• University of Edinburgh Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of York Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • Swansea University Featured Masters Courses
King’s College London Featured Masters Courses
Cass Business School Featured Masters Courses
University of Strathclyde Featured Masters Courses
University of St Andrews Featured Masters Courses
University of Leeds Featured Masters Courses
"wireless" AND "sensor" A…×
0 miles

Masters Degrees (Wireless Sensor Network)

  • "wireless" AND "sensor" AND "network" ×
  • clear all
Showing 1 to 12 of 12
Order by 
The internet has developed at an astounding rate, connecting people in ways that we could never have imagined. On this programme you will study the advanced communications theory that underpins the science of networking, focusing on physical layer network communications, information theory and coding. Read more
The internet has developed at an astounding rate, connecting people in ways that we could never have imagined. On this programme you will study the advanced communications theory that underpins the science of networking, focusing on physical layer network communications, information theory and coding.

This new programme is for students who want to pursue a career shaping and defining the new generation of converged networks, responding to the rapid developments in telecommunication systems, such as social networking; seamless mobility; mobile data and the proliferation of applications for mobile and handheld devices. It will educate the next generation of network engineers in the fundamental science, mathematics and key technologies that underpin global networking.

This programme will:

-Provide an in-depth understanding of the key issues in next generation, all-packet networking.
-Cover quality of service-enabled transport; support for generalized mobility; ubiquitous provision of services to users; core network consolidation.
-Provide advanced communications theory to underpin the science.
-Address probabilistic methods for network performance evaluation, and network security.
-Provide an in-depth treatment of mobile networks from WCDMA 3G to LTE and LTE-Advanced.
-Address the new areas of sensor networks and Internet of Things.
-Teach you Java programming.
-Industrial Experience

The industrial placement currently takes place towards the end of the first year for a maximum of 12 months. It is the student’s responsibility to secure their placement, the school will offer guidance and support in finding and securing the placement but the onus is on the student to secure the job and arrange the details of the placement.

Currently if you are not able to secure a placement by the end of your second semester we will transfer you onto the 1 year FT taught programme without the Industrial Experience, this change would also be applied to any visa if you were here on a student visa.

The industrial placement consists of 8-12 months spent working with an appropriate employer in a role that relates directly to your field of study. The placement is currently undertaken between the taught component and the project. This will provide you with the opportunity to apply the key technical knowledge and skills that you have learnt in your taught modules, and will enable you to gain a better understanding of your own abilities, aptitudes, attitudes and employment potential. The module is only open to students enrolled on a programme of study with integrated placement.

If you do not secure a placement you will be transferred onto the 1 year FT programme.

Why study your MSc in Telecommunication Systems at Queen Mary?

The School of Electronic Engineering and Computer Science is rated in the top 20 universities in the UK for studying computer science and electronic engineering. We are internationally recognised for our pioneering and ground-breaking research, and innovative public engagement programme.

This new programme responds to the rapid developments in telecommunication systems, such as social networking; seamless mobility; mobile data and the proliferation of applications for mobile and handheld devices.
The programme teaches the Java programming foundations for network and services design, provides an in-depth treatment of the technological foundations of converged, all-packet networks, and current mobile networks from WCDMA 3G to LTE and LTE-Advanced.

It will enable you to develop an extensive understanding of 21st Century networks, current mobile and WLAN technologies, software for network and services design, network modelling, sensors and the Internet of Things, security and authentication, mobile services, next generation mobile technologies.

We have a long history of successfully offering postgraduate programmes in Telecommunications and in Wireless Networks.
We have recently recruited new staff who are international experts in the fields of converged all-IP networks with particular knowledge in modelling, measurements and QoE, in middleware and in wireless networking.
As well as teaching you, lecturers do research in their various fields of expertise. Being taught by someone who is engaged in potentially world-changing research ensures that lectures are fully up-to-date.
Facilities

The School of Electronic Engineering and Computer Science offers taught postgraduate students their own computing laboratory. MSc students have exclusive use of the top floor in our purpose-built, climate controlled, award winning informatics teaching laboratory (ITL) outside of scheduled laboratory sessions. The ITL hosts over 250 state-of-the-art PCs capable of multimedia production and several laser printers. In addition, there are video conference facilities, seminar rooms, and on-site teaching services and technical support. There are also a number of breakout spaces available to students with full wi-fi access allowing you use your own mobile devices.

The ITL is primarily used for taught laboratory sessions and regularly hosts research workshops and drop-in lab facilities. For postgraduate students on taught and research degrees there are specialist laboratories to use for carrying out research. Our augmented human interaction (AHI) laboratory combines pioneering technologies including full-body and multi-person motion capture, virtual and augmented reality systems and advanced aural and visual display technologies. We also have specialist laboratories in multimedia; telecommunication networks; and microwave antennas. In addition to these spaces, PhD students have generous study space in our research laboratories. In 2011 we completed the £2m development of new experimental facilities in Antennas and Media and Arts Technology. We formed the Interdisciplinary Informatics Hub in Collaboration with the Schools of Biological and Chemical Sciences and Mathematical Sciences. These laboratories provided a meeting place for postgraduates from the three Schools to interact and exchange ideas.

Read less
The internet has developed at an astounding rate, connecting people in ways that we could never have imagined. On this programme you will study the advanced communications theory that underpins the science of networking, focusing on physical layer network communications, information theory and coding. Read more
The internet has developed at an astounding rate, connecting people in ways that we could never have imagined. On this programme you will study the advanced communications theory that underpins the science of networking, focusing on physical layer network communications, information theory and coding.

This programme prepares you for a career in telecommunications and its applications, for example the integration of voice and data applications, within a business context. The programme combines in-depth coverage of the main technical aspects of telecommunications with advanced business modules. At the end of the programme you will be equipped with the skills needed for a wide range of jobs in the expanding telecommunications industry, with emphasis on those that are relevant to business/financial needs, particularly in the small business and start-up sector.

This programme will:

-Provide an in-depth understanding of the key issues in next generation, all-packet networking
-Cover quality of service-enabled transport; support for generalized mobility; ubiquitous provision of services to users; core network consolidation
-Provide advanced communications theory to underpin the science
-Address probabilistic methods for network performance evaluation, and network security
-Provide an in-depth treatment of mobile networks from WCDMA 3G to LTE and LTE-Advanced
-Address the new areas of sensor networks and Internet of Things
-Teach you Java programming
-Industrial Experience

The industrial placement currently takes place towards the end of the first year for a maximum of 12 months. It is the student’s responsibility to secure their placement, the school will offer guidance and support in finding and securing the placement but the onus is on the student to secure the job and arrange the details of the placement.

Currently if you are not able to secure a placement by the end of your second semester we will transfer you onto the 1 year FT taught programme without the Industrial Experience, this change would also be applied to any visa if you were here on a student visa.

The industrial placement consists of 8-12 months spent working with an appropriate employer in a role that relates directly to your field of study. The placement is currently undertaken between the taught component and the project. This will provide you with the opportunity to apply the key technical knowledge and skills that you have learnt in your taught modules, and will enable you to gain a better understanding of your own abilities, aptitudes, attitudes and employment potential. The module is only open to students enrolled on a programme of study with integrated placement.

If you do not secure a placement you will be transferred onto the 1 year FT programme.

Why study your MSc in Telecommunication Systems at Queen Mary?

The School of Electronic Engineering and Computer Science is rated in the top 20 universities in the UK for studying computer science and electronic engineering. We are internationally recognised for our pioneering and ground-breaking research, and innovative public engagement programme.

This new programme responds to the rapid developments in telecommunication systems, such as social networking; seamless mobility; mobile data and the proliferation of applications for mobile and handheld devices.
The programme teaches the Java programming foundations for network and services design, provides an in-depth treatment of the technological foundations of converged, all-packet networks, and current mobile networks from WCDMA 3G to LTE and LTE-Advanced.

It will enable you to develop an extensive understanding of 21st Century networks, current mobile and WLAN technologies, software for network and services design, network modelling, sensors and the Internet of Things, security and authentication, mobile services, next generation mobile technologies.
-We have a long history of successfully offering postgraduate programmes in Telecommunications and in Wireless Networks.
-We have recently recruited new staff who are international experts in the fields of converged all-IP networks with particular knowledge in modelling, measurements and QoE, in middleware and in wireless networking.
-As well as teaching you, lecturers do research in their various fields of expertise. Being taught by someone who is engaged in potentially world-changing research ensures that lectures are fully up-to-date.

Facilities
The School of Electronic Engineering and Computer Science offers taught postgraduate students their own computing laboratory. MSc students have exclusive use of the top floor in our purpose-built, climate controlled, award winning informatics teaching laboratory (ITL) outside of scheduled laboratory sessions. The ITL hosts over 250 state-of-the-art PCs capable of multimedia production and several laser printers. In addition, there are video conference facilities, seminar rooms, and on-site teaching services and technical support. There are also a number of breakout spaces available to students with full wi-fi access allowing you use your own mobile devices.

The ITL is primarily used for taught laboratory sessions and regularly hosts research workshops and drop-in lab facilities. For postgraduate students on taught and research degrees there are specialist laboratories to use for carrying out research. Our augmented human interaction (AHI) laboratory combines pioneering technologies including full-body and multi-person motion capture, virtual and augmented reality systems and advanced aural and visual display technologies. We also have specialist laboratories in multimedia; telecommunication networks; and microwave antennas. In addition to these spaces, PhD students have generous study space in our research laboratories. In 2011 we completed the £2m development of new experimental facilities in Antennas and Media and Arts Technology. We formed the Interdisciplinary Informatics Hub in Collaboration with the Schools of Biological and Chemical Sciences and Mathematical Sciences. These laboratories provided a meeting place for postgraduates from the three Schools to interact and exchange ideas.

Read less
Distributed and networked computation is now the paradigm that underpins the software-enabled systems that are proliferating in the modern world, with huge impact in the economy and society, from the sensor and actuator networks that are now connecting cities, to cyberphysical systems, to patient-centred healthcare, to disaster-recovery systems. Read more
Distributed and networked computation is now the paradigm that underpins the software-enabled systems that are proliferating in the modern world, with huge impact in the economy and society, from the sensor and actuator networks that are now connecting cities, to cyberphysical systems, to patient-centred healthcare, to disaster-recovery systems.

This new Masters course will educate and train you in the fundamental principles, methods and techniques required for developing such systems. Given the number of elective modules offered, you will be able to acquire further skills in one or more of Cloud Computing, Data Analytics and Information Security.

Facilities include a laboratory where you can experiment with physical devices that can be interconnected in a network, and a cluster facility configured to run the Hadoop MapReduce stack.

A Year in Industry option is also available for this course.

See the website https://www.royalholloway.ac.uk/computerscience/coursefinder/msc-distributed-and-networked-systems.aspx

Why choose this course?

This course will develop a highly analytical approach to problem solving and a strong background in distributed and networked systems, fault-tolerance and data replication techniques, distributed coordination and time-synchronisation techniques (leader-election, consensus, and clock synchronisation), data communication protocols and software stacks for wireless, sensor, and ad hoc networking technologies in virtualisation, and cloud computing technologies.

The course develops an advanced understanding of principles of failure detection and monitoring, principles of scalable storage, and in particular NoSQL technology.

Students will acquire the ability to:
- apply well-founded principles to building reliable and scalable distributed systems
- analyse complex distributed systems in terms of their performance, reliability, and correctness
- design and implement middleware services for reliable communication in unreliable networks
- work with state-of-the-art wireless, sensor, and ad hoc networking technologies
- design and implement reliable data communication and storage solutions for wireless, sensor, and ad hoc networks
- detect sources of vulnerability in networks of connected devices and deploy the appropriate countermeasures to information security threats.
- enforce privacy in “smart” environments
- work with open source and cloud tools for scalable data storage (DynamoDB) and coordination (Zookeeper)
- work with modern network management technologies (Software-Defined Networking) and standards (OpenFlow)
- design custom-built application-driven networking topologies using OpenFlow, and other modern tools
- work with relational databases (SQL), non-relational databases (MongoDb), as well as with Hadoop/Pig scripting and other big data manipulation techniques.

Department research and industry highlights

Royal Holloway is recognised for its research excellence in Machine Learning, Information Security, and Global Ubiquitous Computing.
We work closely with companies such as Centrica (British Gas, Hive), Cognizant, Orange Labs (UK), the UK Cards Association, Transport for London and ITSO.
We host a Smart Card Centre and we are a GCHQ Academic Centre of Excellence in Cyber Security Research (ACE-CSR).

Course content and structure

You will take taught modules during Term One (October to December) and Term Two (January to March). Examinations are held in May. If you are in the Year-in-Industry pathway, you then take an industrial placement, after which you come back for your project/dissertation (12 weeks).

Core course units are:
Interconnected Devices
Advanced Distributed Systems
Wireless, Sensor and Actuator Networks
Individual Project

Elective course units are:

Computation with Data
Databases
Introduction to Information Security
Data Visualisation and Exploratory Analysis
Programming for Data Analysis
Semantic Web
Multi-agent Systems
Advanced Data Communications
Machine Learning
Concurrent and Parallel Programming
Large-Scale Data Storage and Programming
Data Analysis
On-line Machine Learning
Smart Cards, RFIDs and Embedded Systems Security
Network Security
Computer Security
Security Technologies
Security Testing
Software Security
Introduction to Cryptography

Assessment

Assessment is carried out by a variety of methods including coursework, practical projects and a dissertation.

Employability & career opportunities

Our graduates are highly employable and, in recent years, have entered many different [department]-related areas, including This taught masters course equips postgraduate students with the subject knowledge and expertise required to pursue a successful career, or provides a solid foundation for continued PhD studies.

Read less
We offer Industrial Experience options on all our full-time taught MSc programmes, which combine academic study with a one-year industrial placement between your taught modules and summer project. Read more
We offer Industrial Experience options on all our full-time taught MSc programmes, which combine academic study with a one-year industrial placement between your taught modules and summer project. Taking the Industrial Experience option as part of your degree gives you a route to develop real-world, practical problem-solving skills gained through your programme of study in a professional context.

This can give you an important edge in the graduate job market. As a leading research School, we have excellent links with industry. We also employ dedicated staff to help you arrange your year in industry. The Industrial Experience programmes are highly competitive and attract the best students given the limited availability of placements. We are unable to guarantee all students secure an industrial placement, as our industrial partners conduct their own employment application and interview processes.

The internet has developed at an astounding rate, connecting people in ways that we could never have imagined. On this programme you will study the advanced communications theory that underpins the science of networking, focusing on physical layer network communications, information theory and coding.

This programme prepares you for a career in telecommunications and its applications, for example the integration of voice and data applications, within a business context. The programme combines in-depth coverage of the main technical aspects of telecommunications with advanced business modules. At the end of the programme you will be equipped with the skills needed for a wide range of jobs in the expanding telecommunications industry, with emphasis on those that are relevant to business/financial needs, particularly in the small business and start-up sector.

This programme will:

Provide an in-depth understanding of the key issues in next generation, all-packet networking
Cover quality of service-enabled transport; support for generalized mobility; ubiquitous provision of services to users; core network consolidation
Provide advanced communications theory to underpin the science
Address probabilistic methods for network performance evaluation, and network security
Provide an in-depth treatment of mobile networks from WCDMA 3G to LTE and LTE-Advanced
Address the new areas of sensor networks and Internet of Things
Teach you Java programming

Read less
An MSc-level conversion programme for those with first degrees in numerate disciplines (e.g. Maths, Physics, others with some mathematics to pre-university level should enquire). Read more
An MSc-level conversion programme for those with first degrees in numerate disciplines (e.g. Maths, Physics, others with some mathematics to pre-university level should enquire). The programme targets producing engineers with the knowledge and skills required for working in the communications industry on programmable hardware, in particular. There is a high demand for people to fill such roles in communications and test & measure equipment vendors, and in many smaller companies developing devices for the internet of things.

The huge growth of interconnected devices expected in the Internet of Things and the goals of flexible, high-speed wireless connections for 5G mobile networks and beyond, require programmable, embedded electronics to play a vital role. From the development of small, intelligence sensors to the design of large-scale network hardware that can be functionally adaptive in software-defined networking, there is a huge demand for advanced embedded electronics knowledge and skills in the communications sector.

Visit the website https://www.kent.ac.uk/courses/postgraduate/1223/embedded-communications-engineering

About the School of Engineering and Digital Arts

The School of Engineering and Digital Arts successfully combines modern engineering and technology with the exciting field of digital media.

Established over 40 years ago, the School has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

The School undertakes high-quality research that has had significant national and international impact, and our spread of expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. There is a thriving student population studying for postgraduate degrees in a friendly and supportive teaching and research environment.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

EL829 - Embedded Real-Time Operating Systems (15 credits)
EL849 - Research Methods & Project Design (30 credits)
EL893 - Reconfigurable Architectures (15 credits)
EL896 - Computer and Microcontroller Architectures (15 credits)
EL822 - Communication Networks (15 credits)
EL827 - Signal & Communication Theory II (15 credits)
EL871 - Digital Signal Processing (DSP) (15 credits)
EL872 - Wireless/Mobile Communications (15 credits)
EL873 - Broadband Networks (15 credits)
EL890 - MSc Project (60 credits)

Research areas

- Communications

The Group’s activities cover system and component technologies from microwave to terahertz frequencies. These include photonics, antennae and wireless components for a broad range of communication systems. The Group has extensive software research tools together with antenna anechoic chambers, network and spectrum analysers to millimetre wave frequencies and optical signal generation, processing and measurement facilities. Current research themes include:

- photonic components
- networks/wireless systems
- microwave and millimetre-wave systems
- antenna systems
- radio-over-fibre systems
- electromagnetic bandgaps and metamaterials
- frequency selective surfaces.

- Intelligent Interactions:

The Intelligent Interactions group has interests in all aspects of information engineering and human-machine interactions. It was formed in 2014 by the merger of the Image and Information Research Group and the Digital Media Research Group.

The group has an international reputation for its work in a number of key application areas. These include: image processing and vision, pattern recognition, interaction design, social, ubiquitous and mobile computing with a range of applications in security and biometrics, healthcare, e-learning, computer games, digital film and animation.

- Social and Affective Computing
- Assistive Robotics and Human-Robot Interaction
- Brain-Computer Interfaces
- Mobile, Ubiquitous and Pervasive Computing
- Sensor Networks and Data Analytics
- Biometric and Forensic Technologies
- Behaviour Models for Security
- Distributed Systems Security (Cloud Computing, Internet of Things)
- Advanced Pattern Recognition (medical imaging, document and handwriting recognition, animal biometrics)
- Computer Animation, Game Design and Game Technologies
- Virtual and Augmented Reality
- Digital Arts, Virtual Narratives.

- Instrumentation, Control and Embedded Systems:

The Instrumentation, Control and Embedded Systems Research Group comprises a mixture of highly experienced, young and vibrant academics working in three complementary research themes – embedded systems, instrumentation and control. The Group has established a major reputation in recent years for solving challenging scientific and technical problems across a range of industrial sectors, and has strong links with many European countries through EU-funded research programmes. The Group also has a history of industrial collaboration in the UK through Knowledge Transfer Partnerships.

The Group’s main expertise lies primarily in image processing, signal processing, embedded systems, optical sensors, neural networks, and systems on chip and advanced control. It is currently working in the following areas:

- monitoring and characterisation of combustion flames
- flow measurement of particulate solids
- medical instrumentation
- control of autonomous vehicles
- control of time-delay systems
- high-speed architectures for real-time image processing
- novel signal processing architectures based on logarithmic arithmetic.

Careers

The programme targets producing engineers with the knowledge and skills required for working in the communications industry on programmable hardware, in particular. There is a high demand for people to fill such roles in communications and test & measure equipment vendors, and in many smaller companies developing devices for the internet of things.

Kent has an excellent record for postgraduate employment: over 94% of our postgraduate students who graduated in 2013 found a job or further study opportunity within six months.

We have developed our programmes with a number of industrial organisations, which means that successful students are in a strong position to build a long-term career in this important discipline. You develop the skills and capabilities that employers are looking for, including problem solving, independent thought, report-writing, time management, leadership skills, team-working and good communication.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
NOTE Are you a student from outside the EU? If you are an international student we have designed a version of this award especially for you! It is called the Extended International Master in Telecommunication Engineering. Read more
NOTE Are you a student from outside the EU? If you are an international student we have designed a version of this award especially for you! It is called the Extended International Master in Telecommunication Engineering. It includes an extra semester of preliminary study to prepare you for postgraduate learning in the UK. We strongly recommend that all international students take this option as it is proven to improve your chances of success.

About this Course Telecommunication engineering encompasses the design and optimisation of communication networks for voice, data and multimedia applications. This award will provide students with an indepth knowledge and skills of computer communication, telecommunication networks, project management and research methods. This award aims to produce postgraduates with the knowledge and skills to enable them to enhance their career opportunities, which is relevant to the fast paced changing needs of the telecommunications and related industries.

Course content

The MSc in Telecommunication Engineering will give you a deep understanding of the principles of Telecommunication Systems

Modules Offered: Teaching Block 1
-Digital Signal Processing
-Cellular Network Planning Principles
-Voice and Data over Broadband Network
-Wireless Sensor Networks & IOT: Principles and Practices
-Digital Electronic Systems

Teaching Block 2
-Telecommunications
-Wireless Navigation Systems
-Optical Fibre Communication Systems
-Research Methods and Project Management

Teaching Block 3
-MSc Project

Read less
The School of Engineering and Digital Arts offers research-led degrees in a wide range of research disciplines, related to Electronic, Control and Information Engineering, in a highly stimulating academic environment. Read more
The School of Engineering and Digital Arts offers research-led degrees in a wide range of research disciplines, related to Electronic, Control and Information Engineering, in a highly stimulating academic environment. The School enjoys an international reputation for its work and prides itself in allowing students the freedom to realise their maximum potential.

Established over 40 years ago, the School has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

We undertake high-quality research that has had significant national and international impact, and our spread of expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. There is a thriving student population studying for postgraduate degrees in a friendly and supportive teaching and research environment.

We have research funding from the Research Councils UK, European research programmes, a number of industrial and commercial companies and government agencies including the Ministry of Defence. Our Electronic Systems Design Centre and Digital Media Hub provide training and consultancy for a wide range of companies. Many of our research projects are collaborative, and we have well-developed links with institutions worldwide.

Visit the website https://www.kent.ac.uk/courses/postgraduate/262/electronic-engineering

Project opportunities

Some projects available for postgraduate research degrees (http://www.eda.kent.ac.uk/postgraduate/projects_funding/pgr_projects.aspx).

Research areas

- Communications

The Group’s activities cover system and component technologies from microwave to terahertz frequencies. These include photonics, antennae and wireless components for a broad range of communication systems. The Group has extensive software research tools together with antenna anechoic chambers, network and spectrum analysers to millimetre wave frequencies and optical signal generation, processing and measurement facilities. Current research themes include:

- photonic components
- networks/wireless systems
- microwave and millimetre-wave systems
- antenna systems
- radio-over-fibre systems
- electromagnetic bandgaps and metamaterials
- frequency selective surfaces.

- Intelligent Interactions:

The Intelligent Interactions group has interests in all aspects of information engineering and human-machine interactions. It was formed in 2014 by the merger of the Image and Information Research Group and the Digital Media Research Group.

The group has an international reputation for its work in a number of key application areas. These include: image processing and vision, pattern recognition, interaction design, social, ubiquitous and mobile computing with a range of applications in security and biometrics, healthcare, e-learning, computer games, digital film and animation.

- Social and Affective Computing
- Assistive Robotics and Human-Robot Interaction
- Brain-Computer Interfaces
- Mobile, Ubiquitous and Pervasive Computing
- Sensor Networks and Data Analytics
- Biometric and Forensic Technologies
- Behaviour Models for Security
- Distributed Systems Security (Cloud Computing, Internet of Things)
- Advanced Pattern Recognition (medical imaging, document and handwriting recognition, animal biometrics)
- Computer Animation, Game Design and Game Technologies
- Virtual and Augmented Reality
- Digital Arts, Virtual Narratives.

- Instrumentation, Control and Embedded Systems:

The Instrumentation, Control and Embedded Systems Research Group comprises a mixture of highly experienced, young and vibrant academics working in three complementary research themes – embedded systems, instrumentation and control. The Group has established a major reputation in recent years for solving challenging scientific and technical problems across a range of industrial sectors, and has strong links with many European countries through EU-funded research programmes. The Group also has a history of industrial collaboration in the UK through Knowledge Transfer Partnerships.

The Group’s main expertise lies primarily in image processing, signal processing, embedded systems, optical sensors, neural networks, and systems on chip and advanced control. It is currently working in the following areas:

- monitoring and characterisation of combustion flames
- flow measurement of particulate solids
- medical instrumentation
- control of autonomous vehicles
- control of time-delay systems
- high-speed architectures for real-time image processing
- novel signal processing architectures based on logarithmic arithmetic.

Careers

We have developed our programmes with a number of industrial organisations, which means that successful students are in a strong position to build a long-term career in this important discipline. You develop the skills and capabilities that employers are looking for, including problem solving, independent thought, report-writing, time management, leadership skills, team-working and good communication.

Kent has an excellent record for postgraduate employment: over 94% of our postgraduate students who graduated in 2013 found a job or further study opportunity within six months.

Building on Kent’s success as the region’s leading institution for student employability, we offer many opportunities for you to gain worthwhile experience and develop the specific skills and aptitudes that employers value.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
Signal processing is recognised as a core technology in rapidly growing areas such as sensor networks, medical devices and renewable energy, audio, image and video systems. Read more

Why this course?

Signal processing is recognised as a core technology in rapidly growing areas such as sensor networks, medical devices and renewable energy, audio, image and video systems. It’s the underpinning technology of all communication including the internet, wireless and satellite.

We’ve been carrying out research and development in signal processing for more than 30 years. Many of today’s industry leaders are alumni of the University and this industry awareness and experience underpins this specialised degree.

This MSc aims to address the growing skills shortage in industry of engineers who have an understanding of the complete signal processing design cycle. It’s also essential preparation if you’re considering advanced research in applied signal processing.

See the website https://www.strath.ac.uk/courses/postgraduatetaught/signalprocessing/

What you’ll study

There are two semesters of compulsory and optional classes, followed by a three-month practical research project in a specialist area. There’s the opportunity to carry this out through the department's competitive MSc industrial internships.

The internships are offered in collaboration with selected department industry partners eg ScottishPower, SmarterGridSolutions, SSE. You'll address real-world engineering challenges facing the partner, with site visits, access and provision of relevant technical data and/or facilities provided, along with an industry mentor and academic supervisor.

Facilities

You'll have exclusive access to our extensive computing network and purpose built teaching spaces such as our Hyperspectral Imaging Centre and the DG Smith Radio Frequency laboratory, equipped with the latest technologies.

Accreditation

The course is fully accredited by the professional body, the Institution of Engineering and Technology (IET). This means that you'll meet the educational requirements to become a Chartered Engineer – a must for your future engineering career.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for a Masters degree at University of Strathclyde. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities on offer visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers today.

Learning & teaching

We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.

Each module comprises approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.

The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.

- Industry engagement
Interaction with industry is provided through our internships, teaching seminars and networking events. The department delivers monthly seminars to support students’ learning and career development. Xilinx, Texas Instruments, MathWorks, and Agilent are just a few examples of the industry partners you can engage with during your course.

Assessment

A variety of assessment techniques are used throughout the course. You'll complete at least six modules. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.

Assessment of the summer research project/internship consists of four elements, with individual criteria:
1. Interim report (10%, 1,500 to 3,000 words) – the purpose of this report is to provide a mechanism for supervisors to provide valuable feedback on the project’s objectives and direction.

2. Poster Presentation (15%) – a vital skill of an engineer is the ability to describe their work to others and respond to requests for information. The poster presentation is designed to give you an opportunity to practise that.

3. Final report (55%) – this assesses the communication of project objectives and context, accuracy and relevant of background material, description of practical work and results, depth and soundness of discussion and conclusions, level of engineering achievement and the quality of the report’s presentation.

4. Conduct (20%) - independent study, project and time management are key features of university learning. The level of your initiative & independent thinking and technical understanding are assessed through project meetings with your supervisor and your written logbooks.

Careers

With Signal Processing being a core technology in high-growth areas such as sensor networks, medical devices, renewable energy and communications, this course enables you to capitalise on job opportunities across all of these sectors, as well as in electronics design, IT, banking, and oil and gas.

Almost all of our graduates secure jobs by the time they have completed their course. They've taken up well-paid professional and technical occupations with multinationals such as Google, Microsoft, Texas Instruments, Motorola Mobility, Intel, as well as Wolfson Microelectronics, Agilent, Freescale and Thales in the vibrant national UK arena.

Find information on Scholarships here http://www.strath.ac.uk/engineering/electronicelectricalengineering/ourscholarships/.

Read less
This Electrical and Electronic Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of electrical and electronic engineering. Read more
This Electrical and Electronic Engineering MSc aims to further develop students' knowledge of and expertise in specialist engineering subjects associated with the main application areas of electrical and electronic engineering. Particular prominence is given to electrical power systems and machines, robotics and sensors, digital systems incorporating VHDL and signal processing.

An emphasis on applied technical work will strengthen the engineering development skills of students from an academic background.

WHY CHOOSE THIS COURSE?

-The programme is delivered by a specialist team of academics
-Electrical and electronic research carried out in the Faculty is recognised as 5% World-leading, 45% Internationally Excellent, 25% International, 25% National (RAE 2008)
-Access to state-of-the-art studio, laboratory and computing facilities within the new Engineering and Computing building
-Personal tutor support throughout the postgraduate study
-Excellent links with a number of industrial organisations enable access to the latest technology and real-world applications

WHAT WILL I LEARN?

The work carried out on this course will provide the demonstrable expertise necessary to help secure professional level employment in related industries. The topic areas also provide opportunities for interaction with the Faculty’s Research Centres who will source some of the individual projects for the programme.

The MSc in Electrical and Electronic Engineering curriculum consists of a fixed menu of study and a substantial MSc project. Successful completion of all elements leads to the award of MSc in Electrical and Electronic Engineering. Completion of the taught modules without a project leads to the award of a Postgraduate Diploma.

The mandatory modules are as follows:
-Digital System Design with VHDL
-Electrical Machines and Drives
-Power Systems
-Digital Signal and Image Processing
-Robotics: Kinematics, Dynamics and Applications
-Measurement and Sensor Technology
-Microprocessor Applications
-Renewable Energy and Smart Grid
-Individual Project

The substantial individual project gives students the opportunity to work on a detailed area of related technology alongside an experienced academic supervisor. Some projects are offered in conjunction with the work of the Faculty’s Research Centres or industry.

Typical project titles include:
-Embedded network interface development for measurement instruments
-Wireless sensors for industrial thermocouple temperature monitoring
-Power system network simulation
-Wind turbine generator simulation

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

The specialist topics studied on the programme will prepare you for work in specialist companies involved with electrical and electronic engineering. There are also many roles in related industries that rely on the technology.

Possible destinations include:
-Electrical power supply generation and distribution including renewables;
-Transport and industrial equipment manufacturers employing electrical drives; electrical vehicles are anticipated to create an increased demand in this area
-Industrial measurement and monitoring systems
-Robotics and associated activities
-Microelectronic applications

Opportunities also exist to complete a PhD research degree upon completion of the master’s course.

Electrical and electronic technology is now indispensible for modern life. We rely on electricity for the reliable supply of essential energy to our homes and businesses. Electronics is at the heart of products enabling our transport and communication systems.

GLOBAL LEADERS PROGRAMME

To prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
The huge growth of processing power, now available in small power-efficient packages, has fuelled the digital revolution, which has touched all sectors of the economy. Read more
The huge growth of processing power, now available in small power-efficient packages, has fuelled the digital revolution, which has touched all sectors of the economy. This practically orientated, advanced course in the area of electronics design and applications provides a strong digital technology core backed with applications-led modules.

You’ll study applications as diverse as medical and electronics, e-health, intelligent building design, automotive electronics, retail and commerce to prepare you for a range of careers in industry, where the skills you gain will be in high demand. A substantial element of practical work will give you confidence with software and digital hardware implementations using microcontrollers, FPGA, DSP devices and general system-on-chip methodology.

You’ll be taught by experts informed by their own world-leading research, and you’ll have access to world-class facilities to prepare for a career in a fast-changing industry.

Our School is an exciting and stimulating environment where you’ll learn from leading researchers in specialist facilities . These include our Keysight Technologies wireless communications lab, as well as labs for embedded systems, power electronics and drives, ultrasound and bioelectronics.

There’s also a Terahertz photonics lab, class 100 semiconductor cleanroom, traffic generators and analysers, FPGA development tools, sensor network test beds. We have facilities for electron-beam lithography and ceramic circuit fabrication – and a III-V semiconductor molecular beam epitaxy facility.

Read less
This course is accredited by the Institution of Engineering and Technology. This course, for graduates with a background in electronics, was designed with industry experts and is ideal for those aiming to enter a range of specialist careers in digital electronics or communications. Read more
This course is accredited by the Institution of Engineering and Technology.

This course, for graduates with a background in electronics, was designed with industry experts and is ideal for those aiming to enter a range of specialist careers in digital electronics or communications.

Gain advanced theoretical and practical knowledge and skills in digital communications, signal processing, electronic circuits and microprocessors, as well as an understanding of engineering best practice and how to apply it in real-life scenarios.

The course will provide you with academic and technical skills to analyse, synthesise, interpret and make sense of modern electronic systems. It will enable you to meet the demands of tomorrow’s engineering society.

Intermediate qualifications available:
• Postgraduate certificate – 60 credits at Masters level
• Postgraduate diploma – 120 credits at Masters level

This course is offered via block delivery. There are two entry points (October and November). This allows you to start when it is most suitable.

Visit the website: https://www.beds.ac.uk/howtoapply/courses/postgraduate/next-year/electronic-engineering-ucmk-15-months

Course detail

• Study in an electronic laboratory environment, gaining valuable hands-on experience as well as opportunities for industry connections including National Instruments, Rhode & Schwarz and Axis Electronics
• Explore topics including applied microwave and optical communications, systems engineering, embedded sensors, controllers and energy, advanced digital signal processing, microprocessor architecture and embedded hardware, advanced digital communications, wireless sensor networks, optical communications and other exciting emerging technologies such as energy harvesting
• Develop practical skills in laboratory sessions in which you will build and work with your own electronic devices
• Gain skills and insight into a fast-changing area on a course accredited by the Institute of Engineering & Technology (IET), making you well-prepared to enter a demanding and exciting industry
• Benefit from developing expertise and understanding of professional standards to allow you to access careers like electronic systems design, as a development engineer, in software design, as an embedded systems engineer, a communications engineer, product support engineer, technical consultant or further study on an MSc by Research, MPhil or PhD.

Modules

• Network Systems and Administration
• Accounting and Finance
• The Telecoms Business Environment
• Research Methodologies and Project Management
• MSc Project – Telecommunications Management

Assessment

The majority of units are assessed through coursework, group and individual projects, portfolios, essays, presentations or exams. Presentations are usually given and assessed in a group seminar. You will also produce software artefacts in the area of your specialism.

Constant feedback and advice from a supervisory or unit team will be provided to support you in your work.

You will progress from well-defined briefs to more open-ended and challenging assessments, which culminate in your major project – the MSc Project – where you will be given freedom to choose your area of work.

Careers

You will gain valuable skills for a career within Electronic Engineering as well as those relevant for the wider areas such as computer science or system engineering.

The unit ‘Professional Project Management’ requires you to work in a team to apply current project management methodology that embraces all of these knowledge areas in an integrated way while going through the stages of planning, execution and project control. You will work as part of a team, take responsibility and make autonomous decisions that impact on the project team performance.

Funding

For information on available funding, please follow the link: https://www.beds.ac.uk/howtoapply/money/scholarships/pg

How to apply

For information on how to apply, please follow the link: https://www.beds.ac.uk/howtoapply/course/applicationform

Read less

  • 1
Show 10 15 30 per page


Share this page:

Cookie Policy    X