• University of Bristol Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Northumbria University Featured Masters Courses
  • University of Derby Online Learning Featured Masters Courses
  • Jacobs University Bremen gGmbH Featured Masters Courses
  • Aberystwyth University Featured Masters Courses

Postgrad LIVE! Study Fair

Birmingham | Bristol | Sheffield | Liverpool | Edinburgh

University College London Featured Masters Courses
Imperial College London Featured Masters Courses
University of Cambridge Featured Masters Courses
Durham University Featured Masters Courses
London School of Economics and Political Science Featured Masters Courses
"wireless" AND "mobile"×
0 miles

Masters Degrees (Wireless Mobile)

We have 122 Masters Degrees (Wireless Mobile)

  • "wireless" AND "mobile" ×
  • clear all
Showing 1 to 15 of 122
Order by 
With the launch of 4G wireless networks (LTE), industry vendors are competing to recruit graduates with unique combination of skills and knowledge in both wireless and broadband networking fields. Read more
With the launch of 4G wireless networks (LTE), industry vendors are competing to recruit graduates with unique combination of skills and knowledge in both wireless and broadband networking fields. This course offers an integrated approach to transmission technologies, signal processing techniques, broadband network design, wireless networking techniques and modelling simulation skills.

The unique features of this course are the integration of latest wireless communications and broadband networking engineering which are at the forefront of modern telecommunication systems in the industry today.

Engineering employers have expressed their need for engineers with a solid grasp of the business requirements that underpin real engineering projects. Our course incorporates a management-related module focused on entrepreneurship and project management. This management module develops our graduates' commercial awareness and ensures that they have the skill-set valued by industry employers.

As a student here you'll benefit from well-equipped telecommunications lab and Cisco equipment.

See the website http://www.lsbu.ac.uk/courses/course-finder/telecommunication-wireless-engineering-msc

Modules

- Technical, research and professional skills
This module provides training for the skills that are necessary for successful completion of the MSc studies in the near future and for professional development in the long-term future. More specifically, the course teaches how to search and gather relevant technical information, how to extract the essence from a piece of technical literature, how to carry out a critical review of a research paper, how to write a feasibility report, how to give presentations and put your thoughts across effectively, and how to manage a project in terms of time and progress in a group project environment. These are designed to enhance the technical and analytical background that is necessary for the respective MSc stream.

- Computer network design
This module provides a broad understanding of the principles of computer networks and approaches of network design. It starts from standard layered protocol architecture and each layer of the TCP/IP model. Then it will focus on a top-down approach for designing computer networks for an enterprise.

- Wireless communication and satellite systems
This module provides understanding of main aspects of wireless communication technologies, various radio channel models, wireless communication networks and satellite communication systems. Particular emphasis will be given to current wireless technologies and architectures, design approaches and applications.

- Technology evaluation and commercialisation
In this module you'll follow a prescribed algorithm in order to evaluate the business opportunity that can be created from a technology's unique advantages. You will be guided towards identifying a technology project idea that you will evaluate for its business potential. To do this you'll conduct detailed research and analysis following a prescribed algorithmic model, in order to evaluate the business potential of this technology idea. The outcomes from this will serve as the basis for implementation of the selected technology in the business sense. Thus you'll develop the appropriate commercialisation strategy and write the business plan for your high-tech start-up company.

- Optical and microwave communications
This module provides a comprehensive approach to teach the system aspects of optical and microwave communications, with the emphasis on applications to Fibre-to-the Home (FTTH)/Fibre-to-the Business (FTTB) or Fibre-to-the Curb (FTTC), radio over fibre (RoF), optical-wireless integration, high-capacity photonic switching networks, wired and wireless broadband access systems, and high-speed solutions to last-mile access, respectively.

- Smart receivers and transmission techniques
This module provides a further in-depth study of some advanced transmission and receiver processing techniques in wireless communication systems. The module focuses on various current topics such as evolution and challenges in wireless and mobile technologies, smart transceivers, processing, coding and possible future evolutions in mobile communication systems. This module also aims to provide you with in-depth understanding and detailed learning objectives related the current mobile wireless industry trends and standards for key design considerations in related wireless products.

- Final project
This module requires you to undertake a major project in an area that is relevant to your course. You'll chose your projects and carry it out under the guidance of their supervisor. At the end of the project, you are required to present a dissertation, which forms a major element of the assessment. The dissertation tests the your ability to integrate information from various sources, to conduct an in-depth investigation, to critically analyse results and information obtained and to propose solutions. The other element of the assessment includes an oral presentation. The Individual Project carries 60 credits and is a major part of MSc program.

Employability

Engineers who keep abreast of new technologies in telecommunications, wireless and broadband networking are increasingly in demand.

There are diverse employment opportunities in this expanding field. Graduates could work for an equipment manufacturer, network infrastructure provider or a service provider, carrying out research, or working on the design and development projects, or production of data networks, broadband networking, optical fibre and microwave communications, wireless and mobile communications, cellular mobile networks or satellite systems. You could also pursue PhD studies after completing the course.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

The School of Engineering has a strong culture of research and extensive research links with industry through consultancy works and Knowledge Transfer Partnerships (KTPs). Teaching content on our courses is closely related to the latest research work.

Read less
We have a wide range of testbeds available for projects, including wireless networking, wireless sensors, satellite networking, and security testbeds, future internet testbed and cloud infrastructure. Read more

We have a wide range of testbeds available for projects, including wireless networking, wireless sensors, satellite networking, and security testbeds, future internet testbed and cloud infrastructure.

We also have a wide range of software tools for assignments and project work, including OPNET, NS2/3, Matlab, C, C++ and various system simulators. Some projects can offer the opportunity to work with industry.

Read about the experience of a previous student on this course, Paulo Valente Klaine.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year, until a total of eight is reached. It consists of eight taught modules and a standard project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:

  • Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin mobile and satellite communications
  • Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
  • Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within mobile and satellite communications
  • Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
  • Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
  • Research & development investigations - be able to carry out research-and- development investigations
  • Design - where relevant, be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway

This programme in Mobile Communication Systems reflects the importance and ubiquity of mobile telephony and mobile data communications throughout the world.

Students will gain a detailed knowledge of the fundamentals and advanced concepts involved in communications and 3G/4G/5G mobile technology together with the principles, algorithms and protocols that underpin Internet-based mobile backbone networks.

This material is complemented by study in areas such as mobile applications and web services, mobile app software development, the Internet of Things, network management, and satellite communications.

The teaching material and projects are closely related to the research being carried out in the EE Department's Institute for Communications Research.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Mobile communications provide terrestrial coverage in densely populated areas, while satellite communications enable wireless communication in regions where mobile networking is not cost-effective. Read more

Mobile communications provide terrestrial coverage in densely populated areas, while satellite communications enable wireless communication in regions where mobile networking is not cost-effective. The programme gives you an in-depth understanding of the engineering aspects of these important current and future technologies.

Read about the experience of a previous student on this course, Gideon Ewa.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year, until a total of eight is reached. It consists of eight taught modules and a project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Educational aims of the programme

The programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:

  • Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin mobile and satellite communications
  • Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
  • Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within mobile and satellite communications
  • Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
  • Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
  • Research & development investigations - be able to carry out research-and- development investigations
  • Design - where relevant, be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway

This Programme in Mobile and Satellite Communications reflects the importance of mobile telephony, mobile data communications and satellite-based communications as complementary technologies.

Students will gain a detailed knowledge of the fundamentals and advanced concepts involved in communications and 3G/4G/5G mobile technology, and satellite-based communications and networking.

This material is complemented by study in areas such as mobile applications and web services, mobile app software development, RF design, the Internet of Things, and network management.

The teaching material and projects are closely related to the research being carried out in the EE Department's Institute for Communications Systems.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Computing and communications technologies are having a truly disruptive effect on societies and business worldwide. Mobile payments, wireless communications and the ‘Internet of Things’ are transforming the way we approach key challenges in development, security, healthcare and the environment. Read more

Computing and communications technologies are having a truly disruptive effect on societies and business worldwide. Mobile payments, wireless communications and the ‘Internet of Things’ are transforming the way we approach key challenges in development, security, healthcare and the environment.

Taught jointly by the School of Computing and the School of Electronic and Electrical Engineering, this course will give you a grasp of all layers needed for mobile communication and computation, from the physical network layer through to the applications that run on mobile devices.

You’ll gain a full understanding of the web and cloud computing infrastructure, as core modules give you a foundation in key topics like systems programming and data communications. A range of optional modules will then allow you to focus on topics that suit your interests and career plans, from cloud computing to embedded systems design and high speed web architecture.

Specialist facilities

You’ll benefit from world-class facilities to support your learning. State-of-the-art visualisation labs including a powerwall, a benchtop display with tracking system, WorldViz PPT optical tracking system and Intersense InertiaCube orientation tracker are all among the specialist facilities we have within the School of Computing.

We also have Ascension Flock of Birds tracking systems, three DOF and 6DOF Phantom force feedback devices, Twin Immersion Corp CyberGloves, a cloud computing testbed, rendering cluster and labs containing both Microsoft and Linux platforms among others. It’s an exciting environment in which to gain a range of skills and experience cutting-edge technology.

Course content

You’ll take two core modules in Semester 1 that introduce you to fundamental topics like systems programming and network security. With this foundation, you’ll be able to gain high-level specialist knowledge through your choice of optional modules taught by the School of Computing and the School of Electronic and Electrical Engineering.

The optional modules you choose will enable you to direct your studies towards topics that suit your personal interests and career ambitions such as mobile app development, digital media engineering, big data, cloud computing and embedded systems design, among others.

Over the summer months you’ll also work on your research project. This gives you the chance to work as an integral part of one of our active research groups, focusing on a specialist topic in computer science and selecting the appropriate research methods.

Course structure

Compulsory modules

  • MSc Project 60 credits
  • Data Communications and Network Security 15 credits

Optional modules

  • Distributed Systems 10 credits
  • Mobile Application Development 10 credits
  • Combinatorial Optimisation 10 credits
  • Secure Computing 10 credits
  • Graph Algorithms and Complexity Theory 10 credits
  • Functional Programming 10 credits
  • Big Data Systems 15 credits
  • Mobile Applications Development 15 credits
  • Algorithms 15 credits
  • Parallel and Concurrent Programming 15 credits
  • Cloud Computing 15 credits
  • Graph Theory: Structure and Algorithms 15 credits
  • Communication Network Design 15 credits
  • Optical Communications Networks 15 credits
  • High Speed Internet Architecture 15 credits
  • Digital Media Engineering 15 credits

For more information on typical modules, read Mobile Computing and Communication Networks MSc in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The professional project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.Most projects are experimentally based and linked with companies within the oil and gas industry to ensure the topic of research is relevant to the field whilst also addressing a real-world problem.

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

Career opportunities are extremely broad, covering jobs in the design of embedded software running on multi-core devices through to jobs involving the design and implementation of new mobile-applications centric systems for business. In the application of mobile computing skills, job opportunities span every area, from the automotive sector through to retail and banking.

You could launch a career in fields such as mobile app development, mobile systems architecture, project management, network consultancy. You could also work as an engineer in embedded mobile communications, network security or research and development among many others – and you’ll even be well-prepared for PhD study.

Careers support

You’ll have access to the wide range of engineering and computing careers resources held by our Employability team in our dedicated Employability Suite. You’ll have the chance to attend industry presentations book appointments with qualified careers consultants and take part in employability workshops. Our annual Engineering and Computing Careers Fairs provide further opportunities to explore your career options with some of the UK’s leading employers.

The University's Careers Centre also provide a range of help and advice to help you plan your career and make well-informed decisions along the way, even after you graduate. Find out more at the Careers website.



Read less
Application period/deadline. November 1, 2017 - January 24, 2018. Cutting-edge knowledge in wireless communications both at physical and network layers. Read more

Application period/deadline: November 1, 2017 - January 24, 2018

• Cutting-edge knowledge in wireless communications both at physical and network layers

• Capability to design and implement wireless solutions, e.g., for future 5G networks, Internet-of-Things (IoT) devices and smart energy-efficient wireless sensor applications

• Relevant skills of the latest radio engineering methods, tools, and technologies, and ability to design RF electronics for smart phones and base stations of mobile systems

The International Master’s Degree Programme in Wireless Communications Engineering (WCE) is a two-year programme concentrating on wireless communications network technology. The programme will give you relevant skills and core knowledge of the latest methods, tools and technologies combined with time-tested issues such as:

• Antennas

• Advanced wireless communication systems

• Communication networks

• Computer engineering

• Electronics

• Information theory

• Stochastical and digital signal processing

• Radio channels

• Radio engineering

The two-year programme has two specialisation options:

• Radio Access and Networks

• RF Engineering

Radio Access and Networks concentrates on designing and applying radio access technologies both at physical layer and at network layer for 5G, IoT, and future mobile system generations.

RF Engineering focuses on essential radio system parts and gives the knowledge to design integrated RF and DSP circuits for mobile handsets, base stations, future 5G devices, IoT applications, and smart & energy efficient sensors.

Optional module makes it possible to widen your expertise into:

• Machine vision

• Mobile and social computing

• Signal processors, and

• Video and biomedical signal processing.

The education is organized by the Centre for Wireless Communications which consists of 150 academics from over 20 countries. CWC performs world-class research for the future of 5G and IoT applications, which will give you the possibility to move forward already during your studies. CWC provides a number of jobs as a trainee or a master’s thesis student, with the possibility to continue as a doctoral student, and even as a post-doctoral researcher.

The skills gained in the programme offer you a solid academic training and essential knowledge on the design of wireless communications networks at the system level. After graduation you are capable of designing, implementing and employing 5G and IoT applications and developing future wireless communications technologies.

Possible titles include:

• Chief engineer

• Design engineer

• Development engineer

• Maintenance engineer

• Patent engineer

• Program manager

• Project manager

• Radio network designer

• Research engineer

• RF engineer

• Sales engineer

• System engineer

• Test engineer, and

• University teacher

Students applying for the programme must possess an applicable B.Sc. degree in one of the following fields of study: communications engineering, electronics & electrical engineering, or computer engineering.

Email Now



Read less
The internet has developed at an astounding rate, connecting people in ways that we could never have imagined. On this programme you will study the advanced communications theory that underpins the science of networking, focusing on physical layer network communications, information theory and coding. Read more
The internet has developed at an astounding rate, connecting people in ways that we could never have imagined. On this programme you will study the advanced communications theory that underpins the science of networking, focusing on physical layer network communications, information theory and coding.

This new programme is for students who want to pursue a career shaping and defining the new generation of converged networks, responding to the rapid developments in telecommunication systems, such as social networking; seamless mobility; mobile data and the proliferation of applications for mobile and handheld devices. It will educate the next generation of network engineers in the fundamental science, mathematics and key technologies that underpin global networking.

This programme will:

-Provide an in-depth understanding of the key issues in next generation, all-packet networking.
-Cover quality of service-enabled transport; support for generalized mobility; ubiquitous provision of services to users; core network consolidation.
-Provide advanced communications theory to underpin the science.
-Address probabilistic methods for network performance evaluation, and network security.
-Provide an in-depth treatment of mobile networks from WCDMA 3G to LTE and LTE-Advanced.
-Address the new areas of sensor networks and Internet of Things.
-Teach you Java programming.
-Industrial Experience

The industrial placement currently takes place towards the end of the first year for a maximum of 12 months. It is the student’s responsibility to secure their placement, the school will offer guidance and support in finding and securing the placement but the onus is on the student to secure the job and arrange the details of the placement.

Currently if you are not able to secure a placement by the end of your second semester we will transfer you onto the 1 year FT taught programme without the Industrial Experience, this change would also be applied to any visa if you were here on a student visa.

The industrial placement consists of 8-12 months spent working with an appropriate employer in a role that relates directly to your field of study. The placement is currently undertaken between the taught component and the project. This will provide you with the opportunity to apply the key technical knowledge and skills that you have learnt in your taught modules, and will enable you to gain a better understanding of your own abilities, aptitudes, attitudes and employment potential. The module is only open to students enrolled on a programme of study with integrated placement.

If you do not secure a placement you will be transferred onto the 1 year FT programme.

Why study your MSc in Telecommunication Systems at Queen Mary?

The School of Electronic Engineering and Computer Science is rated in the top 20 universities in the UK for studying computer science and electronic engineering. We are internationally recognised for our pioneering and ground-breaking research, and innovative public engagement programme.

This new programme responds to the rapid developments in telecommunication systems, such as social networking; seamless mobility; mobile data and the proliferation of applications for mobile and handheld devices.
The programme teaches the Java programming foundations for network and services design, provides an in-depth treatment of the technological foundations of converged, all-packet networks, and current mobile networks from WCDMA 3G to LTE and LTE-Advanced.

It will enable you to develop an extensive understanding of 21st Century networks, current mobile and WLAN technologies, software for network and services design, network modelling, sensors and the Internet of Things, security and authentication, mobile services, next generation mobile technologies.

We have a long history of successfully offering postgraduate programmes in Telecommunications and in Wireless Networks.
We have recently recruited new staff who are international experts in the fields of converged all-IP networks with particular knowledge in modelling, measurements and QoE, in middleware and in wireless networking.
As well as teaching you, lecturers do research in their various fields of expertise. Being taught by someone who is engaged in potentially world-changing research ensures that lectures are fully up-to-date.
Facilities

The School of Electronic Engineering and Computer Science offers taught postgraduate students their own computing laboratory. MSc students have exclusive use of the top floor in our purpose-built, climate controlled, award winning informatics teaching laboratory (ITL) outside of scheduled laboratory sessions. The ITL hosts over 250 state-of-the-art PCs capable of multimedia production and several laser printers. In addition, there are video conference facilities, seminar rooms, and on-site teaching services and technical support. There are also a number of breakout spaces available to students with full wi-fi access allowing you use your own mobile devices.

The ITL is primarily used for taught laboratory sessions and regularly hosts research workshops and drop-in lab facilities. For postgraduate students on taught and research degrees there are specialist laboratories to use for carrying out research. Our augmented human interaction (AHI) laboratory combines pioneering technologies including full-body and multi-person motion capture, virtual and augmented reality systems and advanced aural and visual display technologies. We also have specialist laboratories in multimedia; telecommunication networks; and microwave antennas. In addition to these spaces, PhD students have generous study space in our research laboratories. In 2011 we completed the £2m development of new experimental facilities in Antennas and Media and Arts Technology. We formed the Interdisciplinary Informatics Hub in Collaboration with the Schools of Biological and Chemical Sciences and Mathematical Sciences. These laboratories provided a meeting place for postgraduates from the three Schools to interact and exchange ideas.

Read less
Wireless communication and mobile computing are currently the largest growth sectors in electronics and are expected to continue growing in the future. Read more
Wireless communication and mobile computing are currently the largest growth sectors in electronics and are expected to continue growing in the future.

The impact on the consumer market is widespread with new mobile phones and tablets continually under development. Wireless communications is pervasive and extending to many everyday objects including vehicles, personal health, entertainment systems and the internet of things (IoT).

This one year full-time taught MSc integrates electronics, communications and computing from core principles to cutting-edge applications and provides you with valuable skills for future employment in this growth sector. One of the major features of the MSc is the teaching of embedded programming using ARM processors which are included in over 90% of all mobile phones. In addition to learning to program the processor during the group project, you will be involved in interfacing it to wireless nodes and sensors, and building real-world solutions to problems. We will provide you with your own development kit when you arrive.

The course content features:
-Modules in computing (C and embedded programming), electronics, internet, mobile and data communications.
-Specially designed modules to support recent developments in relevant technologies such as programming for embedded and mobile devices.
-A 60 credit group project in which you will develop skills and knowledge that will prepare you for working in industry or undertaking further academic study. The project will involve the design and practical implementation of internet and wireless devices using ARM processors.

Group Project

The project will involve the design and practical implementation of internet and wireless devices using ARM processors.

Facilities

Students taking the Embedded Wireless Systems taught MSc have the use of departmental laboratories equipped with dedicated computing equipment including STMicro ARM processor and expansion boards and licences for Keil uVision embedded C compiler, these will be used in a variety of modules including the group project.

Read less
This MSc has been designed to capture the essence of the rapidly developing fields of Embedded Microelectronics and Wireless Systems. Read more
This MSc has been designed to capture the essence of the rapidly developing fields of Embedded Microelectronics and Wireless Systems. It is suitable for a computer science or electrical/electronic engineering graduate who wishes to specialise in the high-speed technology of embedded microelectronics and wireless systems including mobile communications.

As a leading university we are committed to the advancement of embedded microelectronic systems. Research in the University is carried out in several faculty research centres such as Transport & Mobility, Manufacturing & Material Engineering and Cogents Lab, where advances in fields associated with embedded microelectronics and wireless systems include designing real-time wireless networks, the application of systems modelling, statistical and artificial intelligence techniques.

WHY CHOOSE THIS COURSE?

-Electrical and electronic research carried out in the Faculty is recognised as world-leading, 45% Internationally Excellent (RAE 2008)
-Excellent links with a number of industrial organisations enable access to the use of high-cost equipment for real-time investigations

WHAT WILL I LEARN?

The MSc in Embedded Microelectronics and Wireless Systems curriculum consists of a fixed menu of study and a substantial MSc project. Successful completion of both parts leads to the award of MSc in Embedded Microelectronics and Wireless Systems. Completion of the taught modules without a project leads to the award of a Postgraduate Diploma.

The mandatory modules are as follows:
-Digital System Design with VHDL
-Object Orientated Programming
-Digital Communications
-Digital Signal and Image Processing
-Robotics: Kinematics, Dynamics and Applications
-Embedded Operating Systems
-Wireless Intelligent Systems
-Microprocessor Applications
-Individual Project

Prospective students should be aware that most of the mandatory modules include an element of programming, usually in the C/C++ language.

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

Embedded Microelectronics and Wireless Systems are now ever-present in all aspects of technological life for example automotive, biotechnology, communications fixed and mobile networks, information technology, industrial electronics process control, security, and computer technology.

So much so that there is a demand for top graduates in the fields of embedded microelectronics and wireless systems to work either in their development or in the vast number of industries that employ these technologies.

Opportunities also exist to complete a PhD research degree upon completion of the master’s course. More information can be found on our Research page.

GLOBAL LEADERS PROGRAMME

Centre for Global Engagement logoTo prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
The Wireless Communications and Networking programme is designed to address the rapidly increasing demand for qualified engineers and managers with well equipped knowledge in wireless and mobile communication systems and networks. Read more
The Wireless Communications and Networking programme is designed to address the rapidly increasing demand for qualified engineers and managers with well equipped knowledge in wireless and mobile communication systems and networks. This one-year programme offers six-month taught modules covering a wide range of subjects from fundamental information and communications technology (ICT) to contemporary developments in wireless and mobile industry. It also includes a six-month individual project with opportunities of participating in the project provided by industry. This programme is suitable for those who want to develop the knowledge and skills needed for a successful career in these specific and related areas.

The delivery of the programme is fully supported by the dedicated facilities in the Electronic Engineering Department and across the University, such as teaching and computing laboratories, and the involvement of experienced member of staff. Our research facilities in the Adaptive Communications and Networks Research Group and Wireless Network Laboratory are also available for use on MSc projects. To ensure its continuing relevance the programme is monitored by an industrial steering committee which includes representatives from major employers.

About the MSc in Wireless Communications and Networking:
-Prepares students for an intellectually challenging career as a qualified engineer.
-Provides students with a thorough grounding in the principles and the requisite specialist knowledge and skills to develop, manage and adapt current systems.
-An industrial advisory group (Steering Committee) reviews the programme on a continual basis.
-Guest lecturers presented by acknowledged experts from industry and academic institutions.
-An active alumni group on LinkedIn.
-Free student membership of the IET.

Modules

This MSc integrates a taught component of nine modules plus a major project and a project preparation module, constituting in total 180 credits. Taught modules and examinations/assessments are completed during six months, October to March. After successful completion students may then progress to the six month individual research project during April to October. The project is either undertaken in an industrial laboratory or at the University, often with guidance and direction from industrial partners. The module titles are:
-Mobile Data Networks (EE4016)
-Realtime Communication Networks (EE4017)
-Information Theory and Coding and Traffic Theory (EE401A)
-Digital Transmission (EE401B)
-Broadband Wireless Networks (EE4027)
-Pervasive and Mobile communication networks (EE4028)
-Radio Systems and Personal Communications Networks (EE402B)
-Internetworking (EE403B)
-Introductory Programming (EE404B)

Dissertation Stage
-MSc Project (EE4006)
-Project Preperation (EE4019)

Read less
The internet has developed at an astounding rate, connecting people in ways that we could never have imagined. On this programme you will study the advanced communications theory that underpins the science of networking, focusing on physical layer network communications, information theory and coding. Read more
The internet has developed at an astounding rate, connecting people in ways that we could never have imagined. On this programme you will study the advanced communications theory that underpins the science of networking, focusing on physical layer network communications, information theory and coding.

This programme prepares you for a career in telecommunications and its applications, for example the integration of voice and data applications, within a business context. The programme combines in-depth coverage of the main technical aspects of telecommunications with advanced business modules. At the end of the programme you will be equipped with the skills needed for a wide range of jobs in the expanding telecommunications industry, with emphasis on those that are relevant to business/financial needs, particularly in the small business and start-up sector.

This programme will:

-Provide an in-depth understanding of the key issues in next generation, all-packet networking
-Cover quality of service-enabled transport; support for generalized mobility; ubiquitous provision of services to users; core network consolidation
-Provide advanced communications theory to underpin the science
-Address probabilistic methods for network performance evaluation, and network security
-Provide an in-depth treatment of mobile networks from WCDMA 3G to LTE and LTE-Advanced
-Address the new areas of sensor networks and Internet of Things
-Teach you Java programming
-Industrial Experience

The industrial placement currently takes place towards the end of the first year for a maximum of 12 months. It is the student’s responsibility to secure their placement, the school will offer guidance and support in finding and securing the placement but the onus is on the student to secure the job and arrange the details of the placement.

Currently if you are not able to secure a placement by the end of your second semester we will transfer you onto the 1 year FT taught programme without the Industrial Experience, this change would also be applied to any visa if you were here on a student visa.

The industrial placement consists of 8-12 months spent working with an appropriate employer in a role that relates directly to your field of study. The placement is currently undertaken between the taught component and the project. This will provide you with the opportunity to apply the key technical knowledge and skills that you have learnt in your taught modules, and will enable you to gain a better understanding of your own abilities, aptitudes, attitudes and employment potential. The module is only open to students enrolled on a programme of study with integrated placement.

If you do not secure a placement you will be transferred onto the 1 year FT programme.

Why study your MSc in Telecommunication Systems at Queen Mary?

The School of Electronic Engineering and Computer Science is rated in the top 20 universities in the UK for studying computer science and electronic engineering. We are internationally recognised for our pioneering and ground-breaking research, and innovative public engagement programme.

This new programme responds to the rapid developments in telecommunication systems, such as social networking; seamless mobility; mobile data and the proliferation of applications for mobile and handheld devices.
The programme teaches the Java programming foundations for network and services design, provides an in-depth treatment of the technological foundations of converged, all-packet networks, and current mobile networks from WCDMA 3G to LTE and LTE-Advanced.

It will enable you to develop an extensive understanding of 21st Century networks, current mobile and WLAN technologies, software for network and services design, network modelling, sensors and the Internet of Things, security and authentication, mobile services, next generation mobile technologies.
-We have a long history of successfully offering postgraduate programmes in Telecommunications and in Wireless Networks.
-We have recently recruited new staff who are international experts in the fields of converged all-IP networks with particular knowledge in modelling, measurements and QoE, in middleware and in wireless networking.
-As well as teaching you, lecturers do research in their various fields of expertise. Being taught by someone who is engaged in potentially world-changing research ensures that lectures are fully up-to-date.

Facilities
The School of Electronic Engineering and Computer Science offers taught postgraduate students their own computing laboratory. MSc students have exclusive use of the top floor in our purpose-built, climate controlled, award winning informatics teaching laboratory (ITL) outside of scheduled laboratory sessions. The ITL hosts over 250 state-of-the-art PCs capable of multimedia production and several laser printers. In addition, there are video conference facilities, seminar rooms, and on-site teaching services and technical support. There are also a number of breakout spaces available to students with full wi-fi access allowing you use your own mobile devices.

The ITL is primarily used for taught laboratory sessions and regularly hosts research workshops and drop-in lab facilities. For postgraduate students on taught and research degrees there are specialist laboratories to use for carrying out research. Our augmented human interaction (AHI) laboratory combines pioneering technologies including full-body and multi-person motion capture, virtual and augmented reality systems and advanced aural and visual display technologies. We also have specialist laboratories in multimedia; telecommunication networks; and microwave antennas. In addition to these spaces, PhD students have generous study space in our research laboratories. In 2011 we completed the £2m development of new experimental facilities in Antennas and Media and Arts Technology. We formed the Interdisciplinary Informatics Hub in Collaboration with the Schools of Biological and Chemical Sciences and Mathematical Sciences. These laboratories provided a meeting place for postgraduates from the three Schools to interact and exchange ideas.

Read less
This MSc covers a range of advanced topics drawn from wireless communications and communications-related signal processing, including associated enabling technologies. Read more
This MSc covers a range of advanced topics drawn from wireless communications and communications-related signal processing, including associated enabling technologies. It provides an excellent opportunity to develop the skills required for careers in some of the most dynamic fields in wireless communications.

This programme builds on the internationally recognised research strengths of the Communications Systems and Networks group within the Smart Internet Lab. This group conducts pioneering research in a number of key fundamental and experimental work areas, including spatial channel measurements and predictions, information theory, advanced wireless access (cellular and WLAN) and RF technologies. The group has well-equipped laboratories with state-of-the-art test and measurement equipment and first-class computational facilities.

The MSc provides in-depth training in design, analysis and management skills relevant to the theory and practice of the wireless communications industry. This degree is accredited by the Institute of Engineering and Technology (IET) until 2018, and is one of only a handful of accredited programmes in this field in the UK.

Programme structure

Your course will cover the following core subjects:
Semester One (60 credits)
-Coding theory
-Radio frequency engineering
-Communication systems
-Mobile communications
-Networking protocol principles
-Digital filters and spectral analysis

Semester Two (60 credits)
-Advanced mobile radio techniques
-Antennas and electromagnetic compatibility
-Broadband wireless communications
-Digital signal processing systems
-Engineering research skills
-Research project (60 credits)

You will carry out a substantial research project, starting during Semester Two and completing during the summer. This may be based at the University or with industrial partners.

Careers

This is a challenging one-year taught Master’s degree, covering all aspects of current and future wireless communication systems and associated signal processing technologies. It will prepare you for a diverse range of exciting careers - not only in the communications field, but also in other areas such as management consultancy, project management, finance and government agencies.

Our graduates have gone on to have rewarding careers in some of the leading multinational communications companies, such as Huawei, China Telecom, Toshiba, China Mobile and Intel. Some graduates follow a more research-oriented career path, with a number of students going on to study for PhDs at leading universities.

Read less
This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. Read more

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a standard project.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Facilities, equipment and support

To support your learning, we hold regular MSc group meetings where any aspect of the programme, technical or non-technical, can be discussed in an informal atmosphere. This allows you to raise any problems that you would like to have addressed and encourages peer-based learning and general group discussion.

We provide computing support with any specialised software required during the programme, for example, Matlab. The Faculty’s student common room is also covered by the University’s open-access wireless network, which makes it a very popular location for individual and group work using laptops and mobile devices.

Specialist experimental and research facilities, for computationally demanding projects or those requiring specialist equipment, are provided by CVSSP.

Educational aims of the programme

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:

  • Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
  • Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
  • Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
  • Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
  • Provide a high level of flexibility in programme pattern and exit point
  • Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:

  • Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin mobile media communications
  • Engineering problem solving - be able to analyse problems within the field of mobile media communications and more broadly in electronic engineering and find solutions
  • Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
  • Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within mobile and media communications
  • Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
  • Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
  • Research & development investigations - be able to carry out research-and- development investigations
  • Design - where relevant, be able to design electronic circuits and electronic/software products and systems

Technical characteristics of the pathway

This programme in Mobile Media Communications aims to provide a high-quality advanced training in aspects of multimedia signal processing for audio and video content production, processing and transmission.

The programme examines ways that relevant digital data can be captured or generated, and the digital streams processed, compressed, analysed and communicated over broadcast channels, mobile networks or internet.

Along with a basis of image, video and audio processing, it provides a grounding in communications related elements that include, for example, coding, networking and data transmission. Students will be able to tailor their learning experience through selection of elective modules to suit their career aspiration.

Key to the programme is cross-linking between signals, and delivery of audio and video content. The Programme has strong links to current research in the Department of Electronic Engineering’s Centre for Vision, Speech and Signal Processing.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
Most people aren't familiar with Embedded Systems, but we use them every day of our lives. Smartphones, digital TV, MP3s and iPods, washing machines, even toys or a talking greetings card they all contain a microprocessor or a microcontroller. Read more
Most people aren't familiar with Embedded Systems, but we use them every day of our lives. Smartphones, digital TV, MP3s and iPods, washing machines, even toys or a talking greetings card they all contain a microprocessor or a microcontroller. Embedded systems are the backbone of the digital revolution.

As the complexity of embedded systems increases, the industry needs skilled graduates to fill the talent shortage.

Course detail

With the MSc Embedded Systems and Wireless Networks you'll develop a sound technical knowledge of the fundamentals of electronics, embedded systems, software and hardware, and become an embedded system designer with a multidisciplinary background. You'll develop software programming and hardware design skills, and a broad knowledge of electronics fundamentals.

Graduates of electronic engineering, systems engineering or other appropriate sciences can develop, deepen or update their skills and knowledge in advanced electronic engineering technology and cutting-edge research fields.

This course is ideal for graduate engineers interested in electronics, embedded systems, signal processing, mobile communications and wireless technology.

Modules

• Embedded Real-time Control Systems
• Safety Critical Embedded Systems
• Wireless and Mobile Communications
• Advanced Control and Dynamics
• System Design using HDLs
• Wireless Sensor Networks
• Group Project Challenge
• Dissertation

Format

You'll be taught by experienced specialist academic staff who are experts in basic and advanced electronics, control systems, basic and advanced robotics, mobile communications, wireless sensor networks, embedded systems, power systems, power electronics, signal processing and sensor technology. Many of them are involved in cutting-edge research.

You'll attend lectures, then apply what you've learned to real life through tutorial sessions, case studies, classroom discussions, project work, laboratory exercises and visits to or guest lectures from professionals working in engineering organisations.

Assessment

You are assessed through examinations, coursework, lab-based assessment and oral presentations. An independent examiner assesses your dissertation.

How to apply

Information on applications can be found at the following link: http://www1.uwe.ac.uk/study/applyingtouwebristol/postgraduateapplications.aspx

Funding

- New Postgraduate Master's loans for 2016/17 academic year –

The government are introducing a master’s loan scheme, whereby master’s students under 60 can access a loan of up to £10,000 as a contribution towards the cost of their study. This is part of the government’s long-term commitment to enhance support for postgraduate study.

Scholarships and other sources of funding are also available.

More information can be found here: http://www1.uwe.ac.uk/students/feesandfunding/fundingandscholarships/postgraduatefunding.aspx

Read less
The Mobile & Personal Communications MSc programme covers the latest aspects of personal and mobile wireless communication technology, communication networks, advanced digital communications theory and techniques and signal processing. Read more

The Mobile & Personal Communications MSc programme covers the latest aspects of personal and mobile wireless communication technology, communication networks, advanced digital communications theory and techniques and signal processing. You will study Digital Communications, Random Variables and Stochastic Processes, Communication Theory as well Mobile and Personal Communication Systems There are opportunities to explore a broad range of optional modules allowing you the freedom to develop your study pathway to reflect your interests. You will complete the course in one year, studying September to September and taking a combination of required and optional modules totalling 180 credits, including 60 credits that will come from an individual project of 15,000 words.

Key benefits

  • You will gain a thorough knowledge of the fundamental elements of today’s modern telecommunications systems.
  • Located in central London, giving access to major libraries and leading scientific societies, including the IET.
  • Frequent access to speakers of international repute through seminars and external lectures, enabling you to keep abreast of emerging knowledge in the telecommunications field.
  • Flexible study pathway that covers a broad range of telecommunication subject areas.
  • The Department of Informatics has areputation for delivering research-led teaching and project supervision from leading experts in their field.

Description

Our programme offers introductory modules followed by specialised topical courses on the latest aspects of communications technology, including personal and mobile wireless communications, communication networks, advanced digital communications theory and techniques and communications signal processing. You will study Digital Communications, Random Variables and Stochastic Processes, Communication Theory, Mobile and Personal Communication Systems. You will complete eight taught modules. You will also undertake a substantial individual project. 

Course purpose

For students wishing to work in the telecommunications industry.

Course format and assessment

We use lectures, seminars and group tutorials to deliver most of the modules on the programme. You will also be expected to undertake a significant amount of independent study.

You are expected to spend approximately 150 hours of effort (i.e. about 10 hours per credit) for each module you attend in your degree. These 150 hours cover every aspect of the module: lectures, tutorials, lab-based exercises, independent study based on personal and provided lecture notes, tutorial preparation and completion of exercises, coursework preparation and submission, examination revision and preparation, and examinations.

Assessment

Assessment methods will depend on the modules selected. The primary methods of assessment for this course are written examinations and coursework. You may also be assessed by class tests, essays, assessment reports and oral presentations.

Career prospects

Students continue on to careers in industry, commerce, academic research and further study.



Read less
Mobile and ubiquitous computing technologies allow interconnected computing devices to be embedded unobtrusively in everyday appliances and environments, and to co-operate to provide information and services on behalf of their human users. Read more
Mobile and ubiquitous computing technologies allow interconnected computing devices to be embedded unobtrusively in everyday appliances and environments, and to co-operate to provide information and services on behalf of their human users. This rapidly emerging field is driving the deployment of the next generation of Information Technology solutions and has been an active research area at Trinity College Dublin for many years. The Mobile and Ubiquitous Computing programme provides a comprehensive grounding in modern communications and wireless concepts and advanced distributed systems engineering, tightly aligned with an in-depth understanding of the technologies and development strategies used in building and deploying complete mobile and ubiquitous computing solutions. Specific topics to be covered usually include:

* Wireless Concepts and Technologies
* Real-time and Embedded Systems
* Vision Systems
* Information Architecture
* Middleware for Ubiquitous Computing
* Human-Computer Interaction
* Context Awareness
* Mobile and Transient Security
* Mobile and Autonomous Systems Innovation

Read less

Show 10 15 30 per page



Cookie Policy    X