• Jacobs University Bremen gGmbH Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Northumbria University Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University of Nottingham in China Featured Masters Courses
OCAD University Featured Masters Courses
University of Reading Featured Masters Courses
Imperial College London Featured Masters Courses
Newcastle University Featured Masters Courses
Belgium ×
0 miles
Biological Sciences×

Masters Degrees in Biochemistry, Belgium

We have 6 Masters Degrees in Biochemistry, Belgium

  • Biological Sciences×
  • Biochemistry×
  • Belgium ×
  • clear all
Showing 1 to 6 of 6
Order by 
What is the Master of Biophysics, Biochemistry and Biotechnology all about?. The programme provides in-depth training in the multidisciplinary fields of biophysics and biochemistry, with particular emphasis on subfields in which KU Leuven's research expertise is internationally recognised. Read more

What is the Master of Biophysics, Biochemistry and Biotechnology all about?

The programme provides in-depth training in the multidisciplinary fields of biophysics and biochemistry, with particular emphasis on subfields in which KU Leuven's research expertise is internationally recognised: the determination of molecular structures, molecular and supramolecular modelling, the spectroscopy of biomolecules, the physical modelling of complex systems and the study of these models, the transport through ion channels in membranes, and the study of molecular interactions and physical principles in vitro, in complex biological machineries and in the living cell.

This is an initial Master's programme and can be followed on a full-time or part-time basis.

Structure

Students may select one of two tracks - Biophysics or Biochemistry and Biotechnology. The track Biochemistry and Biotechnology has three orientations: Physiological, Molecular and Cellular. 

Alternatively, students who are not considering a research career can opt for Applied Biophysics.

Elective Courses 

Students choose courses from an additional list, which are different from their research orientation. Students may select courses from the entire programme offered by the university if they have the approval of the programme director. Students have to make sure that the entire programme of the master contains at least 120 credits.

International

We encourage students to complete part of their Master's training at another European university, preferably during the second year, when they can work on their Master's thesis or take specific subjects at one of the universities in our Erasmus exchange programme.

Department

The Department of Biology is committed to excellence in teaching and research and is comprised of four divisions with diverse research activities ranging from molecular and physiological research at the level of cells and organisms to ecological research on populations, communities, and ecosystems. Although many research groups conduct in-depth analyses on specific model organisms, as a whole the department studies an impressive diversity of lifeforms.

Our research is internationally renowned and embedded in well-established worldwide collaborations with other universities, research institutes, and companies. Our primary goal is to obtain insight into patterns and processes at different levels of biological organisation and to understand the basis and evolution of the mechanisms that allow organisms to adapt to their constantly changing environment. This knowledge often leads to applications with important economic or societal benefits. The department attracts many students and hosts approximately 250 staff members.

Objectives

Upon completing the programme, the graduate will have acquired:

  • thorough understanding of the properties of biomolecules, their functions and interactions with other molecules at a cellular and higher level, and particularly their structure-function relationship;
  • profound knowledge of recent developments in disciplines such as biophysical modelling, bioinformatics, genome and proteome analysis, and ability to integrate this knowledge and to apply it to new problems;
  • abilities to thoroughly familiarise oneself in a reasonably short time with several subject areas of biophysics and biochemistry, and to keep oneself informed of relevant developments in the field of study; this implies the abilities to consult and understand relevant literature, to acquire new insights and to formulate new hypothesis based on these sources;
  • abilities to independently identify and analyse physical and molecular aspects of a biophysical problem, to plan a strategy for the solution and to propose and perform appropriate experiments;
  • appropriate attitudes to work in a team environment and to make a constructive contribution to scientific research at an international level, at the university, in the biotechnological and pharmaceutical industries, at research institutions or public services;
  • abilities to make a systematic and critical report of personal biophysical or (applied) biochemical research and to present this to an audience of specialists;
  • attitudes of continued attention to the risks associated with the conducted experiments, with respect to safety and the environment, and to thoroughly analyse these risks.

Career perspectives

A range of career options are available in the pharmaceutical and bioscience industries, where structure determination, modelling and the direct study of molecular interactions in the living cell play a major role. Because of the growing importance of the bioscience industry in today's society and the increasing need for sophisticated high-tech instruments and research methods, the demand for biophysicists and biochemists is expected to exceed supply in the near future.

Graduates may also pursue a career in medical sciences research or academic research. A considerable number of graduates, particularly those who choose for a research route, go on to undertake a PhD at one of our associated research laboratories.



Read less
. What is the Master in Biochemical Engineering Technology all about?. This master's programme incorporates knowledge from various sectors (food, biomedical, pharmaceutical, environmental, etc.) to provide a well-rounded graduate-level curriculum in biomechanical engineering. Read more

What is the Master in Biochemical Engineering Technology all about?

This master's programme incorporates knowledge from various sectors (food, biomedical, pharmaceutical, environmental, etc.) to provide a well-rounded graduate-level curriculum in biomechanical engineering. In addition to fundamental (bio)chemical-scientific course units, you will take courses in socio-economics (company management, economics) and biotechnology (engineering, separation techniques, fermentation technology, molecular biology techniques, industrial biochemistry and microbiology, environmental technology, bioreactor design, etc.). A flexible cross-campus elective package and a master's thesis conducted in either a research-specific or industrial context enable you to focus your studies according to your specific interests and career goals.

Medical Bioengineering option

This option relates to biotechnological developments in the medical sector. Knowledge of human physiological systems (the cardiovascular system, neurophysiology, etc.) and medical engineering techniques form the foundation of developments in the area of artificial organs, tissue engineering, biomaterials, bioelectronics and new diagnostic techniques (microarray technology, PCR technology).

Add an in-company or project-based learning experience to your master's programme

You can augment your master's programme with the Postgraduate Programme Innovation and Entrepreneurship in Engineering. This programme is made up by a multifaceted learning experience in and with a company, with an innovative engineering challenge as the central assignment. It is carried out in a team setting, has a distinct international dimension, and usually requires a multidisciplinary approach. Entrepreneurs and students alike are encouraged to innovate, transfer knowledge and grow. It is a unique cross-fertilisation between company and classroom.

International Campus Group T

The Faculty of Engineering Technology maintains close ties with universities around the world. At Campus Group T, more than 20% of the engineering students are international students. They represent 65 different nationalities from all over the world. This international network extends not just to Europe, but also to China, Southeast Asia, India, Ethiopia and beyond.

Campus Group T is the only campus of the faculty who offers all the degree programmes in the business language par excellence: English. The language is ubiquitous both inside and outside the classroom. If you've mastered English, you feel right at home. And if you want to explore more of the world, you can do part of your training at a university outside Belgium as an exchange student.#

This is an initial master's programme and can be followed on a full-time or part-time basis.

Objectives

This master's programme brings students to the advanced level of knowledge and skills that is associated with scientific work in the broad sense, and more particularly to those areas of the engineering sciences that are related to biochemistry. The programme seeks to offer a broad academic training in biochemistry and biochemical technology, with a distinct emphasis on production, quality management and research in the food industry and related sectors.

Degree holders are able to apply the acquired scientific knowledge independently in a broad social context. Furthermore, they have the necessary organisational skills to hold executive positions.

Career paths

Our graduates find broad employment opportunities in the food and biotechnology sector, the environmental sector, the pharmaceutical industry and in the life sciences. On completion of the programme, you will be equipped with the skills to lead and coordinate industrial production units and research, analysis and screening laboratories in technical-commercial, administrative and educational environments.



Read less
The Master is conceived as a multidisciplinary and research-oriented programme. The programme also aims to develop the state of mind to perform and manage research in a multidisciplinary and international context. Read more

Developing a state of mind

The Master is conceived as a multidisciplinary and research-oriented programme. The programme also aims to develop the state of mind to perform and manage research in a multidisciplinary and international context. Therefore, our students will also be trained in different aspects of research communication and research management.

Discovery-based laboratory

The two-year programme has a strong emphasis on performing research. Its concept will require full-time attendance and will involve active participation in lectures and discovery-based laboratory work to develop the state of mind that drives the progress of science.
The program of the first year is composed of 4 modules, all of which have to be followed. The courses within each module are at advanced level and consist of 26 class hours and 6 days of practical training. The practical trainings link up with the advanced courses and will take place in the research labs under the guidance of experienced postdocs.
Protein structure and function (3x5 ECTS)
Applied Immunology (3x5 ECTS)
Advanced Molecular Biology (4x5 ECTS)
Bioinformatics (2x5 ECTS)
The program of the second year pays much attention to the acquisition of research competences. The program consists of three modules:
Elective courses (4x5 ECTS)
Master Proof (30 ECTS)
Research Communication and Management (10 ECTS)

Master Proof/Thesis

To obtain a Master degree, a student must carry out, under the direction and supervision of a promoter, an independent research project and prepare a dissertation, that is, a written account of the research and its results.

Research Communication and Management

This part of the program includes the writing of the results of the dissertation in a publication format, seminars on intellectual property rights, scientific writing, project development and the writing of a research proposal.
The latter can be a proposal for a continuation of the topic of the Master Proof, a proposal for a PhD project, or a proposal for another research project in Biomolecular Sciences, and is intended to help the students to continue their career in biomolecular research.

Read less
What's the Master of Chemical Engineering all about? . The Master of Science in Chemical Engineering programme is primarily aimed at applying chemical engineering principles to develop technical products and to design, control and improve industrial processes. Read more

What's the Master of Chemical Engineering all about? 

The Master of Science in Chemical Engineering programme is primarily aimed at applying chemical engineering principles to develop technical products and to design, control and improve industrial processes. Students also learn to take environmental and safety issues into account during all phases of the process.

Two guiding principles of sustainable development – the rational exploitation of resources and energy, and the application of the best available technology – are emphasised, as is the mantra “reduce, reuse, recycle”.

As a chemical engineering student, you will learn to think in a process-oriented manner and grasp the complexity of physico-chemical systems. Even more than other specialists, you will be asked to solve problems of a very diverse nature. Insights into processes at the nano and micro scale are fundamental for the development of new products and/or (mega-scale) technologies.

While students should have a foundational knowledge of chemistry, the underlying chemistry of the elements and components, their properties and mutual reactions are not the main focal points of the programme.

With a focus on process, product and environmental planet engineering, the programme does not only guarantee a solid chemical engineering background, it also focuses on process and product intensification, energy efficient processing routes, biochemical processes and product-based thinking rather than on the classical process approach.

Structure 

The programme itself consists of an important core curriculum that covers the foundations of chemical engineering. The core curriculum builds on the basic knowledge obtained during the Bachelor’s. In this part of the programme, you will concentrate on both the classical and the emerging trends in chemical engineering. 

Students also take up 9 credits from ‘Current trends in chemical engineering’-courses. These courses are signature courses for the Master’s programme and build on the research expertise present within the department. These courses encompass microbial process technology, process intensification, exergy analysis of chemical processes and product design. 

The curriculum consists of a broad generic core, which is then strengthened and honed during the second year, when students select one of the three specialisations: product, process and environmental engineering.

This choice provides you with the opportunity to specialise to a certain extent. Since the emerging areas covered in the programme are considered to be the major challenges within the chemical and related industries, graduating in Leuven as a chemical engineer will give you a serious advantage over your European colleagues since you will be able to integrate new technologies within existing production processes.

During their Master’s studies, students are encouraged to take non-technical courses (general interest courses), organized for instance by other faculties (economics, social sciences, psychology…) in order to broaden their scope beyond mere technical courses.

An important aspect of the Master’s programme is the Master’s thesis. Assigning Master’s thesis topics to students is based on a procedure in which students select 5 preferred topics from a long list.

The Master’s programme highly values interactions with the chemical industry which is one of the most important pillars of the Flemish economy. As such, some courses are taught by guest professors from the industry.

International and industrial experience

One or two semesters of the programme can be completed abroad in the context of the ERASMUS+ programme. Additionally, you can apply for an industrial internship abroad through the departmental internship coordinator. These internships take place between the third Bachelor’s year and the first Master’s year, or between the two Master’s years.

The department also offers a new exchange programme with the University of Delaware (United States) and with the Ecole Polytechique in Montréal (Canada).

The faculty’s exchange programmes are complemented by the BEST network (Board of European Students of Technology). This student organisation offers the opportunity to follow short courses, usually organised in the summer months. The faculty also participates in various leading international networks.

You can find more information on this topic on the website of the Faculty website.

Career perspectives

The chemical sector represents one of the most important economic sectors in Belgium. It provides about 90,000 direct and more than 150,000 indirect jobs. With a 53 billion euro turnover and a 35% share of the total Belgian export, the chemical sector is an indispensable part of the contemporary Belgian economy.

As a chemical engineer you will predominantly work in industrial branches involved in (the production of) bulk and specialty chemicals, oil and natural gas (petrochemical companies and refineries), non-ferrometallurgics, energy, waste treatment, food, cosmetics, pharmaceuticals and biotechnology. The following professional activities lie before you:

  • design, planning and building of installations ('project engineer')
  • monitoring and optimisation of existing processes ('process engineer')
  • design/formulation and optimisation of products ('product engineer')
  • R&D of technical products, processes and devices
  • customer services, retailing ('sales engineer')
  • management

Apart from the traditional career options, your insight into complex processes will also be much appreciated in jobs in the financial and governmental sector, where chemical engineers are often employed to supervise industrial activities, to deliver permissions, and to compose regulations with respect to safety and environmental issues.

As self-employed persons, chemical engineers work in engineering offices or as consultants. Due to their often very dynamic personality, chemical engineers can also be successful as entrepreneurs.



Read less
The Master in Chemistry is a two-year (120 ECTS) advanced study in chemistry organised by the Vrije Universiteit Brussel, a Flemish university located in Brussels, Belgium. Read more

The Master in Chemistry is a two-year (120 ECTS) advanced study in chemistry organised by the Vrije Universiteit Brussel, a Flemish university located in Brussels, Belgium. This MSc programme combines the expertise in the different research domains of both the Vrije Universiteit Brussel (VUB) and Ghent University (UGent).

About the programme

Apart from a mandatory set of core competences, the programme offers a wide variety of classes within four current trends in Chemistry (clusters composed of a course package of 30 ECTS credits):

• Molecular and Macromolecular Design offers a thorough education in the design and synthesis of organic molecules and polymers, in which medicinal chemistry, computational chemistry and structural analysis feature prominently.

• Materials Chemistry focuses on the properties of materials, such as polymers, for example surface analysis, X-rays and laser spectroscopy and computational chemistry.

• Analysis and Characterisation covers a whole range of analytical techniques, including new electrochemical methods, advanced chromatography and elemental and isotope analyses.

• Environmental Chemistry studies natural and disturbed processes in water, soil and atmosphere. A variety of analytical techniques are used here, and new sampling and measuring techniques are designed, refined and optimised.

Additionally three main orientations exist, allowing you to select a profile composed of an additional course package of 30 ECTS in Research, Industry or Education (the profile ‘Education’ is taught in Dutch).

Approach

Practicals in small groups:

Chemistry is a real experimental science. Consequently, a lot of attention is given to practical experience and laboratory training. Practical sessions are designed to precisely perform experiments in small groups, and to handle chemicals in a safe and environmentally friendly manner. Writing lab reports and oral presentation skills are emphasised, as they constitute an integral part of the preparation for your future career. During these practical sessions, you are exposed to the different research areas and you become familiar with both theoretical and practical aspects of the different branches of chemistry. You will be introduced to the world of nucleic acids, proteins, biochemical processes and their applications, the design and synthesis of new molecules, molecular properties and reactivity studies, as well as the detection of organic pollutants, or the precise measurements of very low metal concentrations in the environment (water, soil, air).

Everyday applications:

Chemistry gives insight into a broad range of phenomena with everyday applications, and teaches you the theoretical basis of molecular properties. You also learn how you can elucidate the structure of complex organic molecules, and how you can build these molecules in the lab. The air you breathe or the water you drink must comply with international quality standards. You will be taught how to monitor that quality. The focus is clearly towards a discipline-based education, with a lot of time for experimental work.

International opportunities

During your master years, you have the opportunity to do an internship and gain experience in a professional environment, such as an international company or research lab. Or you can decide to study abroad for a semester.

Student profile:

Do you want to discover new molecules or develop advanced materials with specific properties, at a university, a public or industrial research lab?

Do you want to work on energy-efficient and environmentally friendly materials and processes?

Do you want to specialise in molecular and macromolecular design, with applications in various field such as medicine, materials, etc.?

Do you want to study the impact of chemical products on the environment?

Do you want to share your knowledge and are you considering a career in education?

Do you already have a professional Bachelor’s degree and are you looking to pursue your education and increase your opportunities on the job market?



Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X