• Goldsmiths, University of London Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Oxford Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
University of Nottingham in China Featured Masters Courses
Coventry University Featured Masters Courses
Vlerick Business School Featured Masters Courses
University of Reading Featured Masters Courses
Swansea University Featured Masters Courses
Belgium ×
0 miles
Engineering×

Full Time Masters Degrees in Engineering, Belgium

We have 37 Full Time Masters Degrees in Engineering, Belgium

  • Engineering×
  • Belgium ×
  • Full Time×
  • clear all
Showing 1 to 15 of 37
Order by 
What's the Master of Biomedical Engineering about? . The Master of Science in Biomedical Engineering provides students with a state-of-the-art overview of all areas in biomedical engineering. Read more

What's the Master of Biomedical Engineering about? 

The Master of Science in Biomedical Engineering provides students with a state-of-the-art overview of all areas in biomedical engineering:

  • Biomechanics
  • Biomaterials
  • Medical sensors and signal processing
  • Medical imaging
  • Tissue engineering

The teaching curriculum builds upon the top-class research conducted by the staff, most of whom are members of the Leuven Medical Technology Centre. This network facilitates industrial fellowships for our students and enables students to complete design projects and Master’s theses in collaboration with industry leaders and internationally recognized research labs.

Biomedical engineers are educated to integrate engineering and basic medical knowledge. This competence is obtained through coursework, practical exercises, interactive sessions, a design project and a Master’s thesis project.

Structure

Three courses provide students with basic medical knowledge on anatomy and functions of the human body. The core of the programme consists of biomedical engineering courses that cover the entire range of contemporary biomedical engineering: biomechanics, biomaterials, medical imaging, biosensors, biosignal processing, medical device design and regulatory affairs.

The elective courses have been grouped in four clusters: biomechanics and tissue engineering, medical devices, information acquisition systems, and Information processing software. These clusters allow the students to deepen their knowledge in one particular area of biomedical engineering by selecting courses from one cluster, while at the same time allowing other students to obtain a broad overview on the field of biomedical engineering by selecting courses from multiple clusters.

Students can opt for an internship which can take place in a Belgian company or in a medical technology centre abroad. 

Through the general interest courses, the student has the opportunity to broaden his/her views beyond biomedical engineering. These include courses on management, on communication (e.g. engineering vocabulary in foreign languages), and on the socio-economic and ethical aspects of medical technology.

A design project and a Master’s thesis familiarize the student with the daily practice of a biomedical engineer.

International

The Faculty of Engineering Science at KU Leuven is involved in several Erasmus exchange programmes. For the Master of Science in Biomedical Engineering, this means that the student can complete one or two semesters abroad, at a number of selected universities.

An industrial fellowship is possible for three or six credits either between the Bachelor’s and the Master’s programme, or between the two phases of the Master’s programme. Students are also encouraged to consider the fellowship and short courses offered by BEST (Board of European Students of Technology) or through the ATHENS programme.

You can find more information on this topic on the website of the Faculty.

Strengths

The programme responds to a societal need, which translates into an industrial opportunity.

Evaluation of the programme demonstrates that the objectives and goals are being achieved. The mix of mandatory and elective courses allows the student to become a generalist in Biomedical Engineering, but also to become a specialist in one topic; industry representatives report that graduates master a high level of skills, are flexible and integrate well in the companies.

Company visits expose all BME students to industry. Further industrial experience is available to all students.

Our international staff (mostly PhD students) actively supports the courses taught in English, contributing to the international exposure of the programme.

The Master’s programme is situated in a context of strong research groups in the field of biomedical engineering. All professors incorporate research topics in their courses.

Most alumni have found a job within three months after graduation.

This is an initial Master's programme and can be followed on a full-time or part-time basis.

Career perspectives

Biomedical engineering is a rapidly growing sector, evidenced by an increase in the number of jobs and businesses. The Master of Science in Biomedical Engineering was created to respond to increased needs for healthcare in our society. These needs stem from an ageing population and the systemic challenge to provide more and better care with less manpower and in a cost-effective way. Industry, government, hospitals and social insurance companies require engineers with specialised training in the multidisciplinary domain of biomedical engineering.

As a biomedical engineer, you'll play a role in the design and production of state-of-the-art biomedical devices and/or medical information technology processes and procedures. You will be able to understand medical needs and translate them into engineering requirements. In addition, you will be able to design medical devices and procedures that can effectively solve problems through their integration in clinical practice. For that purpose, you'll complete the programme with knowledge of anatomy, physiology and human biotechnology and mastery of biomedical technology in areas such as biomechanics, biomaterials, tissue engineering, bio-instrumentation and medical information systems. The programme will help strengthen your creativity, prepare you for life-long learning, and train you how to formalise your knowledge for efficient re-use.

Careers await you in the medical device industry R&D engineering, or as a production or certification specialist. Perhaps you'll end up with a hospital career (technical department), or one in government. The broad technological background that is essential in biomedical engineering also makes you attractive to conventional industrial sectors. Or you can continue your education by pursuing a PhD in biomedical engineering; each year, several places are available thanks to the rapid innovation taking place in biomedical engineering and the increasing portfolio of approved research projects in universities worldwide.



Read less
The Engineering faculties of the Universiteit Gent and Vrije Universiteit Brussel organize the interuniversitary Master of Biomedical Engineering and this in a close collaboration with the Medical faculties of both universities. Read more

About the programme

The Engineering faculties of the Universiteit Gent and Vrije Universiteit Brussel organize the interuniversitary Master of Biomedical Engineering and this in a close collaboration with the Medical faculties of both universities. As a result of recent evolutions towards internationalization, we also offer a complete English master program in biomedical engineering. Both the Dutch and English masters are two-year programs and lead to a joint degree from UGent and VUB. Students study either in Ghent or in Brussels upon their own choice.

Tackle complex problems in biology, medicine and health sciences

Biomedical Engineering is a branch of Engineering where students acquire knowledge and skills which can be applied to tackle complex problems in biology, medicine and health sciences. The biomedical engineer herein strives towards a solution in balance with technological, economical and ethical constraints.

Learning outcomes

Graduated students master the fundamentals of current biomedical engineering and have a thorough knowledge of the basic concepts and an overview of the main applications in various fields of biomedical engineering (medical imaging, medical signal processing, medical physics, medical device technology, tissue engineering, biomaterials...). The graduated student has acquired the necessary research skills which allow him or her to independently analyze and solve a problem, and recognizes the importance of permanent learning in a continuously evolving domain.

Work in multidsciplinary teams:
The biomedical engineer is trained to work in multidisciplinary teams (influx of students with different bachelor backgrounds, lecturers from various faculties and scientific domains, multi-disciplinary projects) and has the required communication skills.

Awareness of ethical and socio-medical aspects:
The biomedical engineer is aware of the ethical and socio-economic aspects of biomedical engineering and healthcare, and of the social responsibility of a master in engineering.

Career possibilities:
In this master's course, knowledge and skills in all fields in biomedical engineering will be given, so when you finished the Master's programme, you can be employed as generalist, and you will also be specialised in one particular field of biomedical engineering.

As a student, you are able to select any field within biomedical engineering. You will be trained to work in interdisciplinary project teams, composed of engineers and medical specialists. To prepare further for interdisciplinary teams, students and scholars are treated as equals. To train for working in a European setting, you will get knowledge in the health care situation in several countries in Europe, and you will be trained in cultural differences between European countries.

In summary, the goal of this course is to acquire the ability to:
- work in interdisciplinary (engineering – medical) teams
- work in international and thus intercultural (European) teams
- communicate effectively with experts in (bio)medicine and technology
- perform fundamental research in Biomedical Engineering.
- design innovative devices to improve diagnostics and treatment of patients
- follow a post-Master’s training in Biomedical Engineering
- perform a PhD study
- train continuously (life-long-learning)

Curriculum

Available on http://www.vub.ac.be/en/study/biomedical-engineering/programme

The programme consists of 120 credits, evenly distributed over 4 semesters of each 12 weeks. The specific part of the master involves six basic courses for a total of 30 credits (Quantitative cell biology, Modelling of Physiological Systems, From Genome to Organism, Biomechanics, Bio-electronics and Biomaterials) and 42 credits dedicated to specialist courses in biomedical engineering (Biomedical Imaging, Neuromodulation and Imaging, Medical Physics, Medical Equipment, Biomedical Product Development, Artificial Organs: Technology and Design, Health Care Organization and Informatics, Human and Environment, Safety and Regulations* and Seminars: Innovations in Biomedical Engineering). The programme is further complemented with a master thesis (24 credits) and elective courses for a total of 24 credits.

Internships and Project Work

Students are encouraged to do an internship with a company or hospital in Belgium or abroad during the summer holiday period. Internships can be valorised in the curriculum, with an internship of 4 weeks accounting for an elective course of 3 credits, and an internship of minimally 6 weeks accounting for 6 credits. A maximum of 6 credits is allowed. In addition, students can opt for the elective 3 credit course “Multidisciplinary Biomedical Project” during which they can work on an assignment or a project.

Read less
This programme is jointly organized by the Katholieke Universiteit Leuven and the Vrije Universiteit Brussel. It is one of the International Course Programmes supported by the Flemish Interuniversity Council (VLIR-UOS). Read more

International Course Programme

This programme is jointly organized by the Katholieke Universiteit Leuven and the Vrije Universiteit Brussel. It is one of the International Course Programmes supported by the Flemish Interuniversity Council (VLIR-UOS).

The Master of Water Resources Engineering addresses water-related issues in developed and developing countries, with a focus on problems in the latter. The MSc programme provides multi-disciplinary and high-quality higher education in the field of water resources engineering.

Water Resources Engineering deals with the methods and techniques applied in the study of:
- water needs for agriculture, industry, households, recreation, navigation, hydroelectric power generation;
- problems related to storm water drainage and flood damage mitigation;
- problems related to water quality in streams and aquifers, erosion, sedimentation, protection of ecosystems and other natural resources;
- integrated water management; and
- institutional, socio-economic, and policy issues related to water resources development and management.

This is an initial Master's programme and can be followed on a full-time or part-time basis.

Curriculum

Details available on http://www.iupware.be/

The Interuniversity Programme in Water Resources Engineering offers a two year Master of Water Resources Engineering course, which is intended for graduates (or equivalent) in engineering, agriculture, hydrology and other related subjects. The main goal is to offer comprehensive training in water resources engineering to engineers and scientists from developing as well as industrialized countries. The programme blends various basic and applied courses, hydrology and engineering sciences associated with water resources development with appropriate organizational and managerial skills. The course is specially tailored for those who want to develop their knowledge and understanding of water resources engineering, and are or expect to be involved in the design, operation or day-to-day management of water resources schemes in developing countries or anywhere in the world.

The first year curriculum is common for all participants while in the second year, a common base with optional courses. After successful completion of the 2-year study programme, a Master of Water Resources Engineering degree is offered.

In the 1st year of the study programme a review of the basic knowledge is proposed, in order to achieve a common base level between students with different backgrounds. The 1st year is primarily organized at the K.U.Leuven. This programme consists of a number of courses (Advanced mathematics for water engineering, Statistics for water engineering, Irrigation agronomy, Aquatic ecology, Hydraulics, Surface Hydrology, Groundwater Hydrology and Water quality assessment, monitoring and treatment) and 4 workshops: (1) Hydrological data processing; (2) GIS; (3) Hydrological measurements and (4) Remote sensing.

In the the 2nd year of the Master programme, a broad spectrum of topics is given to ensure the coverage of the main aspects related to water resources engineering. The topics in the second year are intended to broaden the water resources engineering knowledge and to provide a deeper understanding in either Hydrology, Irrigation, Water Quality or Aquatic Ecology depending on the area of specialization. The 2nd year is primarily organized at the V.U.B. The courses in the programme make extensive use of modelling tools relevant to various aspects of the design, operation and management of water resources development projects.

Admission requirements

Candidates must hold a Bachelor's degree from a four-stage programme in agricultural, civil or environmental engineering. Study results should reflect the equivalent of a 70% pass rating in Flanders. Students should have a proven proficiency in English. Applicants from non-English-speaking countries should have a TOEFL score of at least 550 on the written test and 213 on the computer-based test or equivalent results on similar language test.

Students from a 5-stage engineering or equivalent degree, including the prerequisites to the second stage courses, can be exempted from 60 ECTS. Applications are evaluated on an individual basis.

Read less
What's the Master of Mechanical Engineering all about? . The Master of Science in Engineering. Mechanical Engineering is a general training programme integrating all disciplines of basic sciences, engineering and technology. Read more

What's the Master of Mechanical Engineering all about? 

The Master of Science in Engineering: Mechanical Engineering is a general training programme integrating all disciplines of basic sciences, engineering and technology. An essential element of the mechanical engineering curriculum at KU Leuven is the direct training of each student in a real-life industrial or research setting. Following up on the design assignment in the Bachelor's programme, the Master's programme brings the student in close contact with the industrial reality.

Structure 

Three versions

The Master's programme in Mechanical Engineering has three versions:

  • A Dutch-language version for students who have already obtained a Master's degree of Engineering Technology: Electromechanical Engineering
  • A Dutch-language version for students who have completed their Bachelor's training at our Faculty or at another university with Mechanical Engineering either as a major or as minor.
  • An English-language version which mainly addresses foreign students, and to which admission is granted after evaluation of the application file.

Five modules 

The programme consists of five modules.

  • The first major component is the core module in mechanical engineering.
  • The second major component is one out of five options, which have been put together in a complementary way.

Three generic options 

  • Manufacturing and Management: modern techniques for the design and production of discrete components, CAD and computer integration in production, management techniques, maintenance and logistics of a production company.
  • Mechatronics and Robotics: mechatronics is the discipline in which the synergy of construction, sensing, actuation and control of machinery are concurrently defined and tuned for optimum integration
  • Thermo-technical Sciences: physical principles and analysis, design, construction and operation of combustion engines and thermal and flow machines, cooling machines, power plants, etc.

Two application oriented options

  • Aerospace technology: physical principles, analysis, design, construction, exploitation and operation of aircraft and space systems;
  • Vehicle technology: physical principles, design, analysis and production of cars and ground vehicles and of systems for ground transportation.

Elective courses 

The third and fourth components in the programme structure concern a set of elective courses, to be chosen from a list of technical coursesand from a list of general interest courses.

Master's thesis

The final component is the Master's thesis, which represents 20% of the credits of the entire curriculum.

Strengths

  • The department has a large experimental research laboratory with advanced equipment, to which Master's students have access. FabLab (a "Fabrication Laboratory") is also directly accessible for students.
  • The department has built up an extensive network of companies which recruit a large number of our alumni since many years already, from whom we receive lots of informal feedback on the programme.
  • In addition to their academic teaching and research assignments, several members of the teaching staff also have other responsibilities in advisory boards, in external companies, science & technology committees, etc. and they share that expertise with students.
  • The programme attracts a large number of students.
  • The programme offers students the choice between application oriented options and generic methodology oriented options.
  • Many courses are dealing with contents in which the R&D of the Department has created spin-off companies, and hence can offer very relevant and innovation driven contents.
  • The programme has a clearly structured, extensive and transparent evaluation procedure for Master's theses, involving several complementary assessment views on every single thesis.
  • Several courses are closely linked to top-level research of the lecturers, and they can hence offer up-to-date and advanced contents to the students.

International experience

The Erasmus+ programme gives students the opportunity to complete one or two semesters of their degree at a participating European university. Student exchange agreements are also in place with Japanese and American universities.

Students are also encouraged to learn more about industrial and research internships abroad by contacting our Internship Coordinator. Internships are scheduled in between two course phases of the Master’s programme (in the summer period after the second semester and before the third semester).

These studying abroad opportunities and internships are complemented by the short summer courses offered via the Board of European Students of Technology (BEST) network. This student organisation allows students to follow short courses in the summer period between the second and the third semester. The Faculty of Engineering Science is also member of the international networks CESAER, CLUSTER and T.I.M.E.

You can find more information on this topic on the website of the Faculty

Career perspectives

The field of mechanical engineering is very wide. Mechanical engineers find employment in many industrial sectors thanks to our broad training programme. Demand for this engineering degree on the labour market is very strong and constant. A study by the Royal Flemish Engineers Association, identifies the specific sectors in which graduated mechanical engineers are employed.

  • mechanical engineering: e.g. production machinery, compressed air systems, agricultural machinery
  • metal and non-metal products: a very wide range of products e.g. pressure vessels, piping, suit cases,...
  • off-shore and maritime engineering
  • automation industry
  • vehicle components, such as exhaust systems, drivetrain components and windshield wipers,...
  • development and production of bicycles
  • aircraft components, such as high lift devices, aircraft engines and cockpit display systems
  • building, textile, plastic, paper sector
  • electrical industry
  • chemical industry
  • environmental engineering and waste management
  • energy sector
  • financial, banking and insurance sector
  • communications sector
  • transportation sector: infrastructure and exploitation and maintenance of rolling stock
  • software development and vendors
  • technical and management consulting: large companies and small offices
  • education and research
  • technical and management functions in the public sector


Read less
The programme is co-organised by Vrije Universiteit Brussel (VUB) and Universite Libre de Bruxelles (ULB), offering students the possibility to obtain a double master's degree at the end of the programme. Read more

About the programme

The programme is co-organised by Vrije Universiteit Brussel (VUB) and Universite Libre de Bruxelles (ULB), offering students the possibility to obtain a double master's degree at the end of the programme. The first year of courses is taught at the ULB Engineering Campus in Brussels, while the second year is taught at VUB.

The Master of Chemical and Materials Engineering educates students to become innovative engineers who will contribute to their profession and to society. Engineers in chemistry and materials play a unique role in sustainable development, where they must manage resources, energy and the environment in order to develop and produce novel materials and chemical commodities. Our graduates are prepared to face the demands of the modern technological employment field and for an international career with English as their professional language.

Course content

The Master in Chemical and Material Engineering (120 ECTS) offers a solid core of courses in both of these engineering fields. The integrated and the multidisciplinary approach provides students up-to-date knowledge enabling them to propose innovative engineering solutions in numerous modern technological sectors. Students have the possibility to specialize in Process technology or Material Science.

The Master of Chemical and Materials Engineering program consists of two profiles: Process Technology and Materials.

Profile: Process Technology:
The Process Technology orientation trains students to become engineers who are employable and innovative both in production units (operation and optimization of production facilities) and in engineering groups (develop new production units that meet desired performance specifications). An emphasis is placed on the biotechnology and food industries. Students are also trained to identify, solve and avoid environmental problems including waste management, water, air and soil pollution.

Profile: Materials:
The Materials orientation prepares students for the materials and materials technology sectors (metals, polymers, ceramics and composites). Students are trained to become creative engineers capable of designing sustainable multi-functional materials which meet specific applications. Students also have the capacity to contribute to the whole life-cycle of materials from their processing into semi or full end products using environmentally friendly and safe production processes to their recycling.

Become a skilled scientific engineer

This Master offers:
- a unique interdisciplinary programme which prepares you for employment in a professional field related to chemical engineering, materials or environmental technology.
- a high level scientific education that prepares you to a wide range of job profiles.
- the possibility to work in close contact with professors who are internationally recognized in their own disciplines and favor interactive learning.

Curriculum

http://www.vub.ac.be/en/study/chemical-and-materials-engineering/programme

The programme is built up modularly:
1) the Common Core Chemical and Materials Engineering (56 ECTS)
2) the Specific Profile Courses (30 ECTS)
3) the master thesis (24 ECTS)
4) electives (10 ECTS) from 1 out of 3 options.
Each of the modules should be succesfully completed to obtain the master degree. The student must respect the specified registration requirements. The educational board strongly suggests the student to follow the standard learning track. Only this model track can guarantee a timeschedule without overlaps of the compulsory course units.

Common Core Chemical and Materials Engineering:
The Common Core Chemical and Materials Engineering (56 ECTS) is spread over 2 years: 46 ECTS in the first and 10 ECTS in the second year. The Common Core emphasizes the interaction between process- and materials technology by a chemical (molecular) approach. The Common Core consists out of courses related to chemistry, process technology and materials and is the basis for the Process Technology and the Materials profiles.

Specific Courses Profile Materials:
The profile 'Materials' (30 ECTS) consists out of 2 parts, spread over the 1st and the 2nd year of the model learning track: Materials I - 14 ECTS in MA1 and Materials II - 16 ECTS in MA2. The profile adds material-technological courses to the common core.

Specific Courses Profile Process Technology:
The profile 'Process Technology' (30 ECTS) consists out of 2 parts, spread over the 1st and the 2nd year of the model learning track: Process Technology I - 14 ECTS in MA1 and Process Technology II - 16 ECTS in MA2. The profile adds process technological courses to the common core.

Elective Courses:
The elective courses are divided into 3 options:
- Option 1: Internship (10 ECTS)
- Option 2: Elective courses (incl. internship of 6 ECTS)
- Option 3: Entrepreneurship
The student has to select one option and at least 10 ECTS within that option. All options belong to the 2nd year of the model learning track.

Read less
What's the Master of Chemical Engineering all about? . The Master of Science in Chemical Engineering programme is primarily aimed at applying chemical engineering principles to develop technical products and to design, control and improve industrial processes. Read more

What's the Master of Chemical Engineering all about? 

The Master of Science in Chemical Engineering programme is primarily aimed at applying chemical engineering principles to develop technical products and to design, control and improve industrial processes. Students also learn to take environmental and safety issues into account during all phases of the process.

Two guiding principles of sustainable development – the rational exploitation of resources and energy, and the application of the best available technology – are emphasised, as is the mantra “reduce, reuse, recycle”.

As a chemical engineering student, you will learn to think in a process-oriented manner and grasp the complexity of physico-chemical systems. Even more than other specialists, you will be asked to solve problems of a very diverse nature. Insights into processes at the nano and micro scale are fundamental for the development of new products and/or (mega-scale) technologies.

While students should have a foundational knowledge of chemistry, the underlying chemistry of the elements and components, their properties and mutual reactions are not the main focal points of the programme.

With a focus on process, product and environmental planet engineering, the programme does not only guarantee a solid chemical engineering background, it also focuses on process and product intensification, energy efficient processing routes, biochemical processes and product-based thinking rather than on the classical process approach.

Structure 

The programme itself consists of an important core curriculum that covers the foundations of chemical engineering. The core curriculum builds on the basic knowledge obtained during the Bachelor’s. In this part of the programme, you will concentrate on both the classical and the emerging trends in chemical engineering. 

Students also take up 9 credits from ‘Current trends in chemical engineering’-courses. These courses are signature courses for the Master’s programme and build on the research expertise present within the department. These courses encompass microbial process technology, process intensification, exergy analysis of chemical processes and product design. 

The curriculum consists of a broad generic core, which is then strengthened and honed during the second year, when students select one of the three specialisations: product, process and environmental engineering.

This choice provides you with the opportunity to specialise to a certain extent. Since the emerging areas covered in the programme are considered to be the major challenges within the chemical and related industries, graduating in Leuven as a chemical engineer will give you a serious advantage over your European colleagues since you will be able to integrate new technologies within existing production processes.

During their Master’s studies, students are encouraged to take non-technical courses (general interest courses), organized for instance by other faculties (economics, social sciences, psychology…) in order to broaden their scope beyond mere technical courses.

An important aspect of the Master’s programme is the Master’s thesis. Assigning Master’s thesis topics to students is based on a procedure in which students select 5 preferred topics from a long list.

The Master’s programme highly values interactions with the chemical industry which is one of the most important pillars of the Flemish economy. As such, some courses are taught by guest professors from the industry.

International and industrial experience

One or two semesters of the programme can be completed abroad in the context of the ERASMUS+ programme. Additionally, you can apply for an industrial internship abroad through the departmental internship coordinator. These internships take place between the third Bachelor’s year and the first Master’s year, or between the two Master’s years.

The department also offers a new exchange programme with the University of Delaware (United States) and with the Ecole Polytechique in Montréal (Canada).

The faculty’s exchange programmes are complemented by the BEST network (Board of European Students of Technology). This student organisation offers the opportunity to follow short courses, usually organised in the summer months. The faculty also participates in various leading international networks.

You can find more information on this topic on the website of the Faculty website.

Career perspectives

The chemical sector represents one of the most important economic sectors in Belgium. It provides about 90,000 direct and more than 150,000 indirect jobs. With a 53 billion euro turnover and a 35% share of the total Belgian export, the chemical sector is an indispensable part of the contemporary Belgian economy.

As a chemical engineer you will predominantly work in industrial branches involved in (the production of) bulk and specialty chemicals, oil and natural gas (petrochemical companies and refineries), non-ferrometallurgics, energy, waste treatment, food, cosmetics, pharmaceuticals and biotechnology. The following professional activities lie before you:

  • design, planning and building of installations ('project engineer')
  • monitoring and optimisation of existing processes ('process engineer')
  • design/formulation and optimisation of products ('product engineer')
  • R&D of technical products, processes and devices
  • customer services, retailing ('sales engineer')
  • management

Apart from the traditional career options, your insight into complex processes will also be much appreciated in jobs in the financial and governmental sector, where chemical engineers are often employed to supervise industrial activities, to deliver permissions, and to compose regulations with respect to safety and environmental issues.

As self-employed persons, chemical engineers work in engineering offices or as consultants. Due to their often very dynamic personality, chemical engineers can also be successful as entrepreneurs.



Read less
What is the Master of Bioscience Engineering. Human Health Engineering all about? .  HHE offers a unique programme and educational vision focusing on . Read more

What is the Master of Bioscience Engineering: Human Health Engineering all about? 

 HHE offers a unique programme and educational vision focusing on technology for healthy humans. While many programmes in biomedical technology are offered in Belgium and abroad, HHE is the first and only programme offered in English that applies the unique combination of human physiology and engineering in a broad range of areas for healthy humans.

Structure

The HHE curriculum is comprised of 120 ECTS (four semesters). The programme is organised into a two-module major, a minor, a master’s thesis and elective courses.

Major

The first module (16 ECTS) contains four courses that will allow you to gain insight in the working of the different physiological systems of the human body as well as in the psychology of the healthy human. 

The second module (41 ECTS) consists of eight engineering courses. In this module, you are challenged to gain insight in technology and apply your technological knowledge to solve real-life problems in a creative way via practical exercises and project work.

The major also includes a broadening course on religion and society (3 ECTS). 

Minor, master's thesis and electives

The 20 ECTS minor is comprised of courses chosen to either strengthen your major or to broaden your expertise in another domain.

In the master’s thesis (30 ECTS), you will further develop your ‘hands-on’ experience and learn to solve problems using the acquired skills.

The curriculum is rounded off with 10 ECTS of elective courses aimed at broadening your academic education. These credits may also be used to take strengthening elective courses to fill any gaps in educational background.

This programme structure allows for a high degree of personalisation, which, in turn, ensures the best possible match for your interests or future career ambitions.

International

Are you looking to broaden your horizons? There are ample opportunities to conduct part of your master's thesis research at various partner institutions abroad. In addition, European residents can undertake their master's thesis research at a European or other partner university within the framework of the Erasmus+ programme. The Faculty also welcomes initiatives of students who want to do a work placement in a company or organization abroad, as well as exchange programmes with partner universities.

Career path

As a HHE graduate, your polyvalent skill set will make you widely employable in the labour market, both within your own specialisationand in other sectors. You will be equipped to take on scientific, technical, organisational and commercial-technical roles in many sectors. In addition, as a bio-engineer, you will rapidly evolve from supporting positions to management positions and this in different activities (research, production and service, marketing, etc.), according to your interests and goals.

As a HHE expert, your contribution will be essential in numerous industrial sectors, including all professional domains linked to the well-being, health and performance of healthy humans in interaction with their environment. This includes:

  • pharmaceutical industry
  • clothing and fashion industry
  • sport technology companies
  • medical companies
  • companies active in sleep comfort
  • helmet producers
  • producers of furniture
  • transport industry (such as cars, buses, trains, and airplanes), etc.

 In all of these business activities, the products of the future must be tuned to a better quality of life for humans. Furthermore, the ageing population is in urgent need of more and better preventative healthcare services, including automated systems for monitoring and support. As a bio-engineer specialised in living systems, you will have the potential to create added value in all of these areas, with special attention to the central place of the healthy human in the development of sustainable technology.



Read less
. What is the Master in Biochemical Engineering Technology all about?. This master's programme incorporates knowledge from various sectors (food, biomedical, pharmaceutical, environmental, etc.) to provide a well-rounded graduate-level curriculum in biomechanical engineering. Read more

What is the Master in Biochemical Engineering Technology all about?

This master's programme incorporates knowledge from various sectors (food, biomedical, pharmaceutical, environmental, etc.) to provide a well-rounded graduate-level curriculum in biomechanical engineering. In addition to fundamental (bio)chemical-scientific course units, you will take courses in socio-economics (company management, economics) and biotechnology (engineering, separation techniques, fermentation technology, molecular biology techniques, industrial biochemistry and microbiology, environmental technology, bioreactor design, etc.). A flexible cross-campus elective package and a master's thesis conducted in either a research-specific or industrial context enable you to focus your studies according to your specific interests and career goals.

Medical Bioengineering option

This option relates to biotechnological developments in the medical sector. Knowledge of human physiological systems (the cardiovascular system, neurophysiology, etc.) and medical engineering techniques form the foundation of developments in the area of artificial organs, tissue engineering, biomaterials, bioelectronics and new diagnostic techniques (microarray technology, PCR technology).

Add an in-company or project-based learning experience to your master's programme

You can augment your master's programme with the Postgraduate Programme Innovation and Entrepreneurship in Engineering. This programme is made up by a multifaceted learning experience in and with a company, with an innovative engineering challenge as the central assignment. It is carried out in a team setting, has a distinct international dimension, and usually requires a multidisciplinary approach. Entrepreneurs and students alike are encouraged to innovate, transfer knowledge and grow. It is a unique cross-fertilisation between company and classroom.

International Campus Group T

The Faculty of Engineering Technology maintains close ties with universities around the world. At Campus Group T, more than 20% of the engineering students are international students. They represent 65 different nationalities from all over the world. This international network extends not just to Europe, but also to China, Southeast Asia, India, Ethiopia and beyond.

Campus Group T is the only campus of the faculty who offers all the degree programmes in the business language par excellence: English. The language is ubiquitous both inside and outside the classroom. If you've mastered English, you feel right at home. And if you want to explore more of the world, you can do part of your training at a university outside Belgium as an exchange student.#

This is an initial master's programme and can be followed on a full-time or part-time basis.

Objectives

This master's programme brings students to the advanced level of knowledge and skills that is associated with scientific work in the broad sense, and more particularly to those areas of the engineering sciences that are related to biochemistry. The programme seeks to offer a broad academic training in biochemistry and biochemical technology, with a distinct emphasis on production, quality management and research in the food industry and related sectors.

Degree holders are able to apply the acquired scientific knowledge independently in a broad social context. Furthermore, they have the necessary organisational skills to hold executive positions.

Career paths

Our graduates find broad employment opportunities in the food and biotechnology sector, the environmental sector, the pharmaceutical industry and in the life sciences. On completion of the programme, you will be equipped with the skills to lead and coordinate industrial production units and research, analysis and screening laboratories in technical-commercial, administrative and educational environments.



Read less
Agro- and Ecosystems Engineering is about ensuring the prosperity and wellbeing of current and future generations in both the global North and global South. Read more

Agro- and Ecosystems Engineering is about ensuring the prosperity and wellbeing of current and future generations in both the global North and global South. Agro- and ecosystems provide a wide range of essential goods and services such as food, water, energy and biodiversity. Yet, the contemporary context of population growth, rapid urbanisation, economic globalisation, climate change, deforestation, soil pollution and degradation challenges the future provisioning of a sufficient quantity and quality of these goods and services. 

What is the Master of Agro- and Ecosystems Engineering all about? 

The Master of Agro- and Ecosystems Engineering (ACE) provides in-depth knowledge of the functioning and management of natural and production-oriented ecosystems. You can choose to focus on either temperate or (sub)tropical settings, or a combination of both. You complement the interdisciplinary core programme with a major specialisation in one out of four different domains: biological production, abiotic and biotic environment, bio-economics, and bio-geo information

Programme

The production major focuses on agro-ecosystems, and includes specialisation tracks in crop production, production forestry systems (achieved trough a semester in Chile) and hortology (achieved trough a semester in South Africa).

The environment major provides to in-depth understanding of the biophysical functioning of both natural and agro-ecosystems with the aim of improving the management of these ecosystems' biodiversity, soil and water resources. The major includes specialisation tracks in soil and water systems, forest and nature systems, and ladscape systems.

The economics major focuses on the economic and policy-related aspects of agro- and ecosystems, with in-depth courses in the field of agricultural, food and natural resources economics.

The information major addresses earth observation and geo-data management technology, with in-depth courses covering both the technological aspects of this area and their applications in the field of terrestrial resources.

International

Are you looking to broaden your horizons? There are ample opportunities to conduct part of your master's thesis research at various partner institutions abroad. In addition, European residents can undertake their master's thesis research at a European or other partner university within the framework of the Erasmus+ programme. The Faculty also welcomes initiatives of students who want to do a work placement in a company or organization abroad, as well as exchange programmes with partner universities.

Two optional specialisation packages require one semester to be spent at a partner institution: the Production Forestry package is organised at the University of Temuco (Chile), while the specialisation in Hortology takes you to the University of Stellenbosch (South Africa).

Career paths

The interdisciplinary nature of ACE ensures 

that graduates are sought after by various professional fields related to biological production systems and ecosystem management, with particular emphasis on plant production, natural resource economics and policy, sustainable environmental management, and applications of earth observation and geomatics. 

Abundant employment opportunities exist in public sector organisations, both nationally and internationally, NGOs and private companies, and can be both technical in nature, research-oriented, or at the policy/management level. Finally, ACE provides excellent preparation for undertaking PhD research. 

In Belgium, graduates of the ACE programme are entitled to use the professional title of 'Bio-ingenieur' ('Bioscience Engineer') .



Read less
What's the Master of Electrical Engineering all about? . KU Leuven is already preparing the next generation of integrated systems - will you be involved? The Electrical Engineering Department (ESAT) is the largest department within the university and was the starting point of imec and many spin-off companies. Read more

What's the Master of Electrical Engineering all about? 

KU Leuven is already preparing the next generation of integrated systems - will you be involved? The Electrical Engineering Department (ESAT) is the largest department within the university and was the starting point of imec and many spin-off companies. With such an excellent reputation within an innovative industry, the programme exemplifies the link between education, research and valorisation. The Master in Electrical Engineering programme gives you in-depth training in the software and hardware design of electronic systems, with an emphasis either on circuit design or the design of applications. Your Master's thesis, carried out in close co-operation with the department's on-going research, will expose you to cutting-edge research.

Structure 

Core education 

The core education consists of courses which provide the common hardware and software basis for electronic platforms, analogue and digital circuits, signal processing and telecommunications. It also comprises the finalizing Master’s thesis.

Options 

The choice of an option gives you the opportunity to specialise in one of the two approaches to create electronic systems.

  • The option Electronics and Integrated Circuits explores the design of electronic components and systems. You will learn how to design integrated analogue, digital and high frequency circuits as well as building blocks and platforms for different applications and with the necessary knowledge of sensors, antennas and the underlying semiconductor technology.
  • The option Embedded Systems and Multimedia explores the design of applications for electronic systems. In this option, you will learn to develop and evaluate applications in telecommunication, cryptography, and in audio, image and signal processing in the light of an optimal implementation (hardware/software).

Elective courses 

The remaining 24 credits are available for elective courses to allow you to personalise your programme. A student can make a programme ranging from much specialised (e.g. following courses from both options) over interdisciplinary (e.g. following courses from other engineering masters) to rather broad (e.g. including many non-engineering courses). It also allows for internships and international courses.

International

At the Faculty of Engineering Science, students are given the opportunity to complete one or two semesters of their degree within the Erasmus+ programme at a European university, or a university outside Europe. 

Students are also encouraged to carry out industrial and research internships abroad under supervision of the departmental Internship Coordinator. These internships take place between the third Bachelor’s year and the first Master’s year, or between the two Master’s years.

Other study abroad opportunities are short summer courses organised by the Board of European Students of Technology (BEST)network or by universities all over the world. 

The Faculty of Engineering Science is also member of the international networks CESAER, CLUSTER and ATHENS, offering international opportunities as well.

More information on the international opportunities at the faculty is available on the website.

 Strengths 

  • A common core of 33 credits, only 2 options, and an extensive set of electives, allows a specialisation without overdoing it, combined with substantial room for personalisation. Having only core education in the first semester gives the students the chance to get familiar with the domain before choosing an option in the second semester.
  • Because of the high level research activities in the department, there is a prominent link to research in the courses and especially in the Master’s thesis. 
  • Students are actively involved in the quality control of the programme through official consultative bodies as well as the engineering student union VTK and an active IEEE student branch. These student organisations also organise extracurricular activities related to the programme, including contact with the professional field (e.g. internship fair and several job fairs).
  • KU Leuven is Belgium’s largest and highest-ranked university and, founded in 1425, is one of the oldest and most renowned universities in Europe. Leuven is a modern, bustling and safe student city with a long and rich history. Cultural and recreational opportunities abound. KU Leuven’s central location offers a truly international experience. Major European capitals such as Brussels, Paris, London and Amsterdam are only a (very) short train journey away

Career perspectives

The Department of Electrical Engineering (ESAT) is the university's largest department and was the starting point of imec (a world leader in nanotech research and products) and many spin-off companies. The faculty also has excellent professional connections with industry leaders. Thanks in part to the programme's strong link between education and research, employment perspectives for programme graduates are excellent - not only in Belgium, but also in Europe and the rest of the world. Our graduates are in great demand.



Read less
What is the 'Master of Business and Systems Engineering' all about?. As a business engineer in information systems engineering you’re still an all-round business engineer. Read more

What is the 'Master of Business and Systems Engineering' all about?

As a business engineer in information systems engineering you’re still an all-round business engineer: you’re able to analyse and optimize various business processes (marketing, production and logistics, finance,...). You understand how a company works and you take into account the economic, organisational, and human aspects of business. As a business engineer in information systems engineering you also translate these business administration elements into information systems that support the decision-making process. You can consider decisions about information technology against the backdrop of the company as a whole, predict their strategic consequences, and carry out (general) management duties.

The master’s programme shares a number of courses with the Master of Business Economics: Business Engineering. Furthermore, the programme contains a number of required courses on information technology and one optional component of your choice. This optional component allows you to specialise in one particular aspect of ICT:

 Optional components:

  • design, infrastructure and big data
  • data science
  • information systems engineering and technology and entrepreneurship
  • information systems engineering and man-machine communication
  • information systems engineering and production/logistics
  • information systems engineering and marketing
  • information systems engineering and accountancy/finance/risk

 Projects, work placements or the master's thesis give you the opportunity to gain experience in the corporate environment that will later become your professional habitat. And for those of you who enjoy looking beyond borders the faculty offers quite a few possibilities to follow part of your training at a partner institution abroad. More information is available on the website.

Is this the right programme for me?

  • You want to understand and optimize the ins and outs of companies and the relevant processes.
  • You have sufficient knowledge of IT – without necessarily being an expert – and you are very interested in the business world, so that you can connect corporate activity and the digital world.
  • You enjoy detecting problems and offering solutions with regard to the information systems in organisations, taking into account the latest digital developments.
  • You have excellent abstract reasoning powers, sound communication skills and a vivid interest in innovative developments.
  • Once graduated, you are a real information technology professional at an academic level. You combine in-depth knowledge of information technology with a thorough understanding of and affinity with business administration. You are able to formulate research questions for yourself, describe research methods and avenues, collect information, and analyse and interpret the collected data.

Career perspectives

Information technology has revolutionized the business world. Business and information systems engineers usually start their career in business and/or IT consulting. They can also take up more traditional management duties, as they have the ability to design, manage

and improve business processes, services and decisions in a digital world. Boasting a variety of skills, business and information systems engineers are much sought-after by a wide range of companies for various positions and sectors in Belgium and abroad.

Typical job titles include business analyst, analytics specialist, business intelligence analyst, big data specialist, operations manager, fintech specialist, customer intelligence director, fraud expert, compliance officer, IT manager, and chief information officer.



Read less
What's the Master of Engineering. Energy all about? . The programme addresses every . multidisciplinary aspect of energy. Read more

What's the Master of Engineering: Energy all about? 

The programme addresses every multidisciplinary aspect of energy. There is extensive coverage of the possibilities and limitations of the various energy technologies, but also of the environmental consequences and economic aspects.

The multidisciplinary master prepares you for jobs related to research and development, policy and management, and industrial applications. The master is supported by EnergyVille, an association of the Flemish research institutes KU Leuven, VITO and imec in the field of sustainable energy and intelligent energy systems.

Both industry and research are increasingly looking for multidisciplinary engineers. The Master of Science in Engineering: Energy provides sound training in energy engineering. It addresses the main issues of mechanical and electrical engineering in a balanced and integrated manner, together with socio-economic preconditions that have an impact on the engineer’s sphere of action.

This programme teaches you to focus on technological possibilities without losing sight of the environmental and socio-economicaspects of your chosen field. The programme has an international scope and collaborates with partner universities excelling in the energy domain.

Structure

The first year consists of electrical and mechanical engineering courses, as well as more general socio-economic, energy-related subjects and integrated problem solving and projects.

In the second year, you continue your specialisation by, among other things, writing a master's thesis on a subject related to electrical energy, thermomechanical energy, or more general technicaleconomic aspects. You can also participate in an international exchange or do an internship.

Three options

  • Thermomechanical energy: emphasis on the mechanical aspects of energy supply and ‘energy machines and systems’
  • Electrical energy: emphasis on the electrical aspects of energy supply and energy converter
  • General techno-economic energy: a broader specialisation, with a focus on non-technical aspects (economy, legal framework, environment)

 Three corresponding specialisation options

  • thermomechanical energy
  • electrical energy
  • techno-economic energy knowledge

 This is an initial Master's programme and can be followed on a full-time or part-time basis.

International Experience

At the Faculty of Engineering Science, students are given the opportunity to complete one or two semesters of their degree within the Erasmus+ programme at an European university, or an university outside Europe. 

Students are also encouraged to carry out industrial and research internships abroad under supervision of the departmental Internship Coordinator. These internships take place between the third Bachelor’s year and the first Master’s year, or between the two Master’s years.

Other study abroad opportunities are short summer courses organised by the Board of European Students of Technology (BEST) network or by universities all over the world. 

The Faculty of Engineering Science is also member of the international networks CESAER, CLUSTER and ATHENS, offering international opportunities as well.

 More info can be found at http://eng.kuleuven.be/english/education/internationalisation

Career perspectives

Thanks to the broad education, both nationally and internationally, the energy engineer has plenty of job opportunities in researchpolicyindustry and services, in all sectors where energy plays an important role, and that is everywhere increasingly.

Junior engineers have predominantly technical functions, including design and development, exploitation, improvement and optimisation of energy systems, system integration, logistic and techno-commercial functions and consultancy. Senior engineers generally grow towards management functions in industry and policy, or expert leaders in engineering and consultancy.



Read less
What is the Master in Chemical Engineering Technology all about?. This master's programme includes a variety of disciplines. Read more

What is the Master in Chemical Engineering Technology all about?

This master's programme includes a variety of disciplines. In addition to fundamental chemical-scientific course units, the curriculum includes the fields of socio-economics (company management, economics) and chemical technology (engineering, separation techniques, chemical process technology, industrial process technology, surface chemistry, environmental technology, etc.). A flexible cross-campus elective package and a master's thesis conducted in either a research-specific or industrial context enable you to focus your studies according to your specific interests and career goals.

In the Sustainable Process and Materials Engineering option emphasis is placed on reliable technology that meets today's needs without jeopardising the welfare of future generations. This implies that materials and energy must be used efficiently, taking into account their impact on the environment. Thus, on the one hand this option is aimed at sustainable designing, development, and manufacturing of products and systems, and on the other it is aimed at development, properties, characterisation, production and processing of (new) materials.

Add an in-company or project-based learning experience to your master's programme

You can augment your master's programme with the Postgraduate Programme Innovation and Entrepreneurship in Engineering. This programme is made up by a multifaceted learning experience in and with a company, with an innovative engineering challenge as the central assignment. It is carried out in a team setting, has a distinct international dimension, and usually requires a multidisciplinary approach. Entrepreneurs and students alike are encouraged to innovate, transfer knowledge and grow. It is a unique cross-fertilisation between company and classroom.

International Campus Group T

The Faculty of Engineering Technology maintains close ties with universities around the world. At Campus Group T, more than 20% of the engineering students are international students. They represent 65 different nationalities from all over the world. This international network extends not just to Europe, but also to China, Southeast Asia, India, Ethiopia and beyond.

Campus Group T is the only campus of the faculty who offers all the degree programmes in the business language par excellence: English. The language is ubiquitous both inside and outside the classroom. If you've mastered English, you feel right at home. And if you want to explore more of the world, you can do part of your training at a university outside Belgium as an exchange student.

Objectives

 This master's programme brings students to the advanced level of knowledge and skills that is associated with scientific work in the broad sense, and more particularly to those areas of the engineering sciences that are related to chemistry. This programme offers a broad academic training in chemistry and chemical (processing) technology, in which a clear emphasis is placed on chemical analysis in production, quality management and research.

Degree holders are able to apply the acquired scientific knowledge independently in a broad social context. Furthermore, they have the necessary organisational skills to hold executive positions.

Career paths

The chemical sector (petrochemical, synthetic, pharmaceutical, etc.) offers a broad and fascinating field of work. On completion of this master's programme, you are equipped with the skills to lead and coordinate industrial production units and research, analysis and screening laboratories in technical-commercial, administrative and educational environments. You can also set up applied research and design activities on a self-employed basis.



Read less
What is the Master in Electromechanical Engineering Technology all about?. Mechanical design and energy conversion are the cornerstones of this programme. Read more

What is the Master in Electromechanical Engineering Technology all about?

Mechanical design and energy conversion are the cornerstones of this programme. Mechanical design begins with an idea, which is then shaped in a graphical design and executed into a finished product through a choice of materials, simulation and production techniques. Energy conversion is aimed at all aspects of energy efficiency in this process and ranges from electrical controls and automation to thermal power plants, combustion engines, etc. 

You specialise in one of following options: 

  • Intelligent Manufacturing - The issues covered in this option include the latest production techniques, the way production systems operate and the intrinsic relationship between production and other business processes. 
  • Intelligent Mechanics - This option relates to designing, developing and optimizing automated mechanical machines. 
  • Intelligent Mobility - This application area is very diverse and deals with the sustainable, applying smart solutions. 
  • Clinical Engineering - This option gives insight in the domain of medical technology. Topics are surgical robotics and medical equipment in general.

Add an in-company or project-based learning experience to your master's programme

You can augment your master's programme with the Postgraduate Programme Innovation and Entrepreneurship in Engineering. This programme is made up by a multifaceted learning experience in and with a company, with an innovative engineering challenge as the central assignment. It is carried out in a team setting, has a distinct international dimension, and usually requires a multidisciplinary approach. Entrepreneurs and students alike are encouraged to innovate, transfer knowledge and grow. It is a unique cross-fertilisation between company and classroom.

International Campus Group T

The Faculty of Engineering Technology maintains close ties with universities around the world. At Campus Group T, more than 20% of the engineering students are international students. They represent 65 different nationalities from all over the world. This international network extends not just to Europe, but also to China, Southeast Asia, India, Ethiopia and beyond.

Campus Group T is the only campus of the faculty who offers all the degree programmes in the business language par excellence: English. The language is ubiquitous both inside and outside the classroom. If you've mastered English, you feel right at home. And if you want to explore more of the world, you can do part of your training at a university outside Belgium as an exchange student.

Objectives

This master's programme brings students to the advanced level of knowledge and skills that is associated with scientific work in the broad sense, and more particularly to those areas of the engineering sciences that are related to electromechanics. They have the necessary creativity to employ technological and scientific principles for the qualitative design, development and production of devices, machines and their individual parts, as well as for the optimization and automation of industrial processes. They are capable of conducting scientific research, in which they take into account economic conditions, managerial implications and ethical aspects. The students are trained to function in a team and take on responsibility.

Degree holders are able to apply the acquired scientific knowledge autonomously and in a broad social context. They possess the necessary organisational skills to hold executive positions.

Career paths

Depending on your interest, your engineering profile can range from technological expert to company manager.



Read less
What is the Master of Safety Engineering about? .  The Master of Safety Engineering will prepare you to improve and realise safety in many different areas. Read more

What is the Master of Safety Engineering about? 

 The Master of Safety Engineering will prepare you to improve and realise safety in many different areas. The programme trains you in prevention policy and safety management systems, the safety of products, processes, and installations, qualitative risk analysis techniques, and fire and explosion safety. You’ll obtain detailed knowledge of technical and managerial process safety concepts with regard to the whole life cycle of a production plant, and risk evaluations based on qualitative and quantitative methods. 

Structure

The Master of Safety Engineering comprises a total of 60 credits. The programme consists of a group of common compulsory courses (23 credits) that are taken up by every student. This party contains courses with themes that are of interest to every safety professional, irrespective of the specialisation option. All courses in this part are taught in English. This relatively large core part ensures that every student is given the same broad basic education about the specialised field of safety.

After a general introduction to safety engineering, prevention policy and safety management systems are treated. Safety of products, processes and installations are discussed next and qualitative risk analysis techniques, fire and explosion safety complete this section.

Furthermore, students choose between one of two available options (22 credits each): Option Process Safety or Option Prevention. In turn, each option contains a number of compulsory courses (16 credits) and elective courses (6 credits). 

The Option Prevention focuses on occupational safety and health-related issues. The compulsory courses in this option also discuss non-technical aspects concerning safety. This option is mainly of interest to candidates who want to obtain the Certificaat Preventieadviseur Niveau 1.

The Option Process Safety provides students with a detailed knowledge of technical and managerial process safety concepts with regard to the whole life cycle of a production plant from concept to design, construction and operation to decommissioning. Safety concepts of representative operational units are presented in a series of case studies. Examples of required safety oriented competences in industrial operations are also discussed. It is shown how risk evaluations and estimates based on qualitative and quantitative methods are performed.

Each student also needs to choose elective courses either from a short indicative list, or from any Master’s programme within the Group of Science, Engineering and Technology. 

Finally, students have to complete a Master’s thesis of 15 credits, which represents an effort that is consistent with a programme of 60 credits in total.

The programme can be completed normally in one-year on a full-time basis. However, to facilitate the participation of working professionals, it can also be followed on a two year part-time basis.

Objectives

After finishing this advanced Master's programme, the student should:

  • have a broadly based knowledge of the different scientific disciplines that are needed to study and analyse the diverse technical and non-technical issues related to safety technology, risk management and loss prevention.
  • have acquired the capabilities and competences to perform or co-ordinate a scientifically sound analysis of safety related problems and their solutions within the governing boundary conditions (legal, organisational, technical, environmental, etc.).

To carry out the programme's objectives, teaching activities consist of a combination of classroom lectures, practically oriented seminars and site visits. The instructors themselves come from the academic world both inside and outside K.U.Leuven, or have been recruited from reputable industrial companies because of their long-standing expertise and willingness to contribute to teaching and training.

Career perspectives

In many countries, there is a permanent and growing need for scientists and engineers who are knowledgeable and trained at the academic level in the field of safety engineering and safety management. This is due to the increasing complexity of industrial production processes and the growing number of rules and regulations both in Europe and internationally.

Graduates of the Master of Science in Safety Engineering programme find employment in small national and large multinational industrial companies at home and abroad or are employed in private and/or governmental organisations. Such organisations need experts with the ability to conduct research, carry out analyses, and perform inspections, monitoring and certification in the broad field of safety.

Moreover, in some countries (including Belgium), companies beyond a certain size dealing with specific risks are required by law to hire or even employ a certified prevention advisor. This certification can be acquired through the Prevention option of the Master of Science in Safety Engineering (Certificaat Preventieadviseur Niveau 1).

It is also possible for graduates to begin a career as an independent consultant with expertise in safety and environmental areas.



Read less

Show 10 15 30 per page



Cookie Policy    X