• St Mary’s University, Twickenham Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Cardiff University Featured Masters Courses
Middlesex University Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Bath Spa University Featured Masters Courses
"zero" AND "energy"×
0 miles

Masters Degrees (Zero Energy)

  • "zero" AND "energy" ×
  • clear all
Showing 1 to 15 of 15
Order by 
This programme is appropriate for you if are seeking to develop the skills and confidence to address the critical global challenges of energy and diminishing natural resources. Read more
This programme is appropriate for you if are seeking to develop the skills and confidence to address the critical global challenges of energy and diminishing natural resources. Clean energy, optimal use of resources and the economics of climate change are the key issues facing society, and form the fundamental themes of this programme.

Course details

You explore the world’s dependency on hydrocarbon-based resources, together with strategies and technologies to decarbonise national economies. The course examines global best practice, government policies, industrial symbiosis and emerging risk management techniques. You also address the environmental, economic and sociological (risk and acceptability) impacts of renewable energy provision and waste exploitation as central elements.

The programme develops the problem-solvers and innovators needed to face the enormous challenges of the 21st century - those who can play key roles in driving energy and environmental policies, and in formulating forward-looking strategies on energy use and environmental sustainability at corporate, national and global scales.

What you study

For the PgDip award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete the 120 credits of taught modules and a 60-credit master's research project.

Energy, environment, risk managing projects, sustainability and integrated waste management are the main foci of the programme, but you also explore the financial aspects of energy and environmental management. Economics is integral to the development of policies and is often a key influencing factor.

This programme aims to develop a comprehensive knowledge and understanding of the role and place of energy in the 21st century and the way the environment impinges on the types of energy used and production methods. It also aims to investigate the environment as it is perceived, and contextualise its actual importance to mankind. Specific objectives for this course are to establish the financial validity for the pursuit of alternative energy forms and management of the environment.

You are encouraged to take up opportunities of voluntary placements with local industries to conduct real-world research projects. These placements are assessed in line with the assessment criteria and learning outcomes of the Project module.

Examples of past MSc research projects:
-The taxonomy of facilitated industrial symbioses
-Assessment of the climate change impacts of the Tees Valley
-Exploring the links between carbon disclosure and carbon performance
-Hydrothermal carbonisation of waste biomass
-Quantifying the impact of biochar on soil microbial ecology
-Potential for biochar utilisation in developing rural economies
-Carbon trading opportunities for renewable energy projects in developing countries
-Exploring the potential for wind energy in Libya
-Demand and supply potential of solar panel installations
-A feasibility study of the application of zero-carbon retrofit technologies in building communal areas
-Energy recovery from abandoned oil wells through geothermal processes

Core modules
-Concepts of Sustainability
-Economics of Climate Change
-Energy and Global Climate Change
-Global Energy Policy
-Integrated Waste Management and Exploitation
-Project
-Research Methods and Proposal

Modules offered may vary.

Teaching

The course provides a number of contact teaching and assessment hours (through lectures, tutorials, projects, assignments), but you are also expected to spend time on your own, called 'self-study' time, to review lecture notes, prepare course work assignments, work on projects and revise for assessments. For example, each 20-credit module typically has around 200 hours of learning time.

In most cases, around 60 hours are spent in lectures, tutorials and in practical exercises. The remaining learning time is for you to gain a deeper understanding of the subject. Each year of full-time study consists of modules totalling 180 credits; hence, during one year of full-time study a student can expect to have 1,800 hours of learning and assessment.

Modules are assessed by a variety of methods including examination and in-course assessment with some utilising other approaches such as group-work or verbal/poster presentations.

Employability

There may be short-term placement opportunities for some students, particularly during the project phase of the course. This University is also in the process of seeking accreditation for the Waste Management module from the Chartered Institution of Wastes Management.

Successful graduates from this course are well placed to find employment. As an energy and environmental manager, you might find yourself in a role responsible for overseeing the energy and environmental performance of private, public and voluntary sector organisations, as well as in a wide range of engineering industries.

Energy and environmental managers examine corporate activities to establish where improvements can be made and ensure compliance with environmental legislation across the organisation. You might be responsible for reviewing the whole operation, carrying out energy and environmental audits and assessments, identifying and resolving energy and environmental problems and acting as agents of change. Your role could include the training of the workforce to develop the ability to recognise their own contributions to improved energy and environmental performance.

Your role may also include the development, implementation and monitoring of energy and environmental strategies, policies and programmes that promote sustainable development at corporate, national or global levels.

Read less
This programme is aimed at graduates of building services engineering and other science and engineering disciplines who wish to extend their technical expertise in the field of building services engineering. Read more
This programme is aimed at graduates of building services engineering and other science and engineering disciplines who wish to extend their technical expertise in the field of building services engineering. With energy consumption within the design and operation of buildings becoming an ever increasingly important factor this programme is designed to combine building services engineering knowledge with specific energy considerations in their design.

The programme is accredited for further learning for CEng and professional membership by the Energy Institute and CIBSE. CIBSE has praised the programme as ‘one of the leading MSc courses of its kind in the UK’.

Areas studied include low energy building design, designing for suitable indoor air quality and thermal comfort, state-of-the-art control systems, and the design of building heating, ventilating, and air conditioning systems.

The course attracts students from all over the world, including countries such as Greece, Iran, China, France, Germany and Colombia. This is attractive to potential employers who often have international offices around the world.

Key Facts

- An outstanding place to study. The School of Civil and Building Engineering is ranked 2nd in the UK for Building in the Times Good University Guide 2015
- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.
- The programme is accredited by the two main institutions representing energy and buildings – the Chartered Institution of Building Services Engineers and the Energy Institute. On successful completion of the course, students are deemed to meet the education requirements for both institutions and their applications can be endorsed by course tutors.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-energy-building-services/

Programme modules

Compulsory Modules:
- Thermodynamics, Heat Transfer & Fluid Flow [70% exam, 10 credits]
The aim of this module is to provide students from related engineering backgrounds with an understanding of the fundamentals of heat transfer, fluid flow and thermodynamics for application to buildings and their engineering systems.

- Thermal Comfort & Indoor Air Quality [70% exam, 15 credits]
The aim of this module is for the student to understand the principles and practice involved in the design of indoor environments, with respect to occupant thermal comfort and air quality.

- Building Thermal Loads & Systems [70% exam, 15 credits]
The aim of this module is for the student to understand the principles of building thermal load analysis and required systems for medium to large buildings.

- Building Energy Supply Systems [70% exam, 15 credits]
The aim of this module is for the student to be provided with a practical foundation in system design and analysis, by developing the students' understanding of thermal plant in buildings including air conditioning systems and systems for heat recovery.

- Building Control & Commissioning [70% exam, 10 credits]
The aims of this module are for the student to understand the application of automatic control in energy monitoring and commissioning and to examine the control problems in buildings and develop control strategies that will improve thermal comfort and building energy use.

- Concept Design [0% exam, 15 credits]
The aims of this module are for the student to be introduced to the process within which buildings are conceived and designed by undertaking the architecture design of a major building using multi-disciplinary input. Students will develop team skills through working in design groups to generate schematic concepts before developing the best. They will apply previous knowledge of building services and low carbon design in the selection process and carry out performance analysis. Students will work with 3D architectural and 3D mechanical, electrical and plumbing (MEP) systems within BIM software to further develop their concepts.

- Low Carbon Building Design [50% exam, 15 credits]
The module aims to introduce the principles of low and zero carbon building with special attention to the process of design and decision-making.

- Advanced Thermal Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of building thermal modelling and HVAC plant simulation, and be given a perspective on the applications of these techniques to the design process.

- Research Project [0% exam, 60 credits]
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to Building Energy

- Research Methods in Building Performance [0% exam, 10 credits]
The aims of this module are for the student to become familiar with and comprehend the wide range of research methods and skills needed to investigate, understand and communicate building performance.

Facilities

All masters students have access to a wide range of building simulation codes which include commercial software, as well as bespoke codes developed in-house. Students can run these codes on their personal laptops or access any one of our computer laboratories, including access to our recently commissioned 2000-node high performance computer cluster.

One of our key strengths at Loughborough is our experimental facilities which enable us to validate computer models. Our masters students have access to a vast range of experimental facilities, some of which are used during the taught modules and all of which are available for use by students during their research dissertations.

These include: a fully controllable environmental chamber; sophisticated thermal and breathing manikins; an indoor solar simulator; a 'darkroom' facility to carry out optical and high dynamic range measurements; and full-scale houses for pressure testing and studying innovative heating and control strategies. A recent investment of £360k was made to purchase an extensive array of monitoring and measuring equipment for use during field studies.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling, field measurements and independent research. Students have access to a wide range of air flow and thermal modelling software as wells as extensive laboratory facilities. Following nine taught modules, students pursue a research dissertation of their choice which draws on the skills developed during the taught modules.

Students are assessed by a combination of traditional written exams, coursework and assignments. This split is typically 70/30 (exam/coursework) or 50/50, although some modules, such as research methods and concept design are assessed entirely based on coursework which comprises individual presentations and group work.

Careers and further study

Previous students have gone on to work for leading consulting engineering companies such as Arup, Pick Everad, Hoare Lea, Cundall, Foster & Partners, and Atkins. Some of these companies offer work placements for students to undertake their research dissertations. Many visit the university to deliver lectures to our MSc students providing ideal opportunities for students to discuss employment opportunities.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-energy-building-services/

Read less
The built environment is changing - the EU has set a target for all new buildings to be nearly zero-energy efficient by the end of 2020. Read more
The built environment is changing - the EU has set a target for all new buildings to be nearly zero-energy efficient by the end of 2020. This is your opportunity to get up to speed on the newest practices in designing energy efficient buildings and refurbishments.

Through case studies and fieldwork, you will analyse the latest energy efficiency innovations and renewable technologies applied to new buildings and those undergoing a retrofits. By examining contemporary passive houses, nearly-zero buildings and energy plus structures, you'll discover how the leading exemplars in this field achieve their efficiency performances. You'll also study the shortcomings in current building efficiencies - where they fall short in meeting their energy targets and how they can be improved with the resources available.

Your work will be shaped by cutting-edge research as you collaborate with specialists who help inform new Government regulations and policies. This will broaden your knowledge and help you forge contacts with the principal thinkers and leaders in the building performance sector.

Visit the website http://courses.leedsbeckett.ac.uk/energyefficientbuildings_apd

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

Energy efficiency surveyors and specialists arealready in high demand, and the need for their expertise will continue to growas the industry faces tighter energy legislation. This demand should filterthrough to related professions in architecture, construction management andquantity surveying, where knowledge in this area will complement existingexpertise and give those at the start of their careers a significant advantagein the jobs market.

- Property Developer
- Architect
- Construction Manager
- Quantity Surveyor

Careers advice:
The dedicated Jobs and Careers team offers expert advice and a host of resources to help you choose and gain employment. Whether you're in your first or final year, you can speak to members of staff from our Careers Office who can offer you advice from writing a CV to searching for jobs.

Visit the careers site - https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course Benefits

You will take part in site visits to study the very latest energy efficient buildings in detail, examining their characteristics and design specifications first-hand.

Our University has strong research links to industry, including many of the organisations such as the Department of Energy and Climate Change and the International Energy Institute that drive the energy efficiency agenda forward. This will give you the chance to network with the leading thinkers sharing and share in their latest insights. You will also evaluate industry software and the methodologies used to assess and monitor building efficiency.

All of our teaching staff have practical experience as consultants in new builds and refurbishment. They are recognised nationally and internationally, and some are directly involved in regulation and research that influences the direction of the industry.

Your course will give you the commanding expertise to make you highly sought after as the industry responds to the growing demand for energy efficiency specialists.

Core Modules

Low to Zero Energy Buildings & Energy Efficient Building Systems
Gain a comprehensive understanding of the principals of low to zero energy buildings, focusing on their energy sustainability, fabric and systems such as lighting and heating.

Sustainable Refurbishment & Retrofit
Discover the techniques relating to sustainable refurbishment and retrofit, examining the design and detail of existing and pre-1900 structures.

Chris Gorse

Senior Lecturer

"New legislation is pushing for tightened building energy requirements over the next few years, so knowledge in this area is essential. Once the legislation is in place, the industry will have to rapidly upskill itself."

Chris Gorse is Professor of Construction and Project Management and Director of Leeds Sustainability Institute. He leads projects in the areas of sustainability, low carbon and building performance and has an interest in domestic new builds, commercial buildings and refurbishment. Chris is an established author and has consultancy experience in construction management and law.

Facilities

- Design Studios
You will be able to access our extensive studio facilities, which include workshops and computer modelling software to design and build projects.

- Library
Our Library is open 24/7, every day of the year. However you like to work, we have got you covered with group and silent study areas, extensive e-learning resources and PC suites.

- Leeds Sustainability Institute
We offer the latest drone and thermal imaging technology to provide new ways of measuring and evaluating building sustainability.

- Broadcasting Place
Broadcasting Place provides students with creative and contemporary learning environments, is packed with the latest technology and is a focal point for new and innovative thinking in the city.

Find out how to apply here - http://www.leedsbeckett.ac.uk/postgraduate/how-to-apply/

Read less
This MSc develops the knowledge and analytical skills needed to equip students for a successful career in the energy sector; whether in the private, public, or non-profit sector. Read more

Introduction

This MSc develops the knowledge and analytical skills needed to equip students for a successful career in the energy sector; whether in the private, public, or non-profit sector.
This course is aimed at students from a variety of backgrounds, including students with no previous training in economics or finance.

Key information

- Degree type: MSc, Postgraduate Diploma, Postgraduate Certificate
- Study methods: Part-time, Full-time
- Start date: September
- Course Director: Dr Mirko Moro
- Location: Stirling Campus

Course objectives

On completing the course, you should have a good knowledge of how economic analysis can help understand problems related to energy; be able to analyse alternative energy policy options in terms of benefits and costs; have a good understanding of world energy markets; and be able to analyse the risks associated with energy options. You will have acquired the skills needed to structure, analyse and evaluate energy-related problems.

English language requirements

If English is not your first language you must have one of the following qualifications as evidence of your English language skills:
- IELTS: 6.0 with 5.5 minimum in each skill
- Cambridge Certificate of Proficiency in English (CPE): Grade C
- Cambridge Certificate of Advanced English (CAE): Grade C
- Pearson Test of English (Academic): 54 with 51 in each component
- IBT TOEFL: 80 with no subtest less than 17

For more information go to English language requirements https://www.stir.ac.uk/study-in-the-uk/entry-requirements/english/

If you don’t meet the required score you may be able to register for one of our pre-sessional English courses. To register you must hold a conditional offer for your course and have an IELTS score 0.5 or 1.0 below the required standard. View the range of pre-sessional courses http://www.intohigher.com/uk/en-gb/our-centres/into-university-of-stirling/studying/our-courses/course-list/pre-sessional-english.aspx .

Delivery and assessment

Modules are taught by a combination of lectures and small group teaching, in the form of seminars or computing labs.
Assessment typically includes coursework, presentations and an end-of-semester examination.
Re-sit examinations are available.

Why Stirling?

REF2014
In REF2014 Stirling was placed 6th in Scotland and 45th in the UK with almost three quarters of research activity rated either world-leading or internationally excellent.
The reputation of our research at Stirling Management School was recognised in the 2014 Research Excellence Framework (REF), where the School was placed in the UK’s top 25 institutions for Business and Management, out of 101 business schools. In Scotland, the School was ranked in the top five. 64% of our research outputs were classified as world-leading and internationally excellent in terms of their originality, significance and rigour and we were ranked 14th in the UK in terms of research impact with over 60% of public, private and governmental organisations.
The Economics department is ranked in the top 10% of Energy Economic Institutions in the world by RePec (Research Papers in Economics).

Career opportunities

The MSc Energy Management opens up a range of employment opportunities in the energy sector at the national and international level. Some example placements for alumni of this course are:
- Head Economist - Zero Waste Scotland
- Director of Economic Affairs - Mining Association of Canada
- Market Analyst - Coal Marketing Company
- Head of Natural Gas Markets - Gen-I
- Funded PhD studentship - University College London Energy Institute
- Energy Analyst - International Energy Agency (OECD)
- Renewable Development Officer - Ullapool Community Trust

Read less
This programme is aimed at anyone interested in learning more about the design and operation of low energy buildings with the added attraction of three modules dedicated to computer modelling of building performance – an essential skill for anyone wishing to work in today’s rapidly changing world of building engineering consultancy. Read more
This programme is aimed at anyone interested in learning more about the design and operation of low energy buildings with the added attraction of three modules dedicated to computer modelling of building performance – an essential skill for anyone wishing to work in today’s rapidly changing world of building engineering consultancy.

Modules are taught by world-leading experts in the field who have designed some of the world’s most innovative low energy buildings. These design experiences provide unique case study material which students find exciting and invaluable for their own research and design work.

The programme is accredited for further learning for CEng and professional membership by CIBSE and the Energy Institute and benefits from its links with the Royal Academy of Engineering Centre of Excellence in Sustainable Building Design.

The course attracts students from all over the world, including countries such as Greece, Iran, China, France, Germany and Colombia. This is attractive to potential employers who often have international offices around the world.

Key Facts

- An outstanding place to study. The School of Civil and Building Engineering is ranked 2nd in the UK for Building in the Times Good University Guide 2015

- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.

- The programme is accredited by the two main institutions representing energy and buildings – the Chartered Institution of Building Services Engineers and the Energy Institute. On successful completion of the course, students are deemed to meet the education requirements for both institutions and their applications can be endorsed by course tutors.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-carbon-building-design/

Programme modules

- Building Energy Consumption [70% exam, 10 credits]
The aim of this module is for the student to understand the impact that climate, people, equipment selection and design have on energy consumption on a range of building sizes from domestic to large commercial.

- Renewable Energy and Low Carbon Technologies [70% exam, 15 credits]
The aims of this module are for the student to understand the principles of renewable energy and low carbon technologies and their integration into buildings, and to be given a perspective on the potential benefits and applications of these technologies.

- Building Control & Commissioning [70% exam, 10 credits]
The aims of this module are for the student to understand the application of automatic control in energy monitoring and commissioning and to examine the control problems in buildings and develop control strategies that will improve thermal comfort and building energy use.

- Concept Design [0% exam, 15 credits]
The aims of this module are for the student to be introduced to the process within which buildings are conceived and designed by undertaking the architecture design of a major building using multi-disciplinary input. Students will develop team skills through working in design groups to generate schematic concepts before developing the best. They will apply previous knowledge of building services and low carbon design in the selection process and carry out performance analysis. Students will work with 3D architectural and 3D mechanical, electrical and plumbing (MEP) systems within BIM software to further develop their concepts.

- Low Carbon Building Design [50% exam, 15 credits]
The module aims to introduce the principles of low and zero carbon building with special attention to the process of design and decision-making.

- Advanced Thermal Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of building thermal modelling and HVAC plant simulation, and be given a perspective on the applications of these techniques to the design process.

- Advanced Airflow Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of building airflow and ventilation modelling with respect to comfort and energy efficiency, and be given a perspective on the applications of these techniques to the design process.

- Advanced Lighting Modelling [50% exam, 15 credits]
The aims of this module are for the student to understand the principles of lighting modelling in buildings with respect to comfort and energy efficiency, and be given a perspective on the application of these techniques to the design process.

- Research Project [0% exam, 60 credits]
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to Building Energy

- Research Methods in Building Performance [0% exam, 10 credits]
The aims of this module are for the student to become familiar with and comprehend the wide range of research methods and skills needed to investigate, understand and communicate building performance.

Facilities

All masters students have access to a wide range of building simulation codes which include commercial software, as well as bespoke codes developed in-house. Students can run these codes on their personal laptops or access any one of our computer laboratories, including access to our recently commissioned 2000-node high performance computer cluster.

One of our key strengths at Loughborough is our experimental facilities which enable us to validate computer models. Our masters students have access to a vast range of experimental facilities, some of which are used during the taught modules and all of which are available for use by students during their research dissertations.

These include: a fully controllable environmental chamber; sophisticated thermal and breathing manikins; an indoor solar simulator; a 'darkroom' facility to carry out optical and high dynamic range measurements; and full-scale houses for pressure testing and studying innovative heating and control strategies. A recent investment of £360k was made to purchase an extensive array of monitoring and measuring equipment for use during field studies.

How you will learn

You will learn through a carefully balanced combination of lectures, in-class guided workshops, hands-on computer modelling, field measurements and independent research. Students have access to a wide range of air flow, thermal and daylight modelling software as well as extensive laboratory facilities. Following nine taught modules, students pursue a research dissertation of their choice which draws on the skills developed during the taught modules.

Students are assessed by a combination of traditional written exams, coursework and assignments. This split is typically 70/30 (exam/coursework) or 50/50, although some modules, such as research methods and concept design are assessed entirely based on coursework which comprises individual presentations and group work.

Careers and further study

Previous students have gone on to work for leading consulting engineering companies such as Arup, Pick Everad, Hoare Lea, Hulley and Kirkwood and SE Controls. Some of these companies offer work placements for students to undertake their research dissertations. Many visit the university to deliver lectures to our MSc students providing ideal opportunities for students to discuss employment opportunities.

Accreditation

The programme is accredited for further learning for CEng and professional membership by the CIBSE and Energy Institute.
The 'SE Controls prize for best overall performance' is awarded to the student graduating from this course with the highest overall mark. This presentation is made on graduation day.

Scholarships

The University offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for a scholarship once you have received an offer for a place on this programme.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/low-carbon-building-design/

Read less
The world is recognising that buildings need to consume less energy in the future – and this course develops your building services engineering knowledge with a focus on sustainable design. Read more

About the course

The world is recognising that buildings need to consume less energy in the future – and this course develops your building services engineering knowledge with a focus on sustainable design.

You will learn about renewable energy technologies, efficient ventilation, air conditioning and energy conversion technologies in the programme, and can choose from a broad range of dissertation topics.

The course is available on either a one-year, full-time or three-to-five-year, distance-learning basis.

Aims

The era of zero emission building is within grasping distance of the mass construction industry – creating a huge demand for specialists with the skills to design and project manage effectively.

The aim of this programme is to respond to the worldwide demand for building services engineers and managers who have a sound knowledge of engineering principles and the ability to apply this knowledge to the complex situations prevailing within the building services industry.

Course Content

Modes of Study

1-Year Full-Time
The taught element of the course (September to April) includes seven modules; delivery will be by a combination of lectures, tutorials and group/seminar work. A further four months (May to September) is spent undertaking the dissertation.

3-to-5-Years Distance-Learning
The distance learning programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace.

There is no requirement to attend lectures at Brunel University and there is no set timetable of lectures, instead you follow a structured programme of self-study at home or at work. This gives you the freedom to arrange a work programme to suit yourself and you should usually allow about twelve hours each week for study.

There are set submission dates for assignments but we have tried to design the programme so that they are well-spaced, giving you the maximum flexibility in your study plans.

You can take between three and five years to complete the course. The average is three years, with students taking four modules in the first year, four modules in the second year and the dissertation in the third year. However, depending on your other commitments you can take longer up to a maximum of five years.

You are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year.
Examinations can be taken either at Brunel University or in the country you are resident in. We have an extensive network of organisations (universities, colleges and British Council offices) throughout the world who will provide invigilation services.

The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Typical Modules

Building Heat Transfer and Air Conditioning
Electrical Services and Lighting Design
Acoustics, Fire, Lifts and Drainage
Energy Conversion Technologies
Building Services Design and Management
Renewable Energy Technologies
Energy Efficient Ventilation for Buildings
Dissertation

Special Features

There are numerous advantages in choosing the Brunel Building Services programme:

Award-winning courses: Building Services Engineering courses have been awarded the Happold Brilliant Award for teaching excellence by the Chartered Institution of Building Services Engineers.

Relevance: It is well established within the building services industry, with sponsors of students that include major design and contracting organisations, area health authorities, local authorities and the British Council, as well as several national governments.

Applicability: Emphasis on applications enables students and employers to benefit immediately from the skills and knowledge gained.

Responsiveness: Brunel's proximity to London, where large and innovative building developments have been taking place over the last decade, enables rapid infusion of new ideas and technological innovations into the programme content.

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

Collaborative research
Engineering at Brunel benefits from research collaboration with numerous outside organisations including major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

This course is approved by the Chartered Institute of Building Services Engineers (CIBSE) and the Institution of Mechanical Engineers (IMechE) as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng). Additionally we are seeking reaccreditation with the Energy Institute.

Teaching

Students are supplied with a study pack in the form of textbooks and CD-ROMs; you have assignments to submit and exams to sit each year. Examinations can be taken either at Brunel University or in the country you are resident in.
We have an extensive network of organisations (Universities, Colleges and British Council Offices) throughout the world who will provide invigilation services. The cost of invigilation away from Brunel is your responsibility. Examinations are held in May each year.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of each stage. Examinations are normally taken in May/June.
Successful completion of the taught modules allows the student to proceed to the dissertation stage. To qualify for the award of the MSc degree, the student must submit a satisfactory dissertation.

Read less
The economic wealth of a country depends not only on its research base but also on its ability to exploit the commercial potential of its intellectual property. Read more
The economic wealth of a country depends not only on its research base but also on its ability to exploit the commercial potential of its intellectual property. This course provides students with advanced skills and vital training in renewable energy, energy efficiency and business.

Students will gain essential technical skills in the field as well as becoming fluent in the financial, marketing and managerial aspects of modern business. The course aims to develop confidence and understanding in the specialist field of entrepreneurship applied to technology that can arise from the research base of sustainable energy subjects. Graduates from the course will be well placed to pursue careers in renewable energy technology industries.

By the end of the course, you will have gained useful and technical knowledge in the areas of sustainable energy and business as well as the application of technologies to proposed business models, and you will be adept at communicating and presenting yourself and your projects to an audience.

Students will develop:
useful and technical knowledge in the areas of sustainable energy and business
the ability to plan and undertake an individual project
interpersonal, communication and professional skills
the ability to communicate ideas effectively in written reports, verbally and by means of presentations to groups
the ability to exercise original thought
knowledge of the application of technologies to proposed business models

Previous projects have included:

promotion of energy efficient building technologies in developing countries through Clean Development Mechanism
Solar Decathlon Zero Carbon House - Mass market solution for the Solar Eco House concept
technical analysis of photovoltaic for small scale application & its economic viability - case study Nigeria
design of a framework for the application of CDM measures to promote rural electrification of microcredit systems

Scholarship information can be found at http://www.nottingham.ac.uk/graduateschool/funding/index.aspx

Read less
This post-graduate programme has been designed to facilitate professionals practicing in the areas of building design, management and technology. Read more
This post-graduate programme has been designed to facilitate professionals practicing in the areas of building design, management and technology. Its’ purpose is to provide expertise in terms of; energy use, environmental performance and sustainability in the design and operation of buildings and their associated facilities and services systems.

The programme will focus on Sustainable and Low energy building design; Building energy performance and analysis; Dynamic thermal simulation; Low and zero carbon heat and power generation technologies; Energy policy and legislation; Energy auditing; Facilities management and Building pathology and investigation.

The knowledge, skills and competencies that participants will gain are relevant to their career development. This programme is developed to meet the Level 9 criteria as set out by the National Qualifications Authority of Ireland (NQAI). The treatment of all programme subjects will encourage the development of powers of analysis, of synthesis and of communication. This will be achieved by building upon both the undergraduate studies and postgraduate experience of participants to develop a broader understanding of low energy building design and management. In addition the selection of a research topic for a dissertation will allow the student to concentrate on one or more of these directions.

The Masters degree requires successful completion of twelve mandatory modules. The student must also complete an applied programme consisting of a Research Dissertation and an Industrial Research seminar series

Read less
The University of Birmingham, as a partner in The Midlands Energy Graduate School (MEGS), has launched a new taught Masters in Efficient Fossil Energy Technologies. Read more
The University of Birmingham, as a partner in The Midlands Energy Graduate School (MEGS), has launched a new taught Masters in Efficient Fossil Energy Technologies.

Consisting of core and optional modules, delivered by experts from the universities of Nottingham, Birmingham and Loughborough, this MSc will encourage and embed excellence in fossil energy technologies, carbon capture and efficient combustion. It will prepare future leaders and industrial engineers with knowledge and skills to tackle the major national and international challenges of implementing new fossil-based power plant and processes more efficiently, with near zero emissions and CO2 capture.

This course provides expert teaching from three leading universities in the UK a unique partnership to allow students to benefit from a wide range of expertise. Modules studied represent the academic specialism offered by each university and the research project, taken at the university where you register, will focus on specific aspects of fossil energy technologies: Birmingham specialises in managing chemical reactions, plant design and carbon capture technologies; Loughborough in materials technologies for power generation and high-temperature applications; and Nottingham will focus on combustion technologies, power generation, environmental control and carbon capture. It is therefore important to select your choice of university carefully. Full details of these options and specialisms are in the Modules section of the Course Details tab and all enquiries are welcome.

Chemical Engineering is dynamic and evolving. It provides many solutions to problems facing industries in the pharmaceutical, biotechnological, oil, energy and food and drink sectors. It is vital to many issues affecting our quality of life; such as better and more economical processes to reduce the environmental burden, and more delicious and longer lasting food due to the right combination of chemistry, ingredients and processing.

Birmingham is a friendly, self-confident, School which has one of the largest concentrations of chemical engineering expertise in the UK. The School is consistently in the top five chemical engineering schools for research in the country.

About the School of Chemical Engineering

Birmingham has one of the largest concentrations of Chemical Engineering expertise in the UK, with an excellent reputation in learning, teaching and research.
Investment totalling over £3.5 million in our buildings has resulted in some of the best teaching, computing and laboratory facilities anywhere in the UK.
We have achieved an excellent performance in the Research Excellence Framework (REF) – the system for assessing the quality of research in UK higher education institutions. 87% of the research in the School was rated as world-leading or internationally excellent. It was ranked joint fourth overall in the UK for its research prowess and first nationally for research impact.
The enthusiasm that the academic staff have for their research comes through in their teaching and ensures that they and you are at the cutting edge of chemical engineering.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The REaCT course will provide you with a detailed understanding of the key renewable energy generation technologies and the factors which influence their exploitation. Read more
The REaCT course will provide you with a detailed understanding of the key renewable energy generation technologies and the factors which influence their exploitation.

It provides the foundations necessary to understand the principles of solar, wind and marine energy technologies and also the knowledge required to understand: the efficient distribution of renewables; their integration into usage into zero carbon built infrastructure and to determine the economic and climate issues affecting the choice of renewable.

Career opportunities

In completing this multidisciplinary course you will become highly employable in an area of technology which will be of dominant importance in this century. The course will provide you with all the necessary skills required if you wish to continue to study for a PhD and contribute your own ideas to advance these key technologies.

Read less
As we head towards zero carbon buildings, we need to better understand how buildings should be constructed and the materials we should use in their construction in order to increase their energy efficiency. Read more
As we head towards zero carbon buildings, we need to better understand how buildings should be constructed and the materials we should use in their construction in order to increase their energy efficiency.

Whether you are working in the construction industry, a graduate from a built environment background or you want to upskill for a new construction role, we will teach you how to analyse the performance of existing buildings and to design and model new, energy efficient buildings.

You will gain an understanding of building physics and performance, including how buildings respond to weather, how to heat buildings efficiently and how bricks, mortar, timber and insulants act as a thermal barrier. Discover how to use 3D modelling packages to study individual building components and analyse how buildings respond to environmental conditions and occupancy patterns.

You can combine this course with other Advanced Professional Diplomas as part of our MSc Sustainable Engineering or study it as a standalone qualification.

Visit the website http://courses.leedsbeckett.ac.uk/buildingmodellingandsimulation_apd

Mature Applicants

Our University welcomes applications from mature applicants who demonstrate academic potential. We usually require some evidence of recent academic study, for example completion of an access course, however recent relevant work experience may also be considered. Please note that for some of our professional courses all applicants will need to meet the specified entry criteria and in these cases work experience cannot be considered in lieu.

If you wish to apply through this route you should refer to our University Recognition of Prior Learning policy that is available on our website (http://www.leedsbeckett.ac.uk/studenthub/recognition-of-prior-learning.htm).

Please note that all applicants to our University are required to meet our standard English language requirement of GCSE grade C or equivalent, variations to this will be listed on the individual course entry requirements.

Careers

Aimed at professionals working within the built environment or graduates looking to build on their knowledge of the built environment, we will help you further your employment prospects within the construction industry. With the ability to assess the performance of existing buildings and the specialist skills to design and model new buildings, you will be a valuable asset to any construction company.

- Building Surveyor
- Architectural Technician
- Mechanical Engineer

Careers advice:
The dedicated Jobs and Careers team offers expert advice and a host of resources to help you choose and gain employment. Whether you're in your first or final year, you can speak to members of staff from our Careers Office who can offer you advice from writing a CV to searching for jobs.

Visit the careers site - https://www.leedsbeckett.ac.uk/employability/jobs-careers-support.htm

Course Benefits

Study part time at your own pace around your job and learn the latest developments in building modelling and performance that will set you apart in the workplace.

When it comes to understanding the performance of buildings in the UK, the government and building industry alike turn to our University for expertise and advice. You will be learning from a teaching team and industry experts who have worked with the UK government and large material manufacturers including Saint-Gobain and ARC Building Solutions to enhance the performance and efficiency of buildings. You will hear the first-hand experiences of business leaders and sustainability experts involved in UK and international consultancy projects on building modelling and simulation.

Through our virtual learning environment you will have access to the latest information about building designs and research on how building stock can be made more energy efficient. Online materials including videos, up-to-date research on thermal performance, moisture propagation and building fabrics, and simulations considering weather conditions, occupancy and the impact of solar and ventilation will inform your learning.

Core Modules

Building Environmental Science & Modelling
Learn to assess building performance for occupant comfort, health, energy use and serviceable life. Discover how modelling of building fabrics and components is used to predict performance.

Building Detailed Design & Specification
Apply the principals learned in the Building Environment Science & Modelling module to the design of building details to maximise performance while avoiding problems.

Professor Chris Gorse

Professor of Construction and Project Management

"The future of our energy efficient homes, workplaces and smart cities is underpinned by the performance and reliability of the models we use. This course will advance your understanding and ability to apply the latest tools and techniques to the field"

Chris Gorse is Professor of Construction and Project Management and Director of Leeds Sustainability Institute. He leads projects in the areas of sustainability, low carbon and building performance and has an interest in domestic new builds, commercial buildings and refurbishment. Chris is an established author and has consultancy experience in construction management and law.

Facilities

- Northern Terrace
Based at our City Campus, only a short walk from Leeds city centre, Northern Terrace is home to our School of Built Environment & Engineering.

- Leeds Sustainability Institute
Our Leeds Sustainability Institute's facilities include the latest drone and thermal imaging technology to provide new ways of measuring and evaluating building sustainability.

- Library
Our Library is open 24/7, every day of the year. However you like to work, we have got you covered with group and silent study areas, extensive e-learning resources and PC suites.

Find out how to apply here - http://www.leedsbeckett.ac.uk/postgraduate/how-to-apply/

Read less
This programme falls within the theme ‘Sustainable Power Generation and Supply’ of the Research Councils’ Energy Programme, the first of its kind in the UK. Read more
This programme falls within the theme ‘Sustainable Power Generation and Supply’ of the Research Councils’ Energy Programme, the first of its kind in the UK.

Masters graduates will have a systematic knowledge and understanding of hydrogen, fuel cells and their applications, including developments and problems at the forefront of the discipline. They will be able to evaluate current research critically, and be original in the application of their knowledge, proposing new hypotheses as appropriate.

Typical Masters graduates will be able to deal with complex issues, making sound judgements in the absence of complete information, and will be able to communicate their conclusions clearly to specialist and non-specialist audiences. They will be self-motivating and able to act autonomously, and will have the qualities and transferable skills necessary to exercise initiative and personal responsibility, to make decisions in complex and unpredictable situations, and to have the independent learning ability required for continuing professional development.

Their high level of numeracy and skills in problem solving, team working, communication and information technology will equip them for successful careers outside as well as within the process and allied industries.

The MRes in Hydrogen, Fuel Cells and their Applications:

Demonstrates the exciting future promise of hydrogen, fuel cells and their applications in a zero-emission world
Shows that industry supports the developments and that jobs are plentiful
Stresses the international nature of the course, with travel overseas
Emphasises the high quality nature of the teaching in top grade RAE Schools
Supports entrepreneurial spirit, with three spin-out companies in hydrogen and fuel cells founded during the past 12 months at the University of Birmingham
Programme content

The programme will focus on taught modules (60 credits) in science, engineering and team building, as well as business and management, and a dissertation.

Further core modules deal with topics such as:

Materials for Hydrogen and Fuel Cell Technologies
The Energy System
Marketing and TQM
Effective Project Management
Business Methods, Economics and Strategy
Optional modules

A wide range of optional modules enables you to gain specific knowledge relating to hydrogen energy and fuel cell technology. You may also choose to study business, management and public engagement modules, or develop mathematical modelling skills.

The programme can be studied full-time over one year, or part-time over two or three years. Modules are also available individually to fulfil continuing professional development needs.

Dissertation

The research thesis will focus on any of the following areas: Solid Oxide Fuel Cell Systems, Solid Oxide Fuel Cell Stack Engineering for Domestic Applications, Hydrogen Proton Exchange Membrane Fuel Cell (PEMFC) Stack Engineering for Automotive, Hybrid Vehicular Systems, Membrane Electrode Assembly (MEA) & Electrocatalyst development, Direct Methanol Fuel Cell (DMFC) Stack Engineering for Portable Applications, Alkaline Polymer Electrolyte Fuel Cells, Discovery of New Nano-Materials for Hydrogen Production & Storage, Discovery of non-PGM alloys Materials, Hydrogen Production from Biomolecules by Novel Methods, Development of Novel Pd Alloy Thin-films for Use in High temperature Hydrogen Membrane Reactors.

Successful Masters students will have the opportunity to study for the PhD with Integrated Study in Hydrogen, Fuel Cells and their Applications.

About the School of Chemical Engineering

Birmingham has one of the largest concentrations of Chemical Engineering expertise in the UK, with an excellent reputation in learning, teaching and research.
Investment totalling over £3.5 million in our buildings has resulted in some of the best teaching, computing and laboratory facilities anywhere in the UK.
We have achieved an excellent performance in the Research Excellence Framework (REF) – the system for assessing the quality of research in UK higher education institutions. 87% of the research in the School was rated as world-leading or internationally excellent. It was ranked joint fourth overall in the UK for its research prowess and first nationally for research impact.
The enthusiasm that the academic staff have for their research comes through in their teaching and ensures that they and you are at the cutting edge of chemical engineering.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/postgraduate/funding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/postgraduate/visit

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
This course is accredited by the Association for Dance Movement Psychotherapy UK (ADMPUK), so you'll become a fully registered dance movement therapist with the ADMPUK. Read more

Why choose this course:

• This course is accredited by the Association for Dance Movement Psychotherapy UK (ADMPUK), so you'll become a fully registered dance movement therapist with the ADMPUK

• You'll develop the skills you need to support the health and well-being of vulnerable people, so it's a really rewarding course to choose

• This course will give you dance movement psychotherapy training and a licence to practice, as well as giving you an academic qualification at masters level

• We will support you during your placement to make sure that you're ready for your career in dance movement psychotherapy when you graduate

• You will be given the opportunity to undertake CPD training in Zero Balancing body work. This concerns the cultivation of sensitivity to the structure and energy of the body.

About the course:

The programme gives you solid experience of clinical dance movement therapy practice, supervision and work in education, as well as further closed group work. The main emphasis is on your work in a clinical environment and using creative skills to explore self-expression. You will be allocated a personal tutor who'll be responsible for monitoring your overall progress. As well as taught components, you'll be required to engage in personal therapy as this is a requirement for professional registration. This is a private arrangement and the cost is not included in the fees. Individual or group therapy is acceptable.

This course is accredited by the Association for Dance Movement Psychotherapy UK, so you can be confident that you'll be learning the most up to date thinking on dance movement psychotherapy.

During the course you'll build up your experience of clinical dance movement therapy, and use your creative skills to explore self-expression.

It's important to understand the history of dance movement psychotherapy from the early pioneers through to the current thinking. You'll cover concepts such as the theory and practice of the art form and the importance of improvisation, creativity and play. You'll also use and reflect on psychotherapeutic theory, while considering the implications for placement and practice. Because anatomy and physiology are essential to your understanding of movement and its relevance for psychotherapy, you'll also explore this during the course.

We've excellent facilities including our new dance studio, and have close links with Déda, the Derby dance centre.

You'll be allocated a personal tutor who will be responsible for monitoring your overall progress. As well as the taught components, you'll need to take part in personal therapy throughout the course, which can be individual or group therapy, because this is a requirement for professional registration as a dance movement psychotherapist.

You'll need to undertake health screening at the start of the course to monitor your fitness to practice.

Read less

  • 1
Show 10 15 30 per page



Cookie Policy    X