• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Ulster University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • Loughborough University Featured Masters Courses
  • Loughborough University London Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Queen Mary University of London Featured Masters Courses
University of Southampton Featured Masters Courses
Nottingham Trent University Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
FindA University Ltd Featured Masters Courses
FindA University Ltd Featured Masters Courses
0 miles
Physics×

Masters Degrees in Acoustics

  • Physics×
  • Acoustics×
  • clear all
Showing 1 to 11 of 11
Order by 
Fascinated by the science of sound? Southampton Solent University’s applied acoustics masters programme can provide you with the skills and knowledge required to work in a range of acoustics fields. Read more

Overview

Fascinated by the science of sound? Southampton Solent University’s applied acoustics masters programme can provide you with the skills and knowledge required to work in a range of acoustics fields. Suitable graduate destinations include consultancy, engineering, environmental health, built environment work or further study at PhD level.

Taught by experts with experience in both research and industry, you can get hands-on experience and learn to use the latest measurement, simulation and modelling technology. You will also study important acoustics principles including how humans respond to sound, acoustic physics, and how sound interacts with our environment.

- Students learn from industry experts with strong backgrounds in industry, research and consultancy roles.
- Southampton Solent’s on-campus acoustics consultancy provides students with the opportunity to work with real clients.
- The curriculum is informed by industry partners and Solent’s strong track record of acoustics research.
- Solent has a 10-year history of successful graduate employment in the acoustic industries.
- Students are given the opportunity to tailor the programme to their own career ambitions by picking from a range of optional units.
- Students have free access to the latest industry-standard technology including a state-of-the-art 3D digital Cinema with Dolby Atmos; a Hemi-anechoic chamber; CadnaA, EASE and CATT software; and a wide variety of lab and field test equipment.

The industry -

Acoustics offers an intellectual and practical challenge across a wide range of sectors - from manufacturing or construction to architecture, telecommunications and engineering.

Acousticians could be involved in designing and planning exciting new infrastructure projects such as airports, motorways and sports arenas; could be responsible for making aeroplanes and cars quieter; or could work on improving the sound quality of consumer electronics. Acousticians are also involved in the design of new buildings – from flats and houses through to skyscrapers and concert halls.

The programme -

Taught by experts with strong research and industry backgrounds, MSc Applied Acoustics offers students the chance to gain hands-on experience with the latest measurement, simulation and modelling technology. Students also study relevant scientific principles such as how humans respond to sound, acoustic physics, and how sound interacts with our environment.

We have excellent links with the Institute of Acoustics (IoA) and the Association of Noise Consultants, as well as a number of commercial companies across the sector. These include KP Acoustics, with whom we have a formal partnership for work placement and mentoring. The course has also been designed to meet the requirements for professional IoA registration.

To aid study and help perfect techniques, students have full access to the University’s laboratory and studio facilities. Students will be able to undertake acoustic measurement and laboratory projects using a wide range of test equipment such as sound level meters, a 16-channel data acquisition system, head and torso simulators, a laser vibrometer and ambisonic microphones. Students will also have access to cutting-edge simulation and modelling software, including MATLAB, NI Labview, CadnaA, CATT Acoustic, and EASE.

The University also offers access to specialist facilities for the testing and demonstration of acoustic and electro-acoustic principles, including a hemi-anechoic chamber, audio isolation booths for sound recording and audiometric testing, and the University’s own digital 3D cinema.

Thanks to the course team’s strong industry connections, students have access to guest speakers from a range of relevant organisations. Previous speakers have included Mark Murphy and Jim Griffiths (Vanguardia Consulting), Nicholas Jones (Hilson Moran) and Phil McIlwain (Westminster City Council).

Course Content

Programme specification document - http://mycourse.solent.ac.uk/course/view.php?id=6152

Teaching, learning and assessment -
The course is taught through classroom seminars/lectures, laboratory sessions and independent learning, as well as your supervised research project. While some laboratory sessions entail working in a group, all assessment is individual.

Partial credit can be awarded to holders of the Institute of Acoustics diploma in acoustics and noise control against equivalent taught modules of the MSc. Please contact the course team for further information.

Work experience -

There are a number of opportunities for work experience with professional partners and contacts, as well as through the University’s own Solent Acoustics consultancy.

Past students have worked on a range of projects, including for Truck Festival, Isle of Wight Festival, Westminster City Council and KP Acoustics.

Additionally, the Professional Skills and Practice unit involves organising your own work placement with an external company, supported by staff and making use of the course team’s industry contacts.

Assessment -

The course is assessed through a mixture of coursework, projects, presentations and practical and written examinations.

Our facilities -

On the master’s course you will have access to a wide range of specialist equipment and facilities, including:

- Hemi-anechoic chamber with 16-channel National Instruments data acquisition system.
- NTi Flexus electroacoustic analysis system with turntable.
- Wide range of Class 1 and 2 Sound level meters.
- Cirrus Research Dosebadge workplace noise assessment kits.
- Building acoustics systems including conical and dodecahedral loudspeakers and tapping machine.
- B&K Head and Torso Simulators (HATS).
- Environmental noise measurement kits.
- Polytec Laser Vibrometer.
- Larson Davis Hand Arm vibration measurement system.
- Siemens Unity and Amplivox audiometers and Larson Davis Audiometer calibration system.
- Computer suites with EASE, CATT and CadnaA acoustic modelling software.

Web-based learning -

Solent’s virtual learning environment provides quick online access to assignments, lecture notes, suggested reading, discussion forums and other course information.

You will also receive a subscription to the online video tutorial resource Lynda.com, to help learn extra professional skills.

The Professional Skills and Practice optional module is a distance/online module, supported through the virtual learning environment.

Why Solent?

What do we offer?

From a vibrant city centre campus to our first class facilities, this is where you can find out why you should choose Solent.

Facilities - http://www.solent.ac.uk/about/facilities/facilities.aspx

City living - http://www.solent.ac.uk/studying/southampton/living-in-southampton.aspx

Accommodation - http://www.solent.ac.uk/studying/accommodation/accommodation.aspx

Career Potential

Acoustics offers an intellectual and practical challenge across a wide range of sectors, from manufacturing or construction to architecture, telecommunications or various engineering industries.

Acousticians could be involved in designing and planning exciting new infrastructure projects such as airports, motorways and sports arenas, or could be responsible for making airplanes and cars quieter, or improving the sound quality of a television or computer.

Acousticians are also involved in the design of new buildings – from flats and houses through to skyscrapers and concert halls.

Career destinations -

Examples of career destinations include:

- acoustic engineer
- audio system designer
- recording studio and concert hall designer
- environmental health officer
- environmental consultant
- audio engineer
- health and safety officer
- building control officer.

Links with industry -

We have excellent links with the Institute of Acoustics and the Association of Noise Consultants, as well as a number of companies across the sector, including KP Acoustics (with whom we have a formal partnership for work placement and mentoring).

Guest speakers from a range of different organisations regularly present seminars and workshops, which have recently included Mark Murphy and Jim Griffiths (Vangardia Consulting), Nicholas Jones (Hilson Moran) and Phil McIlwain (Westminster City Council).

The University also hosts regular industry events and conferences to which students are invited.

Transferable skills -

The MSc in Applied Acoustics offers students a wide variety of transferable skills, such as using software to analyse and present complex data, use of Geographical Information Systems (GIS) and architectural CAD modelling, problem solving, mathematics, project management and research skills.

Further study -

If you are particularly interested in research, the course offers opportunities to continue on to PhD study.

You will also have the chance to gain additional qualifications while you study, such as the Institute of Acoustics (IoA)’s certificates of competence in building acoustics measurement or environmental noise measurement, at significantly reduced cost.

There is also the opportunity to register to take the assessment for the IoA Diploma in Acoustics and Noise Control while taking the MSc (registration fee applies).

Examples of employment obtained by recent graduates -

Solent graduates have gone on to work in acoustics roles for Apple (acoustic engineer), Accon UK, Samsung (audio engineer), Cole Jarman Associates, Hilson Moran, Mott Macdonald, KP Acoustics, Hann Tucker Associates, Hoare Lea, Vangardia Consulting and Clarke Saunders Associates, among others.

Next steps

Looking to hone your knowledge of acoustics while boosting your employability? With top-of-the-line facilities, an experienced teaching team and a history of delivering world-class acoustics tuition, Southampton Solent University’s MSc Applied Acoustics will help equip you with the skills you need to thrive in a range of exciting careers.

Read less
The MSc Acoustics course offers two pathways specialising in either Audio Acoustics or Environmental Acoustics, both of which offer opportunities to develop specialist knowledge of NVH (Noise, Vibration & Harshness). Read more
The MSc Acoustics course offers two pathways specialising in either Audio Acoustics or Environmental Acoustics, both of which offer opportunities to develop specialist knowledge of NVH (Noise, Vibration & Harshness).

Key benefits:

• An in-depth analytical treatment of acoustic engineering as used in industry and research
• You are taught by World-class audio and acoustic engineering researchers - part of an RAE submission rated highest for research power
• Strong and long-standing connections with audio and acoustics industry across the World which inform course content.

Visit the website: http://www.salford.ac.uk/pgt-courses/audio-acoustics

Suitable for

This course is designed for technically skilled graduates whose first degree was not necessarily in reproduced sound or acoustics but another engineering or science discipline. This course is also designed for those currently working in the audio and acoustic industry who wish to expand their expertise, and those wishing to train to begin an acoustic and audio engineering career.

Programme details

The MSc Acoustics has two pathways: Audio Applications and Environmental Applications.

- Audio pathway -

The generation, manipulation and reproduction of high quality audio signals are core elements of the rapidly expanding communication, entertainment and sound engineering industry. The audio pathway aims to train graduates in the acoustic aspects of audio such as digital signal processing, microphone and loudspeaker design, architectural acoustics and sound reproduction.

- Environmental pathway -

The environmental pathway is designed to provide you with the knowledge and skills to work in environmental acoustics, including environmental noise consultancy, noise control in industry and acoustic engineering research.
The course is accredited by the Institute of Acoustics which provides external validation of the course quality.

Format

The majority of teaching and learning takes place through tutorial and seminar groups. Assessment is generally in the form of assignments, which improve problem solving and other skills as well as providing a strong background in the subject area.The Acoustics MSc course offers a variety of flexible formats, including full- and part-time attending modes, and by distance learning over two years. Those considering part-time study should bear in mind that the courses are intensive, and that generally, we advise that part-time means half time, i.e. you would need to allocate half the week to the MSc, 19 working hours.

Distance learning and attending students benefit from the supply of a range of high-quality teaching materials, text books and software. Interaction with students is face-to-face wherever practical, but we also use web-based learning support packages (databases of materials, discussion boards etc.) to support the whole cohort.

Semester 1

Common to both pathways:

• Mathematics and acoustics
• Loudspeakers and perception

Semester 2

• Room Acoustics and modelling

Audio Acoustics Pathway:

• Digital signal processing and electroacoustics

Environmental Acoustics Pathway:

• Environmental Noise

Semester 3

• Project

Assessment

• Taught modules are assessed through assignments
• The project is assessed through a dissertation

Career potential

The Audio Pathway on this course is designed to train graduates to meet a growing demand for audio skills in industry, and also to enable employees to reach their full potential. This postgraduate course has been used as in-service training by a number of UK and global companies (e.g. mobile telecoms). While one naturally thinks of mobile phone design as belonging to 'telecommunications', there are considerable audio engineering challenges in designing good quality sound from the small transducers used in confined spaces, often in the presence of considerable background noise. Also, increasing markets exist for sophisticated audio systems in the home (surround sound cinema), at work (Internet conferencing facilities, virtual environments) and in transport (car audio). This masters course has been devised to meet this growing demand.

The audio acoustics industry is diverse. It includes major firms with 'core' audio-related market share such as Philips, Sony, Dolby, B&O and KEF. Many other businesses employ specialists in acoustics: Nokia, Bentley (and Ford, Nissan etc) to name a few. Building design and architectural acoustics needs specialist engineering consultants looking at room configurations and surface treatments, noise ingress and egress, sound reinforcement system design and so on, and a very wide variety of companies (Arup Acoustics are one large example in this area) employ graduates from our courses. Students also go on to study for a higher degree by research, here at Salford or elsewhere.

The Environmental Pathway meets the needs of people wanting a career dealing with building design, noise and its control. With noise being a significant problem worldwide, there is significant demand from companies wanting to employ graduates understanding acoustics. Many employers such as noise and acoustic consultancies, and product manufacturers, come directly to Salford to recruit graduates from our courses. Our reputation in acoustics means that our graduates have an excellent chance of quickly finding a job. Acoustic consultancy offers the opportunity to engage with a wide variety of projects and clients, and consultancy practices who recruit our graduates are spread widely throughout the UK, the EU, Canada, the Middle East, Australia and New Zealand.

How to apply: http://www.salford.ac.uk/study/postgraduate/applying

Read less
This MSc Environmental and Architectural Acoustics can be used as a conversion course for maths, physics, architecture, engineering or audio technology graduates. Read more
This MSc Environmental and Architectural Acoustics can be used as a conversion course for maths, physics, architecture, engineering or audio technology graduates. It's also suitable for professionals from fields such as music production and technology, engineering, environmental health, and many others.

LSBU has been offering courses in Acoustics for over 35 years, and houses the only centre for study with this level of facilities in the South-East of England,including full-size reverberant and anechoic chambers and an exceptionally well equipped and staffed laboratory, with access to the very latest instrumentation and technology.
This is a professionally focused applied degree and practical work is an essential part of the course, giving you direct experience of modern measurement equipment and techniques. The modules are directly relevant to the practice of acoustics, and also consider the broader aspects of investigation and control of the built environment. Half of teaching time is spent in the laboratory, and this focus is reflected in the balance between coursework and exams.

Individual modules can be taken separately as part of continuing professional development. For the final project module you'll devise and complete a piece of investigative work in an area of interest in considerable depth; the topic and scope of the project are selected with the guidance of an academic supervisor. For those applicants who already hold an Institute of Acoustics Diploma, there is an option of direct entry to the second year of the part-time Masters course.

Modules

Acoustics laboratory
Architectural acoustics
Measurement and control of sound
Subjective and environmental acoustics
Environmental management
Research methods
Energy engineering project

Teaching and learning

Members of the teaching team are all highly-experienced and award-winning, and you'll enjoy guest lectures from world experts. In addition,all are actively involved in research and consultancy, which enables staff todraw on the latest industry developments in both lectures and practical work.

Currently 50% of our full-time student cohort is from overseas.This allows our students to network across America, India, the Middle-East,Australia and Europe.

Facilities

LSBU houses the only centre for study with this level of facilities in the South-East of England, including a full-size reverberation chamber, anechoic chambers, two audiometric booths and an exceptionally well equipped and staffed laboratory, with access to the very latest instrumentation and technology.

Our specialised lab equipment includes:

• B&K Shaker
• B&K accelerometers
• B&K head and Torso Simulator
• B&K calibrated sound source
• BSWA two channel Standing Wave/sound transmission Tube
• Microflown Impedance Gun
• 2 KayPentax Vocal Load APM
• Svantek 6 Channel Vibration Meter
• JBL 6112 Subwoofer
• 2 Dodec Loudspeakers
• 3 Norsonic Nor 140 Class 1 SLM
• 2 CEL 593 Class 1 SLM
• Svantek 958 Noise/Vibration meter
• Norsonic Nor 132 Class 2 SLM
• 6 NTI XL2 Class 1 SLM
• 10 SoundBadge Dosimeters
• Rion Vibration Suite
• B&K Standing Wave Tube
• Norsonic Sound Insulation Kit

Professional links

The department has extensive links with industry. This means students have the opportunity to go on site visits, receive guest lectures, take part in research initiatives, go to networking events and collaborate on projects with professionals working in the field. Teaching makes extensive use of industry case studies to demonstrate theory and research techniques. Some of our links include:

• Sharpsredmore Partnership
• Brookfield Europe
• Anne Kyyro Quinn Design
• Peter Mapp Associates
• Vanguardia Consultants
• RBA Acoustics
• Capita Symonds
• London Philharmonic Orchestra
• Royal Academy of Music
• Sound Research Labs
• Telent Technical Services

Employability

Over the past decade a very high proportion our students have found employment in an acoustics related industry, and one or two outstanding students per year go on to undertake research on our sponsored PhD programme.

Completion of the MSc satisfies the academic requirement for corporate membership of the Institute of Acoustics. The process of attaining Chartered Engineer status is offered through the Institute o fAcoustics or the Chartered Institution of Building Services Engineers.

Acousticians work in a great variety of industries and environments and this profession is in high demand, especially in London, thanks to the wide range and speed of new infrastructure development.

Architectural acoustics:

Many types of new buildings need careful acoustic design to make them sound good, to protect them from nearby noise sources, to make them productive and pleasant places to live or work in and to make them commercially successful. This is especially true for places like concert halls, but equally applicable to universities, residential buildings, leisure centres and many others. Day-to-day tasks could include: design meetings with architects and other engineers, noise surveys of existing and new sites, design using computer and physical models, communication of the design to the client and design team, project management, site supervision and commissioning of the finished projects. This offers a balance between creative, scientific and practical skills and is a career that will always present new experiences and challenges. (http://www.ioa.org.uk)

Environmental noise:

Noise is a major issue for society: 80 million EU citizens live in unacceptably noisy areas. Environmental health officers consider noise in planning new developments, such as housing affected by noise, or new noisy activities, and enforcement of existing noise concerns including the sources of complaints from the public. Consultants in environmental noise work in small specialists firms or large multinational consultancies, including engineering firms. Junior staff measure noise and use computer models to predict noise levels from new developments such as roads, railways and industrial plants. Consultancy can be a demanding job, but one which offers great variety and career progression. (http://www.ioa.org.uk)

Other areas you could work in include audio engineering, noise control and product sound, musical acoustics, speech and hearing, ultrasound, underwater acoustics.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

• Direct engagement from employers who come in to interview and talk to students
• Job Shop and on-campus recruitment agencies to help your job search
• Mentoring and work shadowing schemes.

Read less
The MSc in Acoustics is a 4 semester program (two years) from Semester 7 (S7) to Semester 10 (S10) according to the European semestrial organisation. Read more
The MSc in Acoustics is a 4 semester program (two years) from Semester 7 (S7) to Semester 10 (S10) according to the European semestrial organisation. The first year of the Master (M1) is covered by S7 and S8, whereas the second year of the program (M2) by S9 and S10.

The first semester (S7) provides the scientific background required for this Master, including some fundamentals of Mechanics, Continuum Physics and data processing as well as an introductory course to Acoustics. The second semester (S8) is devoted to acoustics and its context with practical application in an Acoustic Laboratory. During the third semester (S9), more advanced and specialised courses in acoustics are offered in parallel to application oriented lectures. Students can chose to specialised in their field of interest. The last semester (S10) is devoted to the MSc project, which can be carried out in a research laboratory as well as in the industry.

In parallel to the scientific program, English courses and/or a French courses are also offered: the objective is to provide the language basics that are required to attend the scientific courses, read and write scientific articles or reports and work in an international research team.

Objectives
The objective of the MSc program is to provide the theoretical knowledge and the practical skills that are required to take up a variety of challenges in acoustics. In particular, a project (case study) and two internships are planned; thus the program offers room for applying theoretical concepts to practical situations.
There are 27 Credits (ECTS) for optional courses in which students may deepen their knowledge in aeroacoustics, building acoustics, vehicle acoustics, sound perception, ultrasounds, vibro-acoustics or fluid-structure interactions.

General skills developed during the MSc program are:
- scientific communication in French and/or in English, which is trained during devoted language courses, scientific courses in English and oral defences of the project and internships.
- corporate life awareness via courses and seminars about project management, research policies, intellectual property etc. as well as during the internships.

Time effort
The overall number of hours per student is 500h during the first (M1) and 240h during the second year (M2), that is, 740 hours spread over the 3 first semesters.
Additionally, 4 to 12 weeks during S8 (M1) and 20-25 weeks during S10 (M2), that is, a minimum of 24 weeks of internship.

Read less
Our course aims to. build on professional acousticians’ basic acoustics knowledge and critically review and assess particular methods of assessment and control. Read more

Why choose this course:

Our course aims to:
• build on professional acousticians’ basic acoustics knowledge and critically review and assess particular methods of assessment and control
• enable students who already have the IOA Diploma in Acoustics and Noise Control to top this up to a masters award
• provide students with the opportunity to tailor studies to meet the requirements of their work and research interests.

About the course:

If you’re a professional acoustician and would like to build on your existing knowledge, this course is for you.
Our academic staff are friendly, supportive, and approachable. They’re all experienced acousticians, and most are full and active members of the Institute of Acoustics.

Prior to this course, you will have completed the IOA Diploma in Acoustics and Noise Control. You will enter the MSc at the masters stage - your study will involve the completion of a research-based investigation, which can be practical or desktop-based, and will culminate in the submission of a thesis.

Your study can be work-based and therefore be of benefit to both you and your employer. For work-based investigations, we will liaise with you and your employer to ensure you achieve the academic goals required for an MSc award. The study will normally take one year to complete.

All of your learning will be available through distance learning (via online materials) and the course can fit in with your work and personal commitments. There are a number of online classrooms that you can participate in, as well as recorded presentations by academic staff.

Read less
The International Master in Electro acoustics offers students the opportunity to learn the fundamentals in electro acoustics and in relating fields. Read more
The International Master in Electro acoustics offers students the opportunity to learn the fundamentals in electro acoustics and in relating fields. The program offers a specialized education in:
• Electro acoustics
• Mechanics and materials
• Transducers (loudspeakers, microphones)
• Acoustic loads and acoustic radiation
• Real time signal processing
The program covers the entire range of the whole electro acoustic chain. All courses are given in English on an advanced scientific and technical level. The teaching is based on cutting-edge research in electro acoustics.

The master’s programme prepares students for careers dealing with different aspects of electroacoustics which require strong analytical and research skills, whether in the public or private sectors and for PhD studies or research activities.

General description and ECTS credits:
- Level Refresh (semester 1) - 8 ECTS: Mathematics, digital electronics, signal processing, measurement, acoustics and vibration, theoretical mechanics.
- General skills - 38 ECTS: Mathematics, programming methods, signal processing, acoustics, vibrations, vibro acoustics, acoustic waveguides, analytical modelling of transducers, radiation of transducer systems, advanced modelling of transducers (non linearities, viscothermal effects ...).
- Professional courses - 47 ECTS: Real time signal processing, audio signal processing, optical measurement methods, measurement method of transducers, 3D mechanical modelling, 3D sound, micro technologies, physics of magnets, materials for transducers, numerical modelling of transducers, application project.
- Master’s Thesis– 25 ECTS: Thesis on an electro acoustics engineering-related theme
- Elective courses – 2 ECTS: Fluid mechanics, mechanics of deformable bodies, musical acoustics, room acoustics.

Read less
This programme pathway is designed for students with an interest in the engineering aspects of technology that are applied in modern medicine. Read more
This programme pathway is designed for students with an interest in the engineering aspects of technology that are applied in modern medicine. Students gain an understanding of bioengineering principles and practices that are used in hospitals, industries and research laboratories through lectures, problem-solving sessions, a research project and collaborative work.

Degree information

Students study in detail the engineering and physics principles that underpin modern medicine, and learn to apply their knowledge to established and emerging technologies in medical imaging and patient monitoring. The programme covers the engineering applications across the diagnosis and measurement of the human body and its physiology, as well as the electronic and computational skills needed to apply this theory in practice.

Students undertake modules to the value of 180 credits.

The programme consists of six core modules (90 credits), two optional modules (30 credits), and a research project (60 credits). A Postgraduate Diploma (120 credits) is offered.

Core modules
-Imaging with Ionising Radiation
-Clinical Practice
-Magnetic Resonance Imaging and Optics
-Medical Electronics and Control
-Professional Skills module

Optional modules
-Aspects of Biomedical Engineering
-Biomedical Engineering
-Computing in Medicine

Dissertation/report
All MSc students undertake an independent research project within the broad area of physics and engineering in medicine which culminates in a written report of 10,000 words, a poster and an oral examination.

Teaching and learning
The programme is delivered through a combination of lectures, demonstrations, practicals, assignments and a research project. Lecturers are drawn from UCL and from London teaching hospitals including UCLH, St. Bartholomew's, and the Royal Free Hospital. Assessment is through supervised examination, coursework, the dissertation and an oral examination.

Careers

Graduates from the Biomedical Engineering and Medical Imaging stream of the MSc programme have obtained employment with a wide range of employers in healthcare, industry and academia sectors.

Employability
Postgraduate study within the department offers the chance to develop important skills and acquire new knowledge through involvement with a team of scientists or engineers working in a world-leading research group. Graduates complete their study having gained new scientific or engineering skills applied to solving problems at the forefront of human endeavour. Skills associated with project management, effective communication and teamwork are also refined in this high-quality working environment.

Why study this degree at UCL?

The spectrum of medical physics activities undertaken in UCL Medical Physics & Biomedical Engineering is probably the broadest of any in the United Kingdom. The department is widely acknowledged as an internationally leading centre of excellence and students receive comprehensive training in the latest methodologies and technologies from leaders in the field.

The department operates alongside the NHS department which provides the medical physics and clinical engineering services for the UCL Hospitals Trust, as well as undertaking industrial contract research and technology transfer.

Students have access to a wide range of workshop, laboratory, teaching and clinical facilities in the department and associated hospitals. A large range of scientific equipment is available for research involving nuclear magnetic resonance, optics, acoustics, X-rays, radiation dosimetry, and implant development, as well as new biomedical engineering facilities at the Royal Free Hospital and Royal National Orthopaedic Hospital in Stanmore.

Read less
This programme pathway is designed for students with a developing interest in radiation physics, both ionising and non-ionising, that underpins many of the imaging and treatment technologies applied in modern medicine. Read more
This programme pathway is designed for students with a developing interest in radiation physics, both ionising and non-ionising, that underpins many of the imaging and treatment technologies applied in modern medicine. Students gain an understanding of scientific principles and practices that are used in hospitals, industries and research laboratories through lectures, problem-solving sessions, a research project and collaborative work.

Degree information

Students study the physics theory and practice that underpins modern medicine, and learn to apply their knowledge to established and emerging technologies in medical science. The programme covers the applications of both ionising and non-ionising radiation to the diagnosis and treatment of human disease and disorder, and includes research project, workplace skills development and computational skills needed to apply this theory into practice.

Students undertake modules to the value of 180 credits.

The programme consists of seven core modules (105 credits), one optional module (15 credits), and a research project (60 credits). A Postgraduate Diploma of eight modules (120 credits) is offered.

Core modules
-Clinical Practice
-Medical Imaging (Ionising)
-Ultrasound in Medicine
-Magnetic Resonance Imaging and Biomedical Optics
-Research Project
-Professional Skills module
-Treatment with Ionising Radiation
-Ionising Radiation Physics: Interactions & Dosimetry

Optional modules
-Biomedical Engineering
-Computing in Medicine
-Programme Foundations for Medical Image Analysis

Dissertation/report
All MSc students undertake an independent research project within the broad area of Physics and Engineering in Medicine which culminates in a report up to 10,000 words, a poster and an oral examination.

Teaching and learning
The programme is delivered through a combination of lectures, demonstrations, tutorials, assignments and a research project. Lecturers are drawn from UCL and from London teaching hospitals including UCLH, St. Bartholomew's, and the Royal Free Hospital. Assessment is through supervised examination, coursework and assignments, a research dissertation and an oral examination.

Careers

A large percentage of graduates from the MSc continue on to PhD study, often in one of the nine research groups within the department, as a reult of the skills and knowledge they acquire on the programme. Other graduates commence or resume training or employment within the heaalthcare sector in hospitals or industry, both within the UK and abroad.

Employability
Postgraduate study within the department offers the chance to develop important skills and acquire new knowledge through involvement with a team of scientists or engineers working in a world-leading research group. Graduates complete their study having gained new scientific or engineering skills applied to solving problems at the forefront of human endeavour. Skills associated with project management, effective communication and teamwork are also refined in this high-quality working environment.

Why study this degree at UCL?

The spectrum of medical physics activities undertaken in UCL Medical Physics & Biomedical Engineering is probably the broadest of any in the United Kingdom. The department is widely acknowledged as an internationally leading centre of excellence and students on this programme receive comprehensive training in the latest methodologies and technologies from leaders in the field.

The department operates alongside the NHS department which provides the medical physics and clinical engineering services for the University College London Hospitals NHS Foundation Trust, as well as undertaking industrial contract research and technology transfer. The department is also a collaborator in the nearby London Proton Therapy Centre, currently under construction.

Students have access to a wide range of workshop, laboratory, teaching and clinical facilities in the department and associated hospitals. A large range of scientific equipment is available for research involving nuclear magnetic resonance, optics, acoustics, X-rays, radiation dosimetry, and implant development.

Read less
This programme pathway is identical to the campus-delivered radiation physics stream but is designed for students who are unable to travel to London because of their work duties or international location. Read more
This programme pathway is identical to the campus-delivered radiation physics stream but is designed for students who are unable to travel to London because of their work duties or international location. Teaching is delivered for each module via video lectures, top-up online tutorials and additional e-learning resources, with coursework and supervised examinations which are arranged across the world by the British Council.

Degree information

Students study in detail the physics theory and practice that underpins modern medicine, and learn to apply their knowledge to established and emerging technologies in medical science. The programme covers the applications of both ionising and non-ionising radiation to the diagnosis and treatment of human disease and disorder, and includes a research project and the development of computational skills needed to apply this theory into practice.

Students undertake modules to the value of 180 credits.

The programme consists of eight core modules (120 credits) and the research dissertation (60 credits).

A Postgraduate Diploma, eight core modules (120 credits), is offered. There are no optional modules for this programme.

Core modules
-Clinical Practice
-Computing in Medicine
-Ionising Radiation Physics: Interactions & Dosimetry
-Magnetic Resonance Imaging and Biomedical Optics
-Medical Imaging (Ionising)
-Research Project
-Treatment with Ionising Radiation
-Ultrasound in Medicine
-Professional Skills Module

Dissertation/report
All students undertake an independent research project which culminates in a research report of up to 10,000 words, a poster and an oral presentation.

Teaching and learning
The programme is delivered through a combination of lectures, demonstrations, tutorials, assignments and a research project. Lecturers are drawn from UCL and from London teaching hospitals including UCLH, St. Bartholomew's, and the Royal Free Hospital. Assessment is through supervised examination, coursework and assignments, a research dissertation and an oral examination.

Careers

A large percentage of graduates from the online Master's programme commence or continue training or employment within the healthcare sector, mostly in UK and overseas hospitals. Online learning offers the ability to up-skill or re-skill in physics disciplines applied to medicine while also training or practising in the field.

Employability
Postgraduate study within the department offers the chance to develop important skills and acquire new knowledge through involvement with a team of scientists or engineers working in a world-leading research group. Graduates complete their study having gained new scientific or engineering skills applied to solving problems at the leading-edge of human endeavour. Skills associated with project management, effective communication and teamwork are also refined in this high-quality working environment. The department has a recognised track record for producing excellent graduates that go on to hold leading roles in universities, companies and hospitals around the world.

Why study this degree at UCL?

The spectrum of medical physics activities undertaken in UCL Medical Physics & Biomedical Engineering is probably the broadest of any in the United Kingdom. The department is widely acknowledged as an internationally leading centre of excellence and students receive comprehensive training in the latest methodologies and technologies from leaders in the field.

The department operates alongside the NHS department which provides the medical physics and clinical engineering services for the University College London Hospitals NHS Foundation Trust, as well as undertaking industrial contract research and technology transfer. The department is also a collaborator in the nearby London Proton Therapy Centre currently under construction.

Students have access to an exceptionally wide range of expertise, laboratory, teaching and clinical facilities in the department and associated hospitals. A large range of scientific equipment is available for research involving nuclear magnetic resonance, optics, acoustics, X-rays physics, radiation dosimetry, and implant and interventional device development.

Read less
The programme is co-organised by Vrije Universiteit Brussel (VUB) and Universite Libre de Bruxelles (ULB), offering students the possibility to obtain a double master's degree at the end of the programme. Read more

About the programme

The programme is co-organised by Vrije Universiteit Brussel (VUB) and Universite Libre de Bruxelles (ULB), offering students the possibility to obtain a double master's degree at the end of the programme. The first year of courses is taught at the ULB Engineering Campus in Brussels, while the second year is taught at VUB.

The Master of Science in Architecture trains designers to realize the synergy between the engineering and the architecture disciplines.

The programme provides students with an advanced level of knowledge and insight and makes them proficient in the creative and inventive use of the engineering and architectural knowledge in a complex architectural design.

The training is characterized by the integration of scientific research in education. The design studio acts as a crystallization point in the application of knowledge with respect to architectural design, structural design, installation techniques and urban planning. Given the complex and more advanced nature of architectural design at Master level, it requires the interaction between various disciplines combined with a scientific attitude.

The programme prepares students to a wide range of job profiles such as architectural and structural engineer, project manager, consultant, employee or executive in an architectural or engineer office, supervisor of the built heritage, policy maker for urban planning, researcher and others.

The programme consist of a fixed number of compulsory courses and a number of optional courses . The second year also includes a master thesis. In this master thesis it is requested to realize a synergy between a research study and an architectural design.

Curriculum

Available on http://www.vub.ac.be/en/study/architectural-engineering/programme

Tuition fees

• €837 per year for EEA students
• €2500 per year for non-EEA students (student who require a student visa)

Student profile

You are looking for a career which is creative, challenging and fulfilling
You are driven by architectural and constructional design
You are looking for an engineering degree which combines the challenges and inventiveness of the modern building industry with a flair for originality and creativity
You are interested to study in an international environment

Admission requirements

Applicants should have acquired the following knowledge during their undergraduate studies:

For architectural science: to be able to make use of the knowledge concerning architectural theory and history in project proposals and to discourse on architectural subjects in a reasoned and critical way;

For engineering sciences: to posses the more specialized knowledge for the calculation and simulation of all technical aspects related to the execution of a project, ranging from the stability of structures, foundation techniques, building physics, building acoustics, heating, durability, lighting to the use of new materials, lightweight constructions, the re-use and renovation of existing buildings and the 4D-design;

For design: to have insight into complex problems, to be able to formulate and define a problem, to integrate multi-disciplinary knowledge in the design, to justify the steps taken in a design process, to implement design insights on a distinctive way and to present and communicate, including critical reflection.

Additionally, applicants should be proficient in English

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X