• Swansea University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • University of York Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
King’s College London Featured Masters Courses
University of Kent Featured Masters Courses
University of Leeds Featured Masters Courses
University of Leeds Featured Masters Courses
University of Kent Featured Masters Courses
"wireless" AND "networks"…×
0 miles

Masters Degrees (Wireless Networks)

  • "wireless" AND "networks" ×
  • clear all
Showing 1 to 15 of 155
Order by 
Take advantage of one of our 100 Master’s Scholarships to study Intelligent Wireless Networks for Healthcare at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Intelligent Wireless Networks for Healthcare at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

The Department welcomes applications from students wishing to pursue graduate level research in Intelligent Wireless Networks for Healthcare.

Medical Engineering is the application of engineering principles to both the human body and to a broad range of instrumentation used in modern medicine.The courses at Swansea University draw on the exciting medical research that is taking place within the College of Engineering and the College of Medicine. The research success in the two colleges led to the creation of the £22 million Centre for NanoHealth (CNH), a unique facility linking engineering and medicine.

Our Medical Engineering graduates gain the skills of engineering, whilst also providing employers with the added experience and knowledge of anatomy and physiology, and the ability to communicate with clinicians.

Read less
Most people aren't familiar with Embedded Systems, but we use them every day of our lives. Smartphones, digital TV, MP3s and iPods, washing machines, even toys or a talking greetings card they all contain a microprocessor or a microcontroller. Read more
Most people aren't familiar with Embedded Systems, but we use them every day of our lives. Smartphones, digital TV, MP3s and iPods, washing machines, even toys or a talking greetings card they all contain a microprocessor or a microcontroller. Embedded systems are the backbone of the digital revolution.

As the complexity of embedded systems increases, the industry needs skilled graduates to fill the talent shortage.

Course detail

With the MSc Embedded Systems and Wireless Networks you'll develop a sound technical knowledge of the fundamentals of electronics, embedded systems, software and hardware, and become an embedded system designer with a multidisciplinary background. You'll develop software programming and hardware design skills, and a broad knowledge of electronics fundamentals.

Graduates of electronic engineering, systems engineering or other appropriate sciences can develop, deepen or update their skills and knowledge in advanced electronic engineering technology and cutting-edge research fields.

This course is ideal for graduate engineers interested in electronics, embedded systems, signal processing, mobile communications and wireless technology.

Modules

• Embedded Real-time Control Systems
• Safety Critical Embedded Systems
• Wireless and Mobile Communications
• Advanced Control and Dynamics
• System Design using HDLs
• Wireless Sensor Networks
• Group Project Challenge
• Dissertation

Format

You'll be taught by experienced specialist academic staff who are experts in basic and advanced electronics, control systems, basic and advanced robotics, mobile communications, wireless sensor networks, embedded systems, power systems, power electronics, signal processing and sensor technology. Many of them are involved in cutting-edge research.

You'll attend lectures, then apply what you've learned to real life through tutorial sessions, case studies, classroom discussions, project work, laboratory exercises and visits to or guest lectures from professionals working in engineering organisations.

Assessment

You are assessed through examinations, coursework, lab-based assessment and oral presentations. An independent examiner assesses your dissertation.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
Humber’s Wireless Telecommunications graduate certificate program prepares you with electronics, computer engineering, physics and telecommunications skills for work on the cutting-edge technologies in the wireless telecommunications industry. Read more
Humber’s Wireless Telecommunications graduate certificate program prepares you with electronics, computer engineering, physics and telecommunications skills for work on the cutting-edge technologies in the wireless telecommunications industry.

Students will become familiar with the infrastructure of communications systems and how to be successful in the communications industry. This wireless program focuses on three main outcomes: RF/optical test and measurement, networking, and troubleshooting a number of wireless telecommunications systems.You will learn to use engineering tools and equipment for testing of systems including LTE/UMTS/GSM drive test tools, spectrum analyzers, network analyzers, optical time domain reflectometers. You will also learn how to troubleshoot and configure local- and wide-area networks (LAN/WANs) at the device and at the protocol levels. Our courses cover additional networking topics relevant to telecom carriers such as MPLS, VPNs, QoS and VoIP. You will be prepared to understand the technology roadmap leading into Internet of Things (IoT), 5G and data center virtualization technologies.

This program is an established program with industry with over two decades of expertise. Students will have access to learn on some of the best equipment available. Curriculum is kept current with the collaboration of our industry partners in the wireless field. Students utilize the latest technologies in small classes taught by experienced faculty and industry leaders.

Course detail

Upon successful completion of the program, a graduate will:

• Analyze, test, measure and troubleshoot RF (radio frequency) signals, attenuation and antenna systems, and test and troubleshoot linear and non-linear circuit modules.
• Manage network performance issues and problems against user needs through the design, implementation, testing, and troubleshooting of a variety of current and relevant protocols.
• Build wired and/or wireless networks using design documentation, and measure the performance of both the wired and wireless networks’ components and the networks’ applications using basic and advanced network management tools and applications.
• Design, install and configure networks - implementing various network configurations using different standard protocols, and upgrade network hardware (e.g. workstations, servers, wireless access points, routers, switches, firewalls etc.) and related components and software according to the best practices in the industry.
• Monitor and evaluate network security issues and perform basic security audits on both wired and wireless networks.
• Utilize change control, issue documentation and problem escalation procedures and processes, generate and maintain “as-built” network documentation following industry best practices.
• Apply RF analog and digital circuit analysis and design concepts to analyze voice and data communication using different modulation techniques.
• Use simulation tools to mathematically model and solve RF (radio frequency) electrical and electronics networks which are essential components of telecommunications and wireless technologies.
• Install, or use existing, operating systems & its components and manage users, processes, memory management, peripheral devices, telecommunication, networking and security, and troubleshoot hardware and software components of computer and operating systems using system level commands and scripts.
• Assist in the design and development of a wide area of networks using a variety of network layer-one, layer-two and layer-three protocols, microwave communication links, and fiber optics links.
• Describe the infrastructures, components, and protocols of a wide range of wireless technologies.
• Develop the infrastructure required for VoIP transport through IP networks, and be able to configure VoIP clients such as IP telephones and soft phones.

Modules

Semester 1
• WLS 5000: Applied Electromagnetics
• WLS 5002: RF Technology
• WLS 5003: Telecommunication Systems
• WLS 5004: Data Networks
• WLS 5500: Microwave and Fibre Optics

Semester 2
• WLS 5501: Broadband Communications and Security
• WLS 5503: Mobile Technologies
• WLS 5505: Wireless Data Networks
• WLS 5506: LTE Core
• WLS 5507: Wireless Project and ITIL

Your Career

The Canadian wireless industry supports over 280,000 jobs with sector salary average more than Canada’s average salary. In addition, the international wireless telecommunications market is growing. There are numerous employment opportunities in the planning, developing, manufacturing, co-ordinating, implementing, maintaining and managing of telecommunications systems for businesses and government.

As the rate of technology adoption increases in Canadian industry, the Wireless Telecommunications program is preparing graduates for these new markets. A 2015-2019 labour market report by the Information and Communications Technology Council (ICTC) indicates that by 2019, over 182,000 critical ICT positions will be left unfilled.

Graduates of the program work at cell phone service providers, equipment manufacturers, in house information technology (IT) departments, sales departments, and specialized telecommunication and networking companies.

How to apply

Click here to apply: http://humber.ca/admissions/how-apply.html

Funding

For information on funding, please use the following link: http://humber.ca/admissions/financial-aid.html

Read less
This is a challenging one-year taught Master’s degree programme that provides students with a range of advanced topics drawn from communication networks (fixed and wireless) and related signal-processing, including associated enabling technologies. Read more
This is a challenging one-year taught Master’s degree programme that provides students with a range of advanced topics drawn from communication networks (fixed and wireless) and related signal-processing, including associated enabling technologies. It provides an excellent opportunity to develop the skills needed for careers in some of the most dynamic fields in communication networks.

This programme builds on the internationally recognised research strengths of the Communications Systems and Networks, High Performance Networks and Photonics research groups within the Smart Internet Lab. The groups conduct pioneering research in a number of key areas, including network architectures, cross-layer interaction, high-speed optical communications and advanced wireless access.

There are two taught units related to optical communications: Optical Networks and Data Centre Networks. Optical Networks will focus on Wavelength Division Multiplexed (WDM) networks, Time Division Multiplexed (TDM) networks including SDH/SONET and OTN, optical frequency division multiplexed networks, and optical sub-wavelength switched networks. Data Centre Networks will focus on networks for cloud computing, cloud-based networking, grid-computing and e-science. There is a further networking unit: Networked Systems and Applications, which provides a top-down study of networking system support for distributed applications, from classical web and email to telemetry for the Internet of Things.

The programme is accredited by the Institution of Engineering and Technology until 2018, one of only a handful of accredited programmes in this field in the UK.

Programme structure

Your course will cover the following core subjects:

Semester One (40 credits)
-Communication systems
-Digital filters and spectral analysis
-Mobile communications
-Networking protocol principles

Semester Two (80 credits)
-Data centre networking
-Advanced networks
-Broadband wireless communications
-Networked systems and applications
-Engineering research skills
-Optical communications systems and data networks
-Optical networks

Project (60 credits)
You will carry out a substantial research project, starting during Semester Two and completed during the summer. This may be based at the University or with industrial partners.

Careers

This one-year MSc programme gives you a world-class education in all aspects of current and future communication networks and signal processing. It will prepare you for a diverse range of exciting careers - not only in the communications field, but also in other areas such as management consultancy, project management, finance and government agencies.

Our graduates have gone on to have rewarding careers in some of the leading multinational communications companies, such as Huawei, China Telecom, Toshiba, China Mobile and Intel. Some graduates follow a more research-oriented career path, with a number of students going on to study for PhDs at leading universities.

Read less
The Advanced Communications Engineering (Wireless Systems and Networks) MSc is one of Kent’s newest programmes. It targets the needs of researchers and industry in a fast-paced and technical communications sector which continues to bring many of the advances that make ultra-fast wireless communications possible. Read more
The Advanced Communications Engineering (Wireless Systems and Networks) MSc is one of Kent’s newest programmes. It targets the needs of researchers and industry in a fast-paced and technical communications sector which continues to bring many of the advances that make ultra-fast wireless communications possible.

*This course will be taught at the Canterbury campus*

Visit the website: https://www.kent.ac.uk/courses/postgraduate/261/wireless-communications-signal-processing

Course detail

The programme reflects the latest developments in wireless communications, with particular emphasis on digital signal processing using embedded systems. It has been designed to produce high-calibre engineers that can specialise in and understand the complex system designs used in the wireless communications field.

Format and assessment

The programme is delivered by internationally leading researchers in our Communications and Instrumentation, Control & Embedded Systems groups. They provide first-hand experience of cutting-edge research into next-generation wireless communications, converged access networks and embedded systems.

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation:

- Communication Networks (15 credits)
- Signal & Communication Theory II (15 credits)
- Embedded Real-Time Operating Systems (15 credits)
- Research Methods & Project Design (30 credits)
- Digital Signal Processing (DSP) (15 credits)
- Wireless/Mobile Communications (15 credits)
- Computer & Reconfigurable Architectures (15 credits)
- MSc Project (60 credits)

The project module is examined by a presentation and dissertation. The Research Methods and Project Design module is examined by several components of continuous assessment. The other modules are assessed by examinations and smaller components of continuous assessment. MSc students must gain credit from all the modules. For the PDip, you must gain at least 120 credits in total, and pass certain modules to meet the learning outcomes of the PDip programme.

Careers

We have developed the programme with a number of industrial organisations, which means that successful students will be in a strong position to build a long-term career in this important discipline.

Kent has an excellent record for postgraduate employment: over 94% of our postgraduate students who graduated in 2013 found a job or further study opportunity within six months.

How to apply: https://www.kent.ac.uk/courses/postgraduate/apply/

Why study at The University of Kent?

- Shortlisted for University of the Year 2015
- Kent has been ranked fifth out of 120 UK universities in a mock Teaching Excellence Framework (TEF) exercise modelled by Times Higher Education (THE).
- In the Research Excellence Framework (REF) 2014, Kent was ranked 17th* for research output and research intensity, in the Times Higher Education, outperforming 11 of the 24 Russell Group universities
- Over 96% of our postgraduate students who graduated in 2014 found a job or further study opportunity within six months.
Find out more: https://www.kent.ac.uk/courses/postgraduate/why/

Postgraduate scholarships and funding

We have a scholarship fund of over £9 million to support our taught and research students with their tuition fees and living costs. Find out more: https://www.kent.ac.uk/scholarships/postgraduate/

English language learning

If you need to improve your English before and during your postgraduate studies, Kent offers a range of modules and programmes in English for Academic Purposes (EAP). Find out more here: https://www.kent.ac.uk/courses/postgraduate/international/english.html

Read less
This course is accredited by the IET. COURSE AIMS. The evolution of wireless communication systems and networks in recent years has been explosive. Read more
This course is accredited by the IET.

COURSE AIMS:
The evolution of wireless communication systems and networks in recent years has been explosive. This is a global phenomenon, which presently is outstripping the ability of commercial organisations to recruit personnel equipped with the necessary blend of technical and managerial skills who can initiate and manage the introduction of the new emerging technologies in networks and wireless systems. The effect of this current trend has been a growing overlap of the network and communication industries, from component fabrication to system integration. Another result is the development of integrated systems that transmit and process all types of data and information.

The course aims to develop a strong theoretical background involving the future of wireless communication systems. It will also develop a detailed technical knowledge of current practice in wireless systems and networks. It is a distinctive course that is not taught anywhere else in the UK. You will benefit from both a theoretical and practical grounding in the course due to the availability of a fully working wireless laboratory in the School, allowing students to develop their skills in this field. The lab was established as a direct result of research in this field.

The flourishing market place for mobile networks has meant that the telecommunication companies (Vodafone, O2, etc) are making their largest profits from this sector of industry. Therefore demand for jobs and for trained engineers to fill those jobs remains very high.

The connectionless office is also a new trend for creating flexible working areas within companies and organisations and the demand for wireless engineers in this domain is expected to be very high in the future. The continuing trend of convergence of services and networks mean that a lot of new industries and research institutions are looking into integrating satellite, mobile and GPS networks.

The course is comprised of the following modules:

Advanced Digital Comunications
Wireless Network Technologies
Advanced Mobile Systems
Satellite and Optical Communications
DSP for Communications
Wireless Communication Security
Project Management
Wireless Communication Workshop
Dissertation

Read less
This MSc programme targets the needs of a rapidly evolving telecommunications sector and provides an industrially relevant and exciting qualification in the latest broadband and mobile technologies being employed and developed. Read more
This MSc programme targets the needs of a rapidly evolving telecommunications sector and provides an industrially relevant and exciting qualification in the latest broadband and mobile technologies being employed and developed.

Study the techniques and technologies that enable broadband provision through fixed and wireless/mobile networks, and that modernise the core networks to provide ultra-high bit-rates and multi-service support. The Broadband and Mobile Communication Networks MSc at Kent is well-supported by companies and research establishments in the UK and overseas.

The programme reflects the latest issues and developments in the telecommunications industry, delivering high-quality systems level education and training. Gain deep knowledge of next-generation wireless communication systems including antenna technology, components and systems, and fibre optic and converged access networks.

Visit the website https://www.kent.ac.uk/courses/postgraduate/247/broadband-mobile-communication-networks

About the School of Engineering and Digital Arts

The School of Engineering and Digital Arts (http://www.eda.kent.ac.uk/) successfully combines modern engineering and technology with the exciting field of digital media. The School was established over 40 years ago and has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

The School undertakes high-quality research that has had significant national and international impact, and our expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. We have a thriving student population studying for postgraduate degrees in a friendly and supportive teaching and research environment.

We have research funding from the Research Councils UK, European research programmes, industrial and commercial companies and government agencies including the Ministry of Defence. Our Electronic Systems Design Centre and Digital Media Hub provide training and consultancy for a wide range of companies. Many of our research projects are collaborative, and we have well-developed links with institutions worldwide.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

EL872 - Wireless/Mobile Communications (15 credits)
EL873 - Broadband Networks (15 credits)
EL822 - Communication Networks (15 credits)
EL827 - Signal & Communication Theory II (15 credits)
EL849 - Research Methods & Project Design (30 credits)
EL871 - Digital Signal Processing (DSP) (15 credits)
EL891 - System and Circuit Design (15 credits)
EL892 - Satellite and Optical Communication Systems (15 credits)
EL890 - MSc Project (60 credits)

Assessment

The project module is examined by a presentation and dissertation. The Research Methods and Project Design module is examined by several components of continuous assessment. The other modules are assessed by examinations and smaller components of continuous assessment. MSc students must gain credit from all the modules. For the PDip, you must gain at least 120 credits in total, and pass certain modules to meet the learning outcomes of the PDip programme.

Programme aims

This programme aims to:

- educate graduate engineers and equip them with advanced knowledge of telecommunications and communication networks (including mobile systems), informed by insights and problems at the forefront of these fields of study, for careers in research and development in industry or academia

- produce high-calibre engineers with experience in specialist and complex problem-solving skills and techniques needed for the interpretation of knowledge and for systems level design in the telecommunications field

- provide you with proper academic guidance and welfare support

- create an atmosphere of co-operation and partnership between staff and students, and offer you an environment where you can develop your potential

- strengthen and expand opportunities for industrial collaboration with the School of Engineering and Digital Arts.

Research areas

- Communications

The Group’s activities cover system and component technologies from microwave to terahertz frequencies. These include photonics, antennae and wireless components for a broad range of communication systems. The Group has extensive software research tools together with antenna anechoic chambers, network and spectrum analysers to millimetre wave frequencies and optical signal generation, processing and measurement facilities.

Current main research themes include:

- photonic components
- networks/wireless systems
- microwave and millimetre-wave systems
- antenna systems
- radio-over-fibre systems
- electromagnetic bandgaps and metamaterials
- frequency selective surfaces.

Careers

We have developed the programme with a number of industrial organisations, which means that successful students will be in a strong position to build a long-term career in this important discipline.

School of Engineering and Digital Arts has an excellent record of student employability. We are committed to enhancing the employability of all our students, to equip you with the skills and knowledge to succeed in a competitive, fast-moving, knowledge-based economy.

Graduates who can show that they have developed transferable skills and valuable experience are better prepared to start their careers and are more attractive to potential employers. Within the School of Engineering and Digital Arts, you can develop the skills and capabilities that employers are looking for. These include problem solving, independent thought, report-writing, time management, leadership skills, team-working and good communication.

Building on Kent’s success as the region’s leading institution for student employability, we offer many opportunities for you to gain worthwhile experience and develop the specific skills and aptitudes that employers value.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
Computer Science Departmental degree requirements for the master’s degree, which are in addition to those established by the College of Engineering and the Graduate School (http://graduate.ua.edu/), are as follows for Plan I and Plan II students. Read more
Computer Science Departmental degree requirements for the master’s degree, which are in addition to those established by the College of Engineering and the Graduate School (http://graduate.ua.edu/), are as follows for Plan I and Plan II students.

- Master of Science–Thesis Option (http://cs.ua.edu/graduate/ms-program/#thesis)
- Master of Science–Non-Thesis Option (http://cs.ua.edu/graduate/ms-program/#nonthesis)
- Timetable for the Submission of Graduate School Forms for an MS Degree (http://cs.ua.edu/graduate/ms-program/#timetable)

Visit the website http://cs.ua.edu/graduate/ms-program/

MASTER OF SCIENCE–THESIS OPTION (PLAN I):

30 CREDIT HOURS
Each candidate must earn a minimum of 24 semester hours of credit for coursework, plus a 6-hour thesis under the direction of a faculty member. Unlike the general College of Engineering requirements, graduate credit may not be obtained for courses at the 400-level.

Degree Requirements Effective Fall 2011

Credit Hours
The student must successfully complete 30 total credit hours, as follows:

- 24 hours of CS graduate-level course work

- 6 hours of CS 599 Master’s Thesis Research: Thesis Research.

- Completion of at least one 500-level or 600-level course in each of the four core areas (applications, software, systems and theory). These courses must be taken within the department and selected from the following:
Applications: CS 528, CS 535, CS 557, CS 560, CS 609, CS 615
Software: CS 503, CS 507, CS 515, CS 516, CS 534, CS 600, CS 603, CS 607, CS 614, CS 630
Systems: CS 526, CS 538, CS 567, CS 606, CS 613, CS 618
Theory: CS 500, CS 570, CS 575, CS 601, CS 602, CS 612

- No more than 12 hours from CS 511, CS 512, CS 591, CS 592, CS 691, CS 692 and non-CS courses may be counted towards the coursework requirements for the master’s degree. Courses taken outside of CS are subject to the approval of the student’s advisor.

- Additional Requirements -

- The student will select a thesis advisor and a thesis committee. The committee must contain at least four members, including the thesis advisor. At least two members are faculty of the Computer Science department, and at least one member must be from outside the Department of Computer Science.

- The student will develop a written research proposal. This should contain an introduction to the research area, a review of relevant literature in the area, a description of problems to be investigated, an identification of basic goals and objectives of the research, a methodology and timetable for approaching the research, and an extensive bibliography.

- The student will deliver an oral presentation of the research proposal, which is followed by a question-and-answer session that is open to all faculty members and which covers topics related directly or indirectly to the research area. The student’s committee will determine whether the proposal is acceptable based upon both the written and oral presentations.

- The student will develop a written thesis that demonstrates that the student has performed original research that makes a definite contribution to current knowledge. Its format and content must be acceptable to both the student’s committee and the Graduate School.

- The student will defend the written thesis. The defense includes an oral presentation of the thesis research, followed by a question-and-answer session. The student’s committee will determine whether the defense is acceptable.

- The student will complete an oral comprehensive exam. This exam is scheduled with the Department Head prior to the semester in which the student intends to graduate.

- Other requirements may be specified by the Graduate School (http://graduate.ua.edu/) and by the College of Engineering.

Degree Requirements Prior to Fall 2011

Credit hours

The student must successfully complete 30 total credit hours, as follows:

- 6 hours of CS 599 Master’s Thesis Research

- 24 hours of CS graduate-level course work with a grade of A or B, including the following courses completed at The University of Alabama:
At least 3 hours of theory courses (CS 500 Discrete math, CS 601 Algorithms, CS 602 Formal languages, CS 612 Data structures)

At least 3 hours of software courses (CS 600 Software engineering, CS 603 Programming languages, CS 607 Human-computer interaction, CS 614 Compilers, CS630 Empirical Software Engineering)

At least 3 hours of systems courses (CS 567 Computer architecture, CS 606 Operating systems, CS 613 Networks, CS 618 Wireless networks)

At least 3 hours of applications courses (CS 535 Graphics, CS 560 or 591 Robotics, CS 591 Security, CS 609 Databases)

- Additional Requirements -

- The student will select a thesis advisor and a thesis committee. The committee must contain at least four members, including the thesis advisor. At least two members are faculty of the Computer Science department, and at least one member must be from outside the Department of Computer Science.

- The student will develop a written research proposal. This should contain an introduction to the research area, a review of relevant literature in the area, a description of problems to be investigated, an identification of basic goals and objectives of the research, a methodology and timetable for approaching the research, and an extensive bibliography.

- The student will deliver an oral presentation of the research proposal, which is followed by a question-and-answer session that is open to all faculty members and which covers topics related directly or indirectly to the research area. The student’s committee will determine whether the proposal is acceptable based upon both the written and oral presentations.

- The student will develop a written thesis that demonstrates that the student has performed original research that makes a definite contribution to current knowledge. Its format and content must be acceptable to both the student’s committee and the Graduate School.

- The student will defend the written thesis. The defense includes an oral presentation of the thesis research, followed by a question-and-answer session. The student’s committee will determine whether the defense is acceptable.

- The student will complete an oral comprehensive exam. This exam is scheduled with the Department Head prior to the semester in which the student intends to graduate.

- Other requirements may be specified by the Graduate School (http://graduate.ua.edu/) and by the College of Engineering.

MASTER OF SCIENCE–NON-THESIS OPTION (PLAN II):

30 CREDIT HOURS
Each candidate must earn a minimum of 30 semester hours of credit for coursework, which may include a 3-hour non-thesis project under the direction of a faculty member. Unlike the general College of Engineering requirements, graduate credit may not be obtained for courses at the 400-level.

Degree Requirements Effective Fall 2011

The student must successfully complete 30 total credit hours, as follows:

- Completion of at least one 500-level or 600-level course in each of the four core areas (applications, software, systems and theory).
Applications: CS 528, CS 535, CS 557, CS 560, CS 609, CS 615
Software: CS 503, CS 507, CS 515, CS 516, CS 534, CS 600, CS 603, CS 607, CS 614, CS 630
Systems: CS 526, CS 538, CS 567, CS 606, CS 613, CS 618
Theory: CS 500, CS 570, CS 575, CS 601, CS 602, CS 612

- No more than 12 hours from CS 511, CS 512, CS 591, CS 592, CS 691, CS 692 and non-CS courses may be counted towards the coursework requirements for the master’s degree. Courses taken outside of CS are subject to the approval of the student’s advisor.

- The student may elect to replace 3 hours of course work with 3 hours of CS 598 Research Not Related to Thesis: Non-thesis Project. This course should be proposed in writing in advance, approved by the instructor, and a copy placed in the student’s file. The proposal should specify both the course content and the specific deliverables that will be evaluated to determine the course grade.

- Additional Requirements -

- The student will complete an oral comprehensive exam. This exam is scheduled with the Department Head prior to the semester in which the student intends to graduate.

- Other requirements may be specified by the Graduate School and by the College of Engineering.

Degree Requirements Prior to Fall 2011

Credit hours

The student must successfully complete 30 total credit hours of CS graduate-level course work with a grade of A or B, as follows:

- The following courses will be completed at The University of Alabama:
At least 3 hours of theory courses (CS 500 Discrete math, CS 601 Algorithms, CS 602 Formal languages, CS 612 Data structures)

At least 3 hours of software courses (CS 600 Software engineering, CS 603 Programming languages, CS 607 Human-computer interaction, CS 614 Compilers, CS630 Empirical Software Engineering)

At least 3 hours of systems courses (CS 567 Computer architecture, CS 606 Operating systems, CS 613 Networks, CS 618 Wireless networks)

At least 3 hours of applications courses (CS 535 Graphics, CS 560 or 591 Robotics, CS 591 Security, CS 609 Databases)

- The student may elect to replace 3 hours of course work with 3 hours of CS 598 Research Not Related to Thesis: Non-thesis Project. This course should be proposed in writing in advance, approved by the instructor, and a copy placed in the student’s file. The proposal should specify both the course content and the specific deliverables that will be evaluated to determine the course grade.

- Additional Requirements -

- The student will complete an oral comprehensive exam. This exam is scheduled with the Department Head prior to the semester in which the student intends to graduate.

- Other requirements may be specified by the Graduate School and by the College of Engineering.

TIMETABLE FOR THE SUBMISSION OF GRADUATE SCHOOL FORMS FOR AN MS DEGREE
This document identifies a timetable for the submission of all Graduate School paperwork associated with the completion of an M.S. degree

- For students in Plan I students only (thesis option) after a successful thesis proposal defense, you should submit the Appointment/Change of a Masters Thesis Committee form

- The semester before, or no later than the first week in the semester in which you plan to graduate, you should “Apply for Graduation” online in myBama.

- In the semester in which you apply for graduation, the Graduate Program Director will contact you about the Comprehensive Exam.

Find out how to apply here - http://graduate.ua.edu/prospects/application/

Read less
This course aims to provide the knowledge and skills required to design, model and effectively operate secure and dependable digital IP-based networks. Read more
This course aims to provide the knowledge and skills required to design, model and effectively operate secure and dependable digital IP-based networks. It will provide you with the opportunity to gain a sound understanding of the internet protocol suite that forms the core for current data networks. The fusion of the internet world and multimedia is also addressed, as well as wireless communications. You can combine this course with management studies.

Key features
-This course is accredited by BCS, The Chartered Institute for IT.
-You will have the opportunity to study for industry certification, including CISCO, as an optional extra to the masters programme.
-You will have the option to work in one of our state-of-the-art research labs, called WMN (Wireless Multimedia and Networking). WMN is involved in EU and UK research collaborations and offers opportunities for advanced research and short-term research fellowships on completion of your MSc degree.

What will you study?

Using the latest methods and conforming to current network design standards, you will develop a disciplined engineering approach to, and sound practical skills in, the specification, design, modelling and implementation of software and hardware. You will gain specialist knowledge of digital communications , multimedia communications , wireless networks, security issues and other advanced technologies. You will have access to a dedicated test LAN/ WLAN with a diverse range of platforms and equipment, including wireless networks and enterprise scale networking technologies.

The management studies route modules will set your technical knowledge in a management context.

Assessment

Coursework and/or exams, research project/dissertation.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

The full MSc course consists of an induction programme, four taught modules, and project dissertation. Please note that this is an indicative list of modules and is not intended as a definitive list.

Networking and Data Communications MSc modules
-Data Communications
-Wireless Communications and Networks
-Network and Information Security
-Multimedia Communications
-Project Dissertation

Read less
The Internet forms a paradigm shift in the way the world operates and communicates. This has huge significance for the future, and a solid understanding of Internet technology is almost a guarantee for a successful career. Read more
The Internet forms a paradigm shift in the way the world operates and communicates. This has huge significance for the future, and a solid understanding of Internet technology is almost a guarantee for a successful career.

This programme aims to give students a broad, comprehensive and detailed knowledge about all aspects of computer networks.

Focusing on all aspects of what is relevant to future network experts, the programme provides a view on network architecture, protocols, security, performance and programming as well as wireless networks.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/computer-science/internet-computing-network-security/

Programme modules

Taught Modules:
- Network Modelling and Performance
- Internet Systems
- Internet Protocol Design
- Building Secure Networks
- Cryptography and Secure Systems
- Wireless Networks
- Project Preparation
- Research Methods
- Individual Project

Module delivery

Full-time MSc programmes are of 12 months duration. Modules are based over two 15 week semesters with the rest of the 12 months spent on a guided personal research project. Many of our students undertake industry-oriented projects.

The intensive 2-3 week module teaching structure may appeal to those in employment who wish to study on a part-time basis. To maintain the relevance of previous study, part-time students are recommended to complete the programme in as short a time as possible, although up to seven years is permitted for the MSc.

Modules listed are correct at the time of publication, however, we continually review content, so modules may change.

Assessment

Taught modules, with a total modular weight of 120 credits, assessed by coursework and in-class tests. Project: 60 credits.

Careers and further study

Graduates achieve the necessary qualification to seek employment in industry immediately and gain a solid basis from which to pursue a career in industry or academia.

Sponsorships, Scholarships and Bursaries

The Department awards University Scholarships and Department Bursaries to a number of highly qualified students. External funding may also be available.

Why choose computer science at Loughborough?

We form a lively community within a stimulating learning and working environment, and regularly welcome visiting lecturers and researchers who contribute to the intellectual and social life of the Department, now housed in the multi-million pound refurbished Haslegrave Building.

The Quality Assurance Agency has given the Department the highest available commendation for the standard of its teaching provision.

- Facilities
Our departmental facilities and student support services offer the best all-round experience for learning, enhancing employability and expanding skills desirable outside University life.
Students have 24-hour exclusive access to computer laboratories, including a dedicated MSc laboratory, supported by a team of systems specialists, and our virtual learning environment provides online access to lectures and other material.

- Research
Our research not only helps to keep the curriculum up to date, but also gives students the opportunity to work on collaborative projects with industry partners.

- Career Prospects
Our graduates have gone on to enjoy careers within a diverse range of organisations, including Google, Credit Suisse, Ocado, Rolls-Royce, Winton Capital and AVG Technologies.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/computer-science/internet-computing-network-security/

Read less
This course aims to provide the knowledge and skills required to design, model and effectively operate secure and dependable digital IP-based networks. Read more
This course aims to provide the knowledge and skills required to design, model and effectively operate secure and dependable digital IP-based networks. It will provide you with the opportunity to gain a sound understanding of the internet protocol suite that forms the core for current data networks. The fusion of the internet world and multimedia is also addressed, as well as wireless communications. You can combine this course with management studies.

Key features

-This course is accredited by BCS, The Chartered Institute for IT.
-You will have the opportunity to study for industry certification, including CISCO, as an optional extra to the masters programme.
-You will have the option to work in one of our state-of-the-art research labs, called WMN (Wireless Multimedia and Networking). WMN is involved in EU and UK research collaborations and offers opportunities for advanced research and short-term research fellowships on completion of your MSc degree.

What will you study?

Using the latest methods and conforming to current network design standards, you will develop a disciplined engineering approach to, and sound practical skills in, the specification, design, modelling and implementation of software and hardware. You will gain specialist knowledge of digital communications , multimedia communications , wireless networks, security issues and other advanced technologies. You will have access to a dedicated test LAN/ WLAN with a diverse range of platforms and equipment, including wireless networks and enterprise scale networking technologies.

The management studies route modules will set your technical knowledge in a management context.

Assessment

Coursework and/or exams, research project/dissertation.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

The full MSc course consists of an induction programme, four taught modules, and project dissertation. Please note that this is an indicative list of modules and is not intended as a definitive list.

Networking and Data Communications with Management Studies MSc modules
-Data Communications
-Wireless Communications and Networks
-Network and Information Security
-Business in Practice
-Project Dissertation

Read less
This programme provides a broad coverage of computer networks, computer security and mobile device technologies. It looks in depth at some of the security issues that fixed and wireless networks are subject to, and the current solutions employed to address these problems. Read more
This programme provides a broad coverage of computer networks, computer security and mobile device technologies. It looks in depth at some of the security issues that fixed and wireless networks are subject to, and the current solutions employed to address these problems.

* This programme will be taught at the Canterbury campus*

Key benefits

- Work placement available

- In the Research Excellence Framework (REF) 2014, research by the School of Computing was ranked 12th in the UK for research intensity.

Visit the website: https://www.kent.ac.uk/courses/postgraduate/259/networks-security

Course detail

The Internet carries huge volumes of personal, business and financial data, much of which is accessed wirelessly through mobile devices. Security measures are increasingly essential to protect systems and data from attack (e.g. interception) and abuse (e.g. junk email). This course provides a broad coverage of computer networks, computer security and mobile device technologies. It looks in depth at some of the security issues that fixed and wireless networks are subject to and the current solutions employed to address these problems.

Purpose

This course will appeal to computing graduates seeking careers in the network or network security industries, or those who wish to carry on with this topic as an area of research. All taught Master's programmes at Canterbury are available with an optional industrial placement.

Format and assessment

Core modules for all students:

- Computer Security
- Networks and Network Security
- Advanced Network Security
- Mobile and Ubiquitous Computing
- Project Research
- Project and Dissertation

Assessment is through a mixture of written examinations and coursework, the relative weights of which vary according to the nature of the module. The final project is assessed by a dissertation, except for the MSc in IT Consultancy for which the practical consultancy work is assessed through a series of reports covering each of the projects undertaken.

How to apply: https://www.kent.ac.uk/courses/postgraduate/apply/

Why study at The University of Kent?

- Shortlisted for University of the Year 2015
- Kent has been ranked fifth out of 120 UK universities in a mock Teaching Excellence Framework (TEF) exercise modelled by Times Higher Education (THE).
- In the Research Excellence Framework (REF) 2014, Kent was ranked 17th* for research output and research intensity, in the Times Higher Education, outperforming 11 of the 24 Russell Group universities
- Over 96% of our postgraduate students who graduated in 2014 found a job or further study opportunity within six months.
Find out more: https://www.kent.ac.uk/courses/postgraduate/why/

Postgraduate scholarships and funding

We have a scholarship fund of over £9 million to support our taught and research students with their tuition fees and living costs. Find out more: https://www.kent.ac.uk/scholarships/postgraduate/

English language learning

If you need to improve your English before and during your postgraduate studies, Kent offers a range of modules and programmes in English for Academic Purposes (EAP). Find out more here: https://www.kent.ac.uk/courses/postgraduate/international/english.html

Read less
Duration. 1 year (full-time) or 2 years (part-time). Course units. Semester 1. – Introduction to Data Communications. – Data Communications Theory. Read more
Duration: 1 year (full-time) or 2 years (part-time).

Course units
Semester 1
– Introduction to Data Communications
– Data Communications Theory
– Information Theory and Error Control Techniques
– Object-oriented Programming for Networking
Semester 2
– Research Planning and Management
– Distributed Systems and Internetworking
– Optical Fibre Communications
– Wireless Communications and Advanced Networks
Summer period
– Major project

Assessment methods
– The eight taught units are assessed by coursework and an end of unit examination
– The project is assessed by a project report and a viva.

Course description
Telecommunications and Computer Networks Engineering (TeCNE) is a specialist course designed for engineering graduates to enhance their skills in this area of high technology. Originally separate disciplines, telecommunications and computer networks have converged as communication systems have become more sophisticated. The fast pace of development requires people with thorough understanding of fundamental principles. Our aim is to produce graduates who will be able not just to respond to change but to look ahead and help shape future developments. This course also covers some CCNA and CCNP topics on computer networks.

Career opportunities
There are diverse employment opportunities in this expanding field. You could work for an equipment manufacturer, network infrastructure provider or a service provider, carrying out research, working on the design and development projects, or production of land or undersea communication systems, data networks, computer communication networks, optical fibre and microwave communications, wireless and mobile communications, cellular mobile networks or satellite systems.

Typical background of applicant
A degree equivalent to a minimum 2:2 Honours degree in Electronics, Communications or Computer Engineering. Professional qualifications (e.g. CEng) along with several years of relevant industrial experience (should include analytical work). The relevant industrial experience is to be assessed by the programme director. In addition, an overseas applicant will normally be required to have an English language qualification, e.g. IELTS with a minimum score of 6.5 (or equivalent). However, if an overseas applicant satisfies the academic entry requirements but has no IELTS, English proficiency may be assessed in an interview, or some documental evidence.

Professional contacts/industry links
Our close links with industry help us to stay at the leading edge of our subject area. The department works closely with British Telecom Research Laboratories and there are opportunities for students to carry out their major project within the BT/ London South Bank Communications Systems Research Centre. There are also opportunities for project work within other research groups. MSc TeCNE is also offered in collaboration with Beijing University of Posts and Telecommunications, China and Chongqing University of Posts and Telecommunications, China (please note that this option is usually only appropriate for Chinese-speaking students).

For more information on the MSc TeCNE, see: http://ecce3.lsbu.ac.uk/staff/baoyb/tecne/

Read less
This MSc covers the key technologies required for the physical layer of broadband communications systems. Read more
This MSc covers the key technologies required for the physical layer of broadband communications systems. The programme unites concepts across both radio and optical communication to give students a better understanding of the technical challenges they will face in engineering the rapid development of the broadband communications infrastructure. There is exceptionally strong industry demand for engineers with this skill base.

Degree information

This MSc provides training in the key technologies required for the physical layer of photonic, wireless and wired communications systems and other applications of this technology, ranging from THz imaging to Radar systems. The programme encompasses the complete system design from device fabrication and properties through to architectural and functional aspects of the subsystems that are required to design and build complete communication systems.

Students undertake modules to the value of 180 credits.

The programme consists of five core modules (75 credits), three optional modules (45 credits) and a research dissertation (60 credits).

Core modules
-Introduction to Telecommunications Networks
-Wireless Communications Principles
-Broadband Communications Laboratory
-Communications Systems Modelling
-Broadband Technologies and Components
-Professional Development Module: Transferable Skills (not credit bearing)

Optional modules
-Advanced Photonic Devices
-Antennas and Propagation
-Photonic Sub-systems
-Optical Transmission and Networks
-Radar Systems
-RF Circuits and Sub-systems
-Internet of Things
-Mobile Communications Systems

Dissertation/report
All students undertake an independent research project which culminates in a dissertation of approximately 12,000 words.

Teaching and learning
The programme is delivered through a combination of formal lectures, laboratory and workshop sessions, seminars, tutorials and project work. All of the programme lecturers carry out leading research in the subjects they are teaching. Student performance is assessed through unseen written examination, coursework, design exercises and the dissertation.

Careers

Rapid growth of the internet and multimedia communications has led to an unprecedented demand for broadband communication systems. There is exceptionally strong industry demand for engineers with this skills base and a clear shortage of supply. First destinations of recent graduates include electrical and technical engineers at companies including Société Générale and Ericsson

Employability
The programme provides a broad package of knowledge in the areas of wireless and optical communications networks, from devices to signal processing theory and techniques, network architecture, and planning and optimisation. Students are expertly equipped to pursue careers as engineers, consultants and system architects in wireless and optical communications. A considerable number of graduates also stay in the education sector undertaking research and teaching.

Why study this degree at UCL?

UCL Electronic & Electrical Engineering is one of the most highly rated electronic engineering research departments in the UK. It is the oldest in England, founded in 1885 with Professor Sir Ambrose Fleming (the inventor of the thermionic valve and the left-hand and right-hand rules) as the first head of department.

Our research and teaching ethos is based on understanding the fundamentals and working at the forefront of technology development. We cover a wide range of areas from materials and devices to photonics, radar, optical and wireless systems, electronics and medical electronics, and communications networks.

Read less
This MSc programme will develop your knowledge and skills to an advanced level in key aspects of telecommunications and wireless systems. Read more
This MSc programme will develop your knowledge and skills to an advanced level in key aspects of telecommunications and wireless systems.

The course content is updated annually to maintain industry relevance and to reflect the latest developments in the industry.

This programme can be studied full or part time. The first two sections consist of lectures, laboratory classes and seminars, with a final section devoted to an individually supervised project.

You will study the following core (compulsory) topics during the MSc:

Wireless systems and designs
Communication networks and security
Research skills and management
Signal processing
Cellular radio communications systems related topics.
In addition you can choose from the following options to take account of your interests:

Optical fibre systems
Radio propagation and antennas
Communication signal processing
Neural networks
Integrated circuit design.
To meet the increasing demands for MSc students with industry experience, the Department of Electrical Engineering and Electronics has introduced a 2-year MSc programme for graduates of the highest calibre to develop advanced knowledge and skills in telecommunications and wireless systems and give students the opportunity to put their knowledge into practice through valuable work experience during a one year industrial placement.

Graduates will be capable of undertaking research and development work in telecom and wireless systems, and also developing and managing R&D programmes.

This 2-year MSc programme EETI shares the same taught modules with its equivalent 1-year MSc in telecommunications and wireless systems (EETW) in year 1. But unlike the 1-year MSc students who do their MSc project over the summer, students on the 2 year MSc (EETI) are required to undertake an industrial project and placement (either in the UK or overseas) in year 2, typically 30 weeks from September to next June.

This opportunity to work in industry will help students strengthen their career options by

Undertaking the project work in an industrial setting;
Applying theory learnt in the classroom to real-world practice;
Developing communications and interpersonal skills;
Building networks and knowledge which will be invaluable throughout their career.

The placement

During the placement year students will spend time working in a relevant company suitable for the MSc. This is an excellent opportunity to gain practical engineering experience which will boost students’ CV, build networks and develop confidence in a working environment. Many placement students continue their relationship with the placement provider by undertaking relevant projects and may ultimately return to work for the company when they graduate.

The University of Liverpool has a dedicated team to help students find a suitable placement. Preparation for the placement is provided by the University’s Careers and Employability Services (CES) who assist students in finding a placement, help students produce a professional CV and prepare students for placement interviews. Placements can be near or far in the UK or overseas.

The University has very good links with industry; companies (such as ARM Plc) have offered our MSc students competitive placements. Although industry placements are not guaranteed, the University offers students opportunities and support throughout the process to ensure that the chance for a student to find a placement is high.

If a student is unable to secure a suitable placement by the end of April during year 1, the student will be transferred onto the 1-year MSc to undertake the MSc project over the summer and graduate after one year.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X