. The major includes specialisation tracks in soil and water systems, forest and nature systems, and ladscape systems.

The economics major focuses on the economic and policy-related aspects of agro- and ecosystems, with in-depth courses in the field of agricultural, food and natural resources economics.

The information major addresses earth observation and geo-data management technology, with in-depth courses covering both the technological aspects of this area and their applications in the field of terrestrial resources.

International

Are you looking to broaden your horizons? There are ample opportunities to conduct part of your master's thesis research at various partner institutions abroad. In addition, European residents can undertake their master's thesis research at a European or other partner university within the framework of the Erasmus+ programme. The Faculty also welcomes initiatives of students who want to do a work placement in a company or organization abroad, as well as exchange programmes with partner universities.

Two optional specialisation packages require one semester to be spent at a partner institution: the Production Forestry package is organised at the University of Temuco (Chile), while the specialisation in Hortology takes you to the University of Stellenbosch (South Africa).

Career paths

The interdisciplinary nature of ACE ensures 

that graduates are sought after by various professional fields related to biological production systems and ecosystem management, with particular emphasis on plant production, natural resource economics and policy, sustainable environmental management, and applications of earth observation and geomatics. 

Abundant employment opportunities exist in public sector organisations, both nationally and internationally, NGOs and private companies, and can be both technical in nature, research-oriented, or at the policy/management level. Finally, ACE provides excellent preparation for undertaking PhD research. 

In Belgium, graduates of the ACE programme are entitled to use the professional title of 'Bio-ingenieur' ('Bioscience Engineer') .



Read less
Details available on http://www.iupware.be/ . The MSc in Water Resources Engineering addresses water-related issues in developed and developing countries. Read more

Details available on http://www.iupware.be/ ;

The MSc in Water Resources Engineering addresses water-related issues in developed and developing countries. It is jointly organized by KU Leuven and the Vrije Universiteit Brussel (VUB). The general programme objective is to educate professionals and scientists through multidisciplinary and high-quality university education to contribute effectively to the development and management of local and global water resources. The programme trains students with cutting-edge technical and managerial knowledge and skills to  

(i) successfully plan, design, operate and manage water resources projects; and (ii) advise and support authorities in decision-making and policy-making that enhance the safe exploitation and re-use of wastewater and the equitable distribution and conservation of local, regional, and global water resources.  

A strong focus is put on the use of state-of-the-art numerical simulation tools for integrated water management. 

The programme deals with the methods and techniques applied in the study of 

- water needs for agriculture, industry, households, recreation, navigation, hydroelectric power generation - problems related to storm water drainage and flood damage mitigation - problems related to water quality in streams and aquifers, erosion, sedimentation, protection of ecosystems and other natural resources - integrated water management - institutional, socio-economic, and policy issues related to water resources development and management 

Employment prospects 

A combination of theory and practice ensures that students are equipped with excellent knowledge for further research and exciting job opportunities across the world. Graduates of the programme are primarily employed as 

(i) academics or scientists at universities and research institutions. Their major task is to strengthen the training and research capacity of those institutions in the field of water resources 

(ii) engineers or managers in public administrations, water user associations or private companies. 

Water resources engineers and scientists play a decisive role in the development and management of aquifers and river basins, and in deciding who does what, how much services cost, and who pays. They are the decision-makers and water managers of the future, who are capable of taking into account increased user demand and environmental needs, i.e. managing limited water resources in a sustainable and responsive way. 

International Mobility 

The master programme takes place in an intercultural and international environment. Students have the possibility to join excursions and field trips abroad and to carry out master thesis research in cooperation with our partner universities. 

Curriculum 

The full programme comprises 120 ECTS. Students with a relevant Master degree can apply for the 1-year abridged programme (60 ECTS) and will mainly follow second year courses. 

The first year curriculum builds a common foundation and is the same for all students. In the second year students design a personal programme through the selection of three elective courses, an integrated project and their master thesis research. Courses are held both at KU Leuven and the VUB campus.  

Year 1 (compulsory) 

- Advanced Mathematics for Water Engineering - Statistics for Water Engineering - Hydraulics - Groundwater Hydrology - Surface Water Hydrology - Irrigation Agronomy - Aquatic Ecology - Waste Water Treatment and Resource Recovery - Water Quality - Integrated Water Management - GIS & Data Processing for Water Resources Engineering - Remote Sensing and Measuring Techniques for Water Resources Engineering 

Year 2 

Compulsory 

- Systems Approach to Water Management - Social, Political, Institutional, Economic and Environmental Aspects of Water Resources 

Electives (three courses to be chosen) 

- Surface Water Modelling - Groundwater Modelling - River Modelling - Soil Water Modelling - Irrigation Design and Crop Water Productivity Management - Urban Hydrology and Hydraulics - Environmental Programming - Freshwater and Marine Ecology 

 

Integrated Project: Students work in groups on a particular watershed and travel to the case study area. They define problems and tackle them from different angles using modelling as well as nonmodelling tools



Read less
A country's physical land resources are a fundamental pillar of support for human life and welfare. Read more
A country's physical land resources are a fundamental pillar of support for human life and welfare. Worldwide, population pressures and severe degradation, pollution and desertification problems are threatening this - for several countries relatively scarce - natural resource, and cause competition between agricultural or industrial purposes, urban planning and nature conservation. To guarantee a proper use and management of this for a nation basic commodity, well trained specialists with a thorough knowledge of the properties and characteristics of this natural resource, and a solid insight in factors and measures that may alter its actual state and value are warranted and call for a high standard scientific and practical education.

The main subject in Land Resources Engineering offers training in non-agricultural use and application of soil, and includes geotechnical aspects (use of soil as a building material or for foundations, slope stability and stability of excavations), the role of soil- and groundwater for water management and supply, soil management in relation to environment and land use (erosion, sediment transport, coastal development and protection).

Structure

The Master of Science degree programme in Physical Land Resources is a two year, full time course. The first year provides a fundamental basis in physical land resources, with a main subject in either Soil Science or Land Resources Engineering. The second year offers specialised courses in one of the two main subjects. The students have to prepare a master dissertation in the second year. Successful completion of the programme leads to the award of an Master of Science degree in Physical Land Resources. The course curriculum of the first year, and of the main subject in soil science of the second year is organised at the Ghent University, whereas all courses of the main subject in Land Resources Engineering of the second year are lectured at "Vrije Universiteit Brussel".

The academic year starts the last week of September. However students are advised to arrive in Ghent in the first week of September to follow the preparatory summer course.

Teaching methods
A wide variety of teaching methods are used in the PLR programme. All course units, except for “Internship” and “Master Dissertation” include lectures. Lectures are fundamental to provide students with the necessary basic knowledge in order to acquire the requested competences. Besides lectures the following teaching methods are very frequently used: practical classes, PC-room classes and coached exercises. Teaching methods like guided self-study, group work and microteaching are occasionally used. Field work and excursions are naturally an important component of the Physical Land Resources programme, especially in the first year.

Learning outcomes

The Master of Science in Physical Land Resources is organized at both UGent and VUB and aims to contribute to an increased knowledge in Physical Land Resources both in terms of quantity (more experts with a broad knowledge) and of quality (knowledge and its use at an advanced scientific level). The incoming students have diverse backgrounds in geology-related sciences, civil engineering or agronomy and the large majority of students originate from developing countries.
-Possesses a broad knowledge at an advanced level in basic disciplines (soil physics, soil chemistry, soil mineralogy, meteorology and climatology) that provide a polyvalent scientific understandinga. needed to evaluate land potential for agricultural and environmental applications, understand the evolution of soils under natural and human-impacted conditions, and contribute to sustainable land use planning and integrated management of land and water (Soil Science); or in non-agricultural applications of land, such as geotechnical aspects, the role of soil and groundwater in water resources management and water supplies, and of land management in relation to other environmental and land use aspects (Land Resources Engineering).
-Possesses the basics to conduct field work (soil survey, soil profile description, soil sampling), interpret analytical data, classify the soil, and manage and interpret existing cartographic and remote sensing data using modern equipment, informatics and computer technology.
-Characterize soil physico-chemically and mineralogically with advanced techniques to understand soil processes, translate this to soil quality and assess the influences by and on natural and anthropogenic factors.
-Recognize interaction with other relevant science domains and identify the need to integrate them within the context of more advanced ideas and practical applications and problem solving.
-Demonstrate critical consideration of and reflection on known and new theories, models or interpretation within the specialty.
-Plan and execute target orientated experiments or simulations independently and critically evaluate the collected data.
-Develop and execute original scientific research and/or apply innovative ideas within research units.
-Formulate hypotheses, use or design experiments to test these hypotheses, report on the results, both written and orally, and communicate findings to experts and the general public.

Other admission requirements

The applicant must be proficient in the language of the course or training programme, i.e. English. The English language proficiency can be met by providing a certificate (validity of 5 years) of one of the following tests: (TOEFL/IELTS predictive tests and TOEIC will not be accepted)
-TOEFL IBT 80.
-TOEFL PBT 550.
-ACADEMIC IELTS 6,5 overall score with a min. of 6 for writing.
-CEFR B2 Issued by a European university language centre.
-ESOL CAMBRIDGE English CAE (Advanced).

Read less
A country's physical land resources are a fundamental pillar of support for human life and welfare. Read more
A country's physical land resources are a fundamental pillar of support for human life and welfare. Worldwide, population pressures and severe degradation, pollution and desertification problems are threatening this - for several countries relatively scarce - natural resource, and cause competition between agricultural or industrial purposes, urban planning and nature conservation. To guarantee a proper use and management of this for a nation basic commodity, well trained specialists with a thorough knowledge of the properties and characteristics of this natural resource, and a solid insight in factors and measures that may alter its actual state and value are warranted and call for a high standard scientific and practical education.

The main subject in Soil Science aims at training researchers, academics, government staff and expert consultants in the inventory and detailed characterization of land capacity, and of soils in particular. Graduates should be able to understand the development and evolution of soils under natural conditions or following human interference using field, map, laboratory and remote sensing data. They should have the scientific knowledge to use and manage soil and water in a sustainable way, and to optimize land use under different natural and environmental conditions.

Structure

The Master of Science degree programme in Physical Land Resources is a two year, full time course. The first year provides a fundamental basis in physical land resources, with a main subject in either Soil Science or Land Resources Engineering. The second year offers specialised courses in one of the two main subjects. The students have to prepare a master dissertation in the second year. Successful completion of the programme leads to the award of an Master of Science degree in Physical Land Resources. The course curriculum of the first year, and of the main subject in soil science of the second year is organised at the Ghent University, whereas all courses of the main subject in Land Resources Engineering of the second year are lectured at "Vrije Universiteit Brussel".

The academic year starts the last week of September. However students are advised to arrive in Ghent in the first week of September to follow the preparatory summer course.

Teaching methods
A wide variety of teaching methods are used in the PLR programme. All course units, except for “Internship” and “Master Dissertation” include lectures. Lectures are fundamental to provide students with the necessary basic knowledge in order to acquire the requested competences. Besides lectures the following teaching methods are very frequently used: practical classes, PC-room classes and coached exercises. Teaching methods like guided self-study, group work and microteaching are occasionally used. Field work and excursions are naturally an important component of the Physical Land Resources programme, especially in the first year.

Learning Outcomes

The Master of Science in Physical Land Resources is organized at both UGent and VUB and aims to contribute to an increased knowledge in Physical Land Resources both in terms of quantity (more experts with a broad knowledge) and of quality (knowledge and its use at an advanced scientific level). The incoming students have diverse backgrounds in geology-related sciences, civil engineering or agronomy and the large majority of students originate from developing countries.
-Possesses a broad knowledge at an advanced level in basic disciplines (soil physics, soil chemistry, soil mineralogy, meteorology and climatology) that provide a polyvalent scientific understandinga. needed to evaluate land potential for agricultural and environmental applications, understand the evolution of soils under natural and human-impacted conditions, and contribute to sustainable land use planning and integrated management of land and water (Soil Science); or in non-agricultural applications of land, such as geotechnical aspects, the role of soil and groundwater in water resources management and water supplies, and of land management in relation to other environmental and land use aspects (Land Resources Engineering).
-Possesses the basics to conduct field work (soil survey, soil profile description, soil sampling), interpret analytical data, classify the soil, and manage and interpret existing cartographic and remote sensing data using modern equipment, informatics and computer technology.
-Characterize soil physico-chemically and mineralogically with advanced techniques to understand soil processes, translate this to soil quality and assess the influences by and on natural and anthropogenic factors.
-Recognize interaction with other relevant science domains and identify the need to integrate them within the context of more advanced ideas and practical applications and problem solving.
-Demonstrate critical consideration of and reflection on known and new theories, models or interpretation within the specialty.
-Plan and execute target orientated experiments or simulations independently and critically evaluate the collected data.
-Develop and execute original scientific research and/or apply innovative ideas within research units.
-Formulate hypotheses, use or design experiments to test these hypotheses, report on the results, both written and orally, and communicate findings to experts and the general public.

Other admission requirements

The applicant must be proficient in the language of the course or training programme, i.e. English. The English language proficiency can be met by providing a certificate (validity of 5 years) of one of the following tests: (TOEFL/IELTS predictive tests and TOEIC will not be accepted)
-TOEFL IBT 80.
-TOEFL PBT 550.
-ACADEMIC IELTS 6,5 overall score with a min. of 6 for writing.
-CEFR B2 Issued by a European university language centre.
-ESOL CAMBRIDGE English CAE (Advanced).

Read less
Content. The increasing demand for raw materials, their price volatility, the production concentration and the market distortions imposed by some countries, confront Europe and other world regions with a number of challenges along the entire value chain. Read more
Content

The increasing demand for raw materials, their price volatility, the production concentration and the market distortions imposed by some countries, confront Europe and other world regions with a number of challenges along the entire value chain. To tackle this supply risk challenge and to deal with environmental problems arising from too large emissions of waste (such as CO2), technological innovation is required with respect to exploration of new resources and sustainable primary mining, sustainable use of resources in specific products and production processes (e.g. substitution of critical metals in materials), prevention of waste generation, valorisation of secondary (alternative) resources and recovery/recycling of resources from end-of-life products.

The International Master of Science in Sustainable and Innovative Natural Resource Management (SINReM) aims at educating a new range of professionals with a holistic overview on resource management and up-to-date processing technologies, who are familiar with sustainability concepts and possess an innovative mind-set to boost the economic importance of this sector.

Students will be acquainted with the different (technological) options for optimizing flows of natural resources in the different parts of the chain, ranging from resource exploration over sustainable materials use and use of resources in production processes to recovery/recycling of resources from end-of-life products. The focus is on developing ground-breaking technologies, engineering and re-inventing the value chain to make it more sustainable. Students will get a broad view on the entire value chain in its different aspects.

Networking and exchange of knowledge and experience between different nationalities, between academic and non-academic partners and between scholars and students will be promoted.

SINReM is offered by a consortium consisting of 3 Institutes of Higher Education:

Universiteit Gent / Ghent University (UGent, Gent, Belgium);
Uppsala University (UU, Uppsala, Sweden);
TU Bergakademie Freiberg (TUFreiberg, Freiberg, Germany).

The SINReM programme is (co)financed by the European Institute of Innovation and Technology within the EIT Raw Materials programme and aims at achieving an EIT label. EIT-labelled educational programmes foster students to become more creative, innovative and entrepreneurs.

Career Perspectives

Graduates are qualified for a professional career in the private (supporting companies in making processes, products and services more sustainable), research (applied research at universities, research institutes or companies) or public sector (consulting in local, regional and (inter)national administrations, defining and implementing sustainable development policies).
Graduates have an entrepreneurial mindset, a multidisciplinary view and creative innovative problem-based technology development skills

Structure

This 2-year programme contains 120 ECTS credit units and leads to the joint diploma of International Master of Science in Sustainable and Innovative Natural Resource Management.

In order to expose all students to different institutional settings, student mobility within Europe is an integral part of the programme.

General Entrance Module - Semester I 30 ECTS - Ghent University
Advanced Module - Semester II 30 ECTS - Uppsala University
Field trip - Summer School - University of Freiburg
Advanced Module II - Semester III 60 ECTS - choose a one of the following majors containing (elective) courses in combination with master dissertation research:
geo-resource exploration (Uppsala)
sustainable processes (Freiberg)
sustainable materials and resource recovery (Ghent)

All students will be moving as a cohort to Gent, Freiberg and Uppsala in the first year, which approach has significant networking and social cohesion advantages.

During this first year, students are introduced to the value chain, management of natural resources, the circular economy, its economic, policy and legal aspects, inventory techniques, the clean technology concept and life cycle assessment tools to assess sustainability of products, services and processes. Moreover, students are exposed to a basic training in the different technological tools that can be used to intervene in different parts of the value chain (geo-resource exploration, sustainable (chemical) extraction processes, sustainable materials and resource recovery technology).

In the second year students have the option to further specialize by selecting a major and conducting thesis research. They interact with the professional sector through cooperation in thesis research, internships, lectures and seminars.

Admission Requirements

To be admitted, candidates must have at least a bachelor degree (minimum 180 ECTS credits) in engineering or science (physics, chemistry, biology, mathematics, earth science, materials science) including 15 ECTS in mathematics and/or physics and 10 ECTS pure or applied chemistry or an equivalent level from a recognised university or Engineering College.

In terms of language requirements the following is currently applied in or acceptable by the partner institutes. Changes to these requirements are however admissible (upon approval by the MB).

Nationals of Australia, Botswana, Canada, Eritrea, Gambia, Ghana, Guyana, India, Ireland, Kenya, Liberia, Malawi, Namibia, New Zealand, Nigeria, Philippines, Sierra Leone, South Africa, Sri Lanka, Trinidad and Tobago, Uganda, UK, USA, Zambia, and Zimbabwe, need to send proof of at least one year - 60 ECTS (finished successfully) - of comprehensive English-based instruction at a HEI do not need to present a language certificate but a mode of instruction.

Candidates from any other nationality need to present test results of one of the following tests (validity of 5 years; TOEFL/IELTS predictive tests and TOEIC will not be accepted):

TOEFL IBT 86
TOEFL PBT 570
ACADEMIC IELTS 6,5 overall score with a min. of 6 for writing

Candidates apply online through a standard online application form. All candidates fulfilling the above-mentioned minimum admission requirements receive and an official letter of admission signed by the legal representative of Ghent University (the Rector), in name of the consortium. Any applicant will need to be granted academic admission by Ghent University, advised by the SINReM Management Board, before starting the program. To this aim, candidates have to prove through their application file that they meet the admission requirements.

Read less
Technology for Intergrated Water Management at Ghent. -Advanced master programme. -Interuniversity education offering combined expertise in water-related research and development. Read more
Technology for Intergrated Water Management at Ghent:
-Advanced master programme.
-Interuniversity education offering combined expertise in water-related research and development.
-Multidisciplinary perspective: ecosystem approach / bioscience engineering / civil engineering.
-Providing R&D-based technological answers for integrated water policy & management.

Integrated water management is the challenge of the 21st century. Worldwide, there is a need to train specialists in water technology who have knowledge of and insight in integrated water management and policy, trends and developments in the water sector, worldwide water problems and new techniques for water treatment and water purification. Since 2010, this advanced
master is organized jointly by Ghent University (Centre Environmental Science & Technology) and the University of Antwerp (IMDO), together with the Antwerp Maritime Academy.

Structure

Semester 1 (Sept-Jan)
-Preceded by introduction courses.
-Introduction: compulsory.
-Integration in Water Technology and Water Management: compulsory.
-Specialization in Water Technology: elective courses.
Semester 2 (Feb-June)
-Integration in Water Technology and Water Management: master dissertation.
-Specialization in Water Technology: elective courses.

Learning outcomes

Our programme will prepare you to become professionals in water quality with the appropriate skills for integrated water management, who end up in research institutes, global businesses, consultancies and governmental institutions, trained in state-of-the-art water technology and integrated water management.

Other admission requirements

The following language requirements apply to candidates with a non-Flemish master’s degree only. Candidates with a master’s degree from a Flemish university are nonetheless strongly advised to take a language test to assure they possess the necessary language skills to successfully complete the programme. Applicants can prove their proficiency in English either by submitting proof you have studied at least one academic year (or 60 ECTS credits) in an English-language master programme, or by submitting one of the following language certificates with a test validity of maximum 2 years:
-TOEFL (Test of English as a Foreign Language): paper-based TOEFL level of minimum 550 or an internet-based TOEFL level of minimum 80.
-IELTS (International English Language Testing System): 6,5 overall score with a minimum of 6 for each sub-part.
-OR Knowledge level B2 of the Common European Framework.

Read less
In the first academic year of the MSc. Program the students of the 3 main subjects have several courses in common, aiming in giving them all an in-depth knowledge and know-how related to nutrition and rural development related topics, creating a common academic level between all program students of diverse backgrounds. Read more
In the first academic year of the MSc. Program the students of the 3 main subjects have several courses in common, aiming in giving them all an in-depth knowledge and know-how related to nutrition and rural development related topics, creating a common academic level between all program students of diverse backgrounds. The common part of the programme consists on the one hand of basic knowledge, insights and skills in the areas of production, transformation, preservation, marketing and consumption of food products. On the other hand, it contains a practically oriented component that enables the alumni to identify problems by means of quantitative and qualitative research methods and analytical techniques, to assess and rank causes, and to plan, to execute and to evaluate appropriate interventions.

The other part of courses given during the first year are main subject specific courses. The academic second year provides a more in depth understanding of the specific problems and their solutions for the main subject and major chosen and consists of main subject and major specific courses, elective (optional) courses and Master Dissertation research (30 ECTS).

The specific expertise the students receive depends on the main subject, major and optional courses chosen.

Tropical Agriculture

Delivers technical knowledge related to agriculture focussing on developing countries. The students can specialize in animal production or plant production by choosing the specific option. The major on Animal Production delivers in depth knowledge on production biology, animal nutrition, pasture management, animal genetics. The major on Plant Production focuses on themes like ethno-botany, crop protection, plant breeding, plant biotechnology. The courses are applicative and aim at presenting solutions for production problems in developing countries in an interdisciplinary way.

Structure

Semester 1 (Sept-Jan)
-Preceded by introduction courses.
-Common and main subject specific basic courses.
-Fundamental, in depth and high level knowledge.
Semester 2 (Febr-June)
-Main subject specific courses with special attention to ‘in field’ applications.
-Possibility to do internships in summer holidays.
Semester 3 (Sept-Jan) and Semester 4 (Febr-June)
-Specialised courses (fine-tuned individual programme).
-Master dissertation (at Ghent University, other Belgian institutes/organizations/multinationals or one of our partners in the South or Europe).

Learning and Outcomes

Have thorough knowledge and comprehension (theory and practice) l in the interdisciplinary domains: food and feed production, socio-economic, (public health) nutrition and management concepts, theories and skills, and in the main subject specific domains and the chosen major domains. The program additionally focuses on international collaboration.
-Major: Public Health Nutrition : Have profound insights in public health nutrition realities and compare public health nutrition issues, approaches and policies within the international context
-Major Nutrition Security and Management: Have profound insights in different food/nutrition security realities and compare nutrition security issues, approaches and (nutrition) policies within an international context
-Major Plant Production: Have profound insights in plant production realities and compare plant production issues, and approaches within the international context
-Major Animal Production: Have profound insights in animal production realities and compare animal production issues, and approaches within the international context

Apply theories and methodological approaches to characterize and analyse specific problems: food, nutrition and agricultural chains, food sovereignty /safety and security, natural resource management, sustainable production, economic and social problems of rural areas, national and international agriculture.

Design and implement adequate instruments, methods, models and innovative tools to analyse, evaluate and solve interdisciplinary related problems in the context of sustainable development.

Apply the interdisciplinary tools to design, implement, monitor and evaluate national and international agro-nutrition policies and programs. More specifically:
-For Human Nutrition: construct innovative tools and instruments for the development of a better nutritional health status of a country/region/area and its inhabitants/households.
-For Tropical agriculture: a more efficient and economic feasible agricultural balanced, food production guaranteeing a better food security situation per country respecting local environment.

Assess the importance and magnitude of a problem, define strategies for intervention and/or identify knowledge gaps. Develop a research protocol based on the analysis of existing evidence and set up a research plan, analyse and interpret the data and present the findings.

Identify, select and apply appropriate research methods and techniques to collect, analyses and critically interpret data.

Critically reflect on program specific issues, and on ethical and value driven aspects of research and intervention strategies.

Take up a trans-disciplinary role in an interdisciplinary ((inter)national) team dealing with global challenges, and develop a global perspective.

Dialogue and professionally interact with different actors and stakeholders from peers to a general public to convincingly communicate evidence based research findings and project results.

To effectively use appropriate communication and behavioural skills in different language and cultural environments.

Learn to continuously critically reflect (individually and in discussion with others) upon personal knowledge, skills, attitudes, functioning, and develop an attitude of lifelong learning. This includes:
-Design and plan own learning processes.
-Self-Directed Learning: work independently, take initiative, and manage a project through to completion.

Other admission requirements

The applicant must be proficient in the language of the course or training programme, i.e. English. The English language proficiency can be met by providing a certificate (validity of 5 years) of one of the following tests: (TOEFL/IELTS predictive tests and TOEIC will not be accepted)
-TOEFL IBT 80.
-TOEFL PBT 550.
-ACADEMIC IELTS 6,5 overall score with a min. of 6 for writing.
-CEFR B2 Issued by a European university language centre.
-ESOL CAMBRIDGE English CAE (Advanced).

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X