• University of Derby Online Learning Featured Masters Courses
  • St Mary’s University, Twickenham Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Coventry University Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • New College of the Humanities Featured Masters Courses
  • Goldsmiths, University of London Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
Imperial College London Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
University of Reading Featured Masters Courses
Bath Spa University Featured Masters Courses
"wireless" AND "mobile"×
0 miles

Masters Degrees (Wireless Mobile)

  • "wireless" AND "mobile" ×
  • clear all
Showing 1 to 15 of 127
Order by 
With the launch of 4G wireless networks (LTE), industry vendors are competing to recruit graduates with unique combination of skills and knowledge in both wireless and broadband networking fields. Read more
With the launch of 4G wireless networks (LTE), industry vendors are competing to recruit graduates with unique combination of skills and knowledge in both wireless and broadband networking fields. This course offers an integrated approach to transmission technologies, signal processing techniques, broadband network design, wireless networking techniques and modelling simulation skills.

The unique features of this course are the integration of latest wireless communications and broadband networking engineering which are at the forefront of modern telecommunication systems in the industry today.

Engineering employers have expressed their need for engineers with a solid grasp of the business requirements that underpin real engineering projects. Our course incorporates a management-related module focused on entrepreneurship and project management. This management module develops our graduates' commercial awareness and ensures that they have the skill-set valued by industry employers.

As a student here you'll benefit from well-equipped telecommunications lab and Cisco equipment.

See the website http://www.lsbu.ac.uk/courses/course-finder/telecommunication-wireless-engineering-msc

Modules

- Technical, research and professional skills
This module provides training for the skills that are necessary for successful completion of the MSc studies in the near future and for professional development in the long-term future. More specifically, the course teaches how to search and gather relevant technical information, how to extract the essence from a piece of technical literature, how to carry out a critical review of a research paper, how to write a feasibility report, how to give presentations and put your thoughts across effectively, and how to manage a project in terms of time and progress in a group project environment. These are designed to enhance the technical and analytical background that is necessary for the respective MSc stream.

- Computer network design
This module provides a broad understanding of the principles of computer networks and approaches of network design. It starts from standard layered protocol architecture and each layer of the TCP/IP model. Then it will focus on a top-down approach for designing computer networks for an enterprise.

- Wireless communication and satellite systems
This module provides understanding of main aspects of wireless communication technologies, various radio channel models, wireless communication networks and satellite communication systems. Particular emphasis will be given to current wireless technologies and architectures, design approaches and applications.

- Technology evaluation and commercialisation
In this module you'll follow a prescribed algorithm in order to evaluate the business opportunity that can be created from a technology's unique advantages. You will be guided towards identifying a technology project idea that you will evaluate for its business potential. To do this you'll conduct detailed research and analysis following a prescribed algorithmic model, in order to evaluate the business potential of this technology idea. The outcomes from this will serve as the basis for implementation of the selected technology in the business sense. Thus you'll develop the appropriate commercialisation strategy and write the business plan for your high-tech start-up company.

- Optical and microwave communications
This module provides a comprehensive approach to teach the system aspects of optical and microwave communications, with the emphasis on applications to Fibre-to-the Home (FTTH)/Fibre-to-the Business (FTTB) or Fibre-to-the Curb (FTTC), radio over fibre (RoF), optical-wireless integration, high-capacity photonic switching networks, wired and wireless broadband access systems, and high-speed solutions to last-mile access, respectively.

- Smart receivers and transmission techniques
This module provides a further in-depth study of some advanced transmission and receiver processing techniques in wireless communication systems. The module focuses on various current topics such as evolution and challenges in wireless and mobile technologies, smart transceivers, processing, coding and possible future evolutions in mobile communication systems. This module also aims to provide you with in-depth understanding and detailed learning objectives related the current mobile wireless industry trends and standards for key design considerations in related wireless products.

- Final project
This module requires you to undertake a major project in an area that is relevant to your course. You'll chose your projects and carry it out under the guidance of their supervisor. At the end of the project, you are required to present a dissertation, which forms a major element of the assessment. The dissertation tests the your ability to integrate information from various sources, to conduct an in-depth investigation, to critically analyse results and information obtained and to propose solutions. The other element of the assessment includes an oral presentation. The Individual Project carries 60 credits and is a major part of MSc program.

Employability

Engineers who keep abreast of new technologies in telecommunications, wireless and broadband networking are increasingly in demand.

There are diverse employment opportunities in this expanding field. Graduates could work for an equipment manufacturer, network infrastructure provider or a service provider, carrying out research, or working on the design and development projects, or production of data networks, broadband networking, optical fibre and microwave communications, wireless and mobile communications, cellular mobile networks or satellite systems. You could also pursue PhD studies after completing the course.

LSBU Employability Services

LSBU is committed to supporting you develop your employability and succeed in getting a job after you have graduated. Your qualification will certainly help, but in a competitive market you also need to work on your employability, and on your career search. Our Employability Service will support you in developing your skills, finding a job, interview techniques, work experience or an internship, and will help you assess what you need to do to get the job you want at the end of your course. LSBU offers a comprehensive Employability Service, with a range of initiatives to complement your studies, including:

- direct engagement from employers who come in to interview and talk to students
- Job Shop and on-campus recruitment agencies to help your job search
- mentoring and work shadowing schemes.

Professional links

The School of Engineering has a strong culture of research and extensive research links with industry through consultancy works and Knowledge Transfer Partnerships (KTPs). Teaching content on our courses is closely related to the latest research work.

Read less
Humber’s Wireless Telecommunications graduate certificate program prepares you with electronics, computer engineering, physics and telecommunications skills for work on the cutting-edge technologies in the wireless telecommunications industry. Read more
Humber’s Wireless Telecommunications graduate certificate program prepares you with electronics, computer engineering, physics and telecommunications skills for work on the cutting-edge technologies in the wireless telecommunications industry.

Students will become familiar with the infrastructure of communications systems and how to be successful in the communications industry. This wireless program focuses on three main outcomes: RF/optical test and measurement, networking, and troubleshooting a number of wireless telecommunications systems.You will learn to use engineering tools and equipment for testing of systems including LTE/UMTS/GSM drive test tools, spectrum analyzers, network analyzers, optical time domain reflectometers. You will also learn how to troubleshoot and configure local- and wide-area networks (LAN/WANs) at the device and at the protocol levels. Our courses cover additional networking topics relevant to telecom carriers such as MPLS, VPNs, QoS and VoIP. You will be prepared to understand the technology roadmap leading into Internet of Things (IoT), 5G and data center virtualization technologies.

This program is an established program with industry with over two decades of expertise. Students will have access to learn on some of the best equipment available. Curriculum is kept current with the collaboration of our industry partners in the wireless field. Students utilize the latest technologies in small classes taught by experienced faculty and industry leaders.

Course detail

Upon successful completion of the program, a graduate will:

• Analyze, test, measure and troubleshoot RF (radio frequency) signals, attenuation and antenna systems, and test and troubleshoot linear and non-linear circuit modules.
• Manage network performance issues and problems against user needs through the design, implementation, testing, and troubleshooting of a variety of current and relevant protocols.
• Build wired and/or wireless networks using design documentation, and measure the performance of both the wired and wireless networks’ components and the networks’ applications using basic and advanced network management tools and applications.
• Design, install and configure networks - implementing various network configurations using different standard protocols, and upgrade network hardware (e.g. workstations, servers, wireless access points, routers, switches, firewalls etc.) and related components and software according to the best practices in the industry.
• Monitor and evaluate network security issues and perform basic security audits on both wired and wireless networks.
• Utilize change control, issue documentation and problem escalation procedures and processes, generate and maintain “as-built” network documentation following industry best practices.
• Apply RF analog and digital circuit analysis and design concepts to analyze voice and data communication using different modulation techniques.
• Use simulation tools to mathematically model and solve RF (radio frequency) electrical and electronics networks which are essential components of telecommunications and wireless technologies.
• Install, or use existing, operating systems & its components and manage users, processes, memory management, peripheral devices, telecommunication, networking and security, and troubleshoot hardware and software components of computer and operating systems using system level commands and scripts.
• Assist in the design and development of a wide area of networks using a variety of network layer-one, layer-two and layer-three protocols, microwave communication links, and fiber optics links.
• Describe the infrastructures, components, and protocols of a wide range of wireless technologies.
• Develop the infrastructure required for VoIP transport through IP networks, and be able to configure VoIP clients such as IP telephones and soft phones.

Modules

Semester 1
• WLS 5000: Applied Electromagnetics
• WLS 5002: RF Technology
• WLS 5003: Telecommunication Systems
• WLS 5004: Data Networks
• WLS 5500: Microwave and Fibre Optics

Semester 2
• WLS 5501: Broadband Communications and Security
• WLS 5503: Mobile Technologies
• WLS 5505: Wireless Data Networks
• WLS 5506: LTE Core
• WLS 5507: Wireless Project and ITIL

Your Career

The Canadian wireless industry supports over 280,000 jobs with sector salary average more than Canada’s average salary. In addition, the international wireless telecommunications market is growing. There are numerous employment opportunities in the planning, developing, manufacturing, co-ordinating, implementing, maintaining and managing of telecommunications systems for businesses and government.

As the rate of technology adoption increases in Canadian industry, the Wireless Telecommunications program is preparing graduates for these new markets. A 2015-2019 labour market report by the Information and Communications Technology Council (ICTC) indicates that by 2019, over 182,000 critical ICT positions will be left unfilled.

Graduates of the program work at cell phone service providers, equipment manufacturers, in house information technology (IT) departments, sales departments, and specialized telecommunication and networking companies.

How to apply

Click here to apply: http://humber.ca/admissions/how-apply.html

Funding

For information on funding, please use the following link: http://humber.ca/admissions/financial-aid.html

Read less
An astonishing global revolution has taken place in mobile and satellite communications, the full impact of which is difficult to exaggerate. Read more
An astonishing global revolution has taken place in mobile and satellite communications, the full impact of which is difficult to exaggerate. The resulting growth in mobile and satellite communications industries has created a high demand for graduates with expertise in the key areas of digital, mobile and satellite communications and networking.

With significant input from industry, this course produces highly competent graduates who can fill key positions and play leading roles in shaping this rapidly evolving field. By graduation, you will be well-equipped to develop new engineering applications for the next generation of communication systems. You will also be given the chance to undertake a six-month unpaid internship*.

Your studies will include advances in antennas and propagation, digital transmission, satellite communications, mobile communications, satellite networks, wireless applications, digital signal processing and product management. All this is enriched with seminars, field trips and a period of internship* in industry. You will also learn to use the latest engineering design tools, including the Systems ToolKit (STK) used by NASA for planning space missions.

Routes of study:
The course is available to study via two routes:
- MSc Mobile and Satellite Communications (with internship)
- MSc Mobile and Satellite Communications (without internship)

Please note: *Internships are available to full-time students only. Internship places are limited. Students have the opportunity to work in a participating UK company or within a Research Centre at the University. You can also opt to study the course without an internship which will reduce your course length.

See the website http://courses.southwales.ac.uk/courses/1431-msc-mobile-and-satellite-communications-with-internship

What you will study

You will study the following modules:
- Mobile Communication Technologies
- Satellite Communications
- Digital Communications Systems
- Applied Digital Signal Processing
- Product Management and Integrating Case Studies
- Six month Internship
- MSc Major Project

Optional modules:
- Wireless and Personal Communications
- Satellite Networking

Learning and teaching methods

You will be taught through lectures, tutorials and workshops involving hands-on systems modelling and simulations using state-of-the-art hardware and software facilities. Students will also engage in supervised research supported by full access to world-class online and library facilities.

The course is available to study via two main routes, you can opt to add further value to your studies by undertaking an internship or simply focus on building your academic knowledge through a on-campus study as detailed below:

MSc Mobile and Satellite Communications (with internship):

- Delivery: Full-time only | Start dates: September and February
If you choose to undertake an internship, your course will be delivered in four major blocks that offer an intensive but flexible learning pattern. Six taught modules are completed during two teaching blocks featuring 12 contact hours per week. This is followed by 6 month period of internship, after which the student returns to undertake a 16-week major research project. Please note: Course length may vary dependent on your chosen start date.


MSc Mobile and Satellite Communications (without internship):

- Delivery: Full-time and Part-time | Start dates: September and February
The study pathway available without internship is available full-time and part-time. The full-time route is delivered in three major blocks. Six taught modules are completed during two teaching blocks featuring 12 contact hours per week followed by a 16-week major research project. The full-time course duration is about 12 months, if you study part-time then you will complete the course in three years. Part-time study involves completing three modules in each of the first two years and a major research project in the final year. The use of block-mode delivery in this way allows flexible entry and exit, and also enables practising engineers to attend a single module as a short course.

Work Experience and Employment Prospects

Advancements in technology such as the increased use of Wi-Fi, are creating exciting career opportunities for graduates with the right skills. Graduates of this Masters award can enter the telecommunications industry in many different roles, conduct research or work towards a PhD.

Internship

Internships are only available to students studying full-time: Following successful completion of six taught modules, you will be competitively selected to join participating UK companies or University Research Centres on a six-month period of unpaid work placement before returning to undertake your major research project. All students who have an offer for the MSc Mobile and Satellite Communications (with internship) are guaranteed an internship either in industry or in a University Research Centre.

There are 25 internship places available. Students who wish to undertake an internship must apply for the MSc Mobile and Satellite Communications (with internship). It is anticipated that there will be significant demand for this programme and applicants are advised to apply as soon as possible to avoid disappointment. Applications will be considered on a first come first served basis and the numbers of students offered a place on the programme with internship will be capped.

If the course is already full and we are unable to offer you a place on the Masters course with internship, we may be able to consider you for the standard MSc Mobile and Satellite Communications (without internship) which is a shorter programme.

Assessment methods

Each of the six taught modules is typically assessed through 50% coursework and 50% closed-book class test. The major project is assessed through presentation to a panel of examiners, viva and written report.

Facilities

A state-of-the-art University library gives you access to most of the world’s leading publications. Other major facilities include a Cisco Academy networking laboratory, a Wireless Communications laboratory including a 1-65 GHz anechoic chamber and a satellite communication earth station, and a Communication Systems simulation laboratory equipped with PCs running the latest versions of MATLAB, SIMULINK, STK and other software.

In addition, we have recently opened a Calypto lab, which has software licences and support for the Catapult C toolset. This is used to develop advanced electronic products, such as the next generation of smart phones, more quickly and cost-effectively and to help engineers overcome design challenges in the increasingly complex world of board and chip design. The lab is sponsored by Calypto Design Systems Inc, a leader in electronic design automation. We are one of only four UK universities and 60 universities globally that have been granted permission to use the software worth £1.9m.

The new Renesas Embedded Systems lab comprises 25 new high-end terminals running cuttingedge tools. The facility was designed in collaboration with Renesas, the world’s leading supplier of microcontrollers, whose sponsorship helps ensure that students are always working with the latest technologies and development tools.

Teaching

The course is led by Professor Otung, a Chartered Engineer and internationally acclaimed author of Communication Engineering textbooks used in leading universities around the world, and supported by an impressive and highly-qualified teaching and supervision team. Generations of graduates from this course speak very highly of not only the cutting-edge expertise and technical skills that they developed on the course but also of the inspiration, professionalism and friendship of the entire teaching team.

Read less
The Mobile and High Speed Telecommunication Networks course is designed to provide you with in-depth knowledge of modern high-speed telecommunication systems and to enhance your professional development in the rapidly expanding field of personal communications. Read more
The Mobile and High Speed Telecommunication Networks course is designed to provide you with in-depth knowledge of modern high-speed telecommunication systems and to enhance your professional development in the rapidly expanding field of personal communications.

This course has two main components: 2G - 4G mobile communications, and fixed high-speed and multi-service networks. Emphasis is given to developing essential industrial and commercial skills. The project is a major element of the course and gives you the opportunity to enhance your career prospects by acquiring in-depth knowledge of a key aspect of telecommunications technology.

Why choose this course?

You will be taught industrially relevant techniques using some of the same tools and software used by the communications industry. Our telecommunications laboratories are equipped for the design, testing and analysis of mobile wireless and optical networks using industry standard tools such Asset, Ranopt, OptSim, OpNet and Matlab. You will have the opportunity to analyse real data from operational 2G and 3G networks and to design 3G and LTE networks.

Our networking laboratories are equipped with modern Cisco routers, switches and security devices to enable design construction and testing of complete high bandwidth secure, wired and wireless networks. You will have the opportunity to put the skills you have gained into practice if you choose to undertake our 1 year optional placement. The universal nature of the technical skills developed in our programmes means our courses are of equal relevance to both new graduates and those with many years of industrial experience.

This course in detail

MSc in Mobile and High Speed Telecommunication Networks has a modular course-unit design providing you with maximum flexibility and choice. To qualify for a master’s degree, you must pass modules amounting to 180 credits. This comprises six taught modules (20 credits each) plus your dissertation (60 credits).

The MSc in Mobile and High Speed Telecommunication Networks with placement enables you to work in industry for a year in the middle of your course to give valuable workplace experience. Placements are not guaranteed, but the departments dedicated placement team will help with the process of finding and applying for placements. To qualify for a master’s degree with placement, you must pass modules amounting to 180 credits plus the zero credit placement module. This comprises six taught modules (20 credits each) plus your dissertation (60 credits).

The Postgraduate Diploma in Mobile and High Speed Telecommunication Networks allows you to concentrate on the taught part of the degree and is ideal for people working in the communications industry who wish to brush up their skills. To qualify for a Postgraduate Diploma, you must pass modules amounting to 120 credits. This comprises six taught modules (20 credits each). In some cases, it may be possible for a student on a Postgraduate Diploma to do 3 taught modules (20 credits each) plus your dissertation (60 credits).

The Postgraduate Certificate in Mobile and High Speed Telecommunication Networks allows you to concentrate on the taught part of the degree and is ideal for people working in the communications industry who wish to learn a specific area in this rapidly changing discipline. To qualify for a Postgraduate Certificate, you must pass modules amounting to 60 credits. This comprises three taught modules (20 credits each).

We also offer a Postgraduate Certificate Mobile and High Speed Telecommunication Networks Research Project.

In Semester 1 you can choose from the following modules:
-Research and Scholarship Methods (compulsory for MSc)
-Digital Mobile Communications (alternative compulsory for MSc and PGDip)
-Digital Communications (alternative compulsory for MSc)
-Network Principles (alternative compulsory for MSc)

In Semester 2 you can choose from the following modules:
-Advanced Mobile Communications (compulsory for MSc and PGDip)
-High Speed Mobile Communications (compulsory for MSc and PGDip)
-Optical and Broadband Networks (alternative compulsory for MSc)
-Multiservice Networks (alternative compulsory for MSc)

As courses are reviewed regularly, the list of taught modules you choose from may vary from the list here.

Students undertaking an MSc with placement will do a 1 year placement in industry. The placement will be undertaken after the taught component and before doing the dissertation.

Students studying for an MSc will also take:
-MSc Dissertation (completed over summer)

Teaching and learning

The taught modules include lectures, seminars, library and internet research, and practical design and experimentation. Assessments include coursework exercises, presentations, essays and examinations (maximum 50% for taught modules).

Teaching staff include experienced academic staff and recent recruits from the telecommunications industry. Visiting speakers give you relevant and up-to-date developments from within the industry.

Laboratory facilities include the latest industry standard tools for mobile and wireless network analysis and software modelling facilities to enable network design.

Careers and professional development

Our MSc students come from all over the world and follow careers in many countries after their graduation. They are engaged in activities such as 3G network design, WiMax and LTE roll-out, handset compliance, DVB-H planning, communications software development and university lecturing. Many of them have commented on how the course content and training enabled their careers to flourish.

Read less
This programme is aimed at providing knowledge and expertise in the latest mobile and wireless communications technologies driving the evolution of mobile Internet. Read more

INSTITUTE FOR DIGITAL TECHNOLOGIES

This programme is aimed at providing knowledge and expertise in the latest mobile and wireless communications technologies driving the evolution of mobile Internet. The demand for low-latency, high-speed mobile data access is increasing, with the use of smart phones and bandwidth-intensive wireless multimedia applications.

This exciting programme has been designed to uncover these key areas and provide advanced knowledge of broadband, mobile, and wireless communication networks, as well as discuss future internet and related application areas.

Programme Aims

a) Develop students’ knowledge and expertise in multimedia signal capturing, rendering, coding, processing, and adaptation through practical application analysing and evaluating problems and responding to challenges in real time.
b) Develop students’ critical thinking to assess the development, evaluation and implementation of high-end home and low-end mobile media applications in response to addressing real world problems/opportunities.
c) Develop students’ critical thinking to assess media applications through user interaction techniques, human perception and quality of experience assessment methods.
d) Use action-based learning to provide individuals and teams with employment skills essential to the digital/tech industry.

Programme Structure

To complete the MSc Mobile Communication Systems students must complete 8 x 15 credit modules. Students must also choose and complete 4 of the 6 optional modules. Students will pick a second subject from the list of nominated second subject modules offered by the other Institutes in the first semester. All students must complete a Dissertation worth 60 credits.

Assessment

Modules are assessed primarily by exams and also include a combination of group exercises, presentations and time-constrained coursework and assignments with varying levels of weighting depending on the nature of each module.

Career Prospects

As the Internet is part of our everyday lives, providing us with the means for many of our personal and business-related activities, choosing this programme will provide a great opportunity to gain the essential knowledge and skill set to be placed in the telecommunications, Internet and mobile communication technologies industry, as well as research, development and academic positions.

Graduates will also have the opportunity to enhance their knowledge and career prospects further by undertaking an MRes or PhD programme.

Compulsory Modules

-Collaborative Project
-Internet and Communication Networks
-Mobile Broadband and Wireless Networks
-Dissertation

Optional Modules

Choose four modules only:
-Media Processing and Coding
-Advanced 3D User Environments
-Internet of Things and Applications
-Introduction to Programming and MatLab
-Media Cloud Applications and Services
-Cloud Technologies and Systems
-Network Security

Second Subject Modules

Choose one module only:
-Design Thinking
-Principles of Entrepreneurship and Innovation Management
-The Key Topics in Media and Creative Industries
-Business Model Development
-Introduction to Diplomacy
-Sports Media and Marketing

Find more information on modules here http://www.lborolondon.ac.uk/study/institutes-programmes/mobile-communication-systems/

For more information on fees, please see our fees and finance page: http://www.lborolondon.ac.uk/study/fees-finance/

Scholarships

We are investing over half a million pounds (£0.5m) in our scholarship and bursary scheme to support your studies at Loughborough University London in 2017. This package of support celebrates and rewards excellence, innovation and community. Our ambition is to inspire students of the highest calibre and from all backgrounds and nationalities to study with us and benefit from the wider Loughborough University experience and network. Our range of scholarships, bursaries and support packages are available to UK, EU and international students.View the sections below to discover which scholarship options are right for you.

What's on offer for 2017?
Inspiring Success Programme
-For unemployed and underemployed* graduates living in the East London Growth Boroughs of Hackney, Newham, Tower Hamlets or Waltham Forest
-Award value: 100% off your tuition fees
-We are joining forces with The London Legacy Development Company to offer a two day programme of specialist support for graduates, including workshops, skills seminars and networking opportunities to increase students' employability and support those looking to enter into postgraduate education.
-Eligibility: At the end of the programme, eight students will be selected for a 100% scholarship to study a masters course of their choice at our London campus in September 2017.

Dean's Award for Enterprise
-For students looking for the skills and support to launch a new business
-Award value: 90% off fees to launch your business idea
-Eligibility: The award will be given at the discretion of the Dean and the Senior Leadership Team, based on a one-page submission of your business idea.

East London Community Scholarship
-For any students who obtained their GCSE’s or A-levels (or equivalent qualifications) from The Growth Boroughs – Barking and Dagenham, Greenwich, Hackney, Newham, Tower Hamlets and Waltham Forest
-Award value: 50% off your tuition fees
-Eligibility: Competitive scholarship based on one-page submission showing your contribution to our community.

Alumni Bursary
-For all Loughborough University alumni
-Award value: 20% off your tuition fees
-Eligibility: International and UK/EU alumni holding a current offer for LoughboroughExcellence Scholarship
-For international and UK/EU high achieving students
-Eligibility: Any student holding a high 2:1 or first class undergraduate degree or equivalent from a recognised high quality institution will be considered.

Find information on Scholarships here http://www.lborolondon.ac.uk/study/scholarships-and-bursaries/

Read less
Cutting-edge knowledge in wireless communications both at physical and network layers. Capability to design and implement wireless solutions, e.g., for future 5G networks, Internet-of-Things (IoT) devices and smart energy-efficient wireless sensor applications. Read more
• Cutting-edge knowledge in wireless communications both at physical and network layers
• Capability to design and implement wireless solutions, e.g., for future 5G networks, Internet-of-Things (IoT) devices and smart energy-efficient wireless sensor applications
• Relevant skills of the latest radio engineering methods, tools, and technologies, and ability to design RF electronics for smart phones and base stations of mobile systems

The International Master’s Degree Programme in Wireless Communications Engineering (WCE) is a two-year programme concentrating on wireless communications network technology. The programme will give you relevant skills and core knowledge of the latest methods, tools and technologies combined with time-tested issues such as:
• Antennas
• Advanced wireless communication systems
• Communication networks
• Computer engineering
• Electronics
• Information theory
• Stochastical and digital signal processing
• Radio channels
• Radio engineering

The two-year programme has two specialisation options:
• Radio Access and Networks
• RF Engineering

Radio Access and Networks concentrates on designing and applying radio access technologies both at physical layer and at network layer for 5G, IoT, and future mobile system generations.

RF Engineering focuses on essential radio system parts and gives the knowledge to design integrated RF and DSP circuits for mobile handsets, base stations, future 5G devices, IoT applications, and smart & energy efficient sensors.

Optional module makes it possible to widen your expertise into:
• Machine vision
• Mobile and social computing
• Signal processors, and
• Video and biomedical signal processing.

The education is organized by the Centre for Wireless Communications which consists of 150 academics from over 20 countries. CWC performs world-class research for the future of 5G and IoT applications, which will give you the possibility to move forward already during your studies. CWC provides a number of jobs as a trainee or a master’s thesis student, with the possibility to continue as a doctoral student, and even as a post-doctoral researcher.

The skills gained in the programme offer you a solid academic training and essential knowledge on the design of wireless communications networks at the system level. After graduation you are capable of designing, implementing and employing 5G and IoT applications and developing future wireless communications technologies.

Possible titles include:
• Chief engineer
• Design engineer
• Development engineer
• Maintenance engineer
• Patent engineer
• Program manager
• Project manager
• Radio network designer
• Research engineer
• RF engineer
• Sales engineer
• System engineer
• Test engineer, and
• University teacher

Students applying for the programme must possess an applicable B.Sc. degree in one of the following fields of study: communications engineering, electronics & electrical engineering, or computer engineering.

For all enquiries, please refer to our enquiry form: http://www.oulu.fi/university/admissions-contact

Read less
Mobile telephony is reaching saturation in the most technologically advanced countries and is rapidly becoming the main telecommunications infrastructure in the rest of the world. Read more
Mobile telephony is reaching saturation in the most technologically advanced countries and is rapidly becoming the main telecommunications infrastructure in the rest of the world.

This programme gives you a thorough understanding of the engineering aspects of this rapidly developing field, as well as new emerging systems for the support of broadband mobile Internet.

PROGRAMME OVERVIEW

We have a wide range of testbeds available for projects, including wireless networking, wireless sensors, satellite networking, and security testbeds, future internet testbed and cloud infrastructure.

We also have a wide range of software tools for assignments and project work, including OPNET, NS2/3, Matlab, C, C++ and various system simulators. Some projects can offer the opportunity to work with industry.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year, until a total of eight is reached. It consists of eight taught modules and a standard project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Digital Communications
-Fundamentals of Mobile Communications
-Principles of Telecommunications and Packet Networks
-RF Systems and Circuit Design
-Internet of Things
-Applied Mathematics for Communication Systems
-Data and Internet Networking
-Advanced Signal Processing
-Advanced Mobile Communication Systems C
-Network and Service Management and Control
-Operating Systems for Mobile Systems Programming
-Mobile Applications and Web Services
-Advanced 5G Wireless Technologies
-Standard Project

EDUCATIONAL AIMS OF THE PROGRAMME

The taught postgraduate Degree Programmes of the Department are intended both to assist with professional career development within the relevant industry and, for a small number of students, to serve as a precursor to academic research.

Our philosophy is to integrate the acquisition of core engineering and scientific knowledge with the development of key practical skills (where relevant).

To fulfil these objectives, the programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & -Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:
-Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin mobile and satellite communications
-Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
-Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within mobile and satellite communications
-Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
-Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Research & development investigations - be able to carry out research-and- development investigations
-Design - where relevant, be able to design electronic circuits and electronic/software products and systems

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering.

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
The internet has developed at an astounding rate, connecting people in ways that we could never have imagined. On this programme you will study the advanced communications theory that underpins the science of networking, focusing on physical layer network communications, information theory and coding. Read more
The internet has developed at an astounding rate, connecting people in ways that we could never have imagined. On this programme you will study the advanced communications theory that underpins the science of networking, focusing on physical layer network communications, information theory and coding.

This new programme is for students who want to pursue a career shaping and defining the new generation of converged networks, responding to the rapid developments in telecommunication systems, such as social networking; seamless mobility; mobile data and the proliferation of applications for mobile and handheld devices. It will educate the next generation of network engineers in the fundamental science, mathematics and key technologies that underpin global networking.

This programme will:

-Provide an in-depth understanding of the key issues in next generation, all-packet networking.
-Cover quality of service-enabled transport; support for generalized mobility; ubiquitous provision of services to users; core network consolidation.
-Provide advanced communications theory to underpin the science.
-Address probabilistic methods for network performance evaluation, and network security.
-Provide an in-depth treatment of mobile networks from WCDMA 3G to LTE and LTE-Advanced.
-Address the new areas of sensor networks and Internet of Things.
-Teach you Java programming.
-Industrial Experience

The industrial placement currently takes place towards the end of the first year for a maximum of 12 months. It is the student’s responsibility to secure their placement, the school will offer guidance and support in finding and securing the placement but the onus is on the student to secure the job and arrange the details of the placement.

Currently if you are not able to secure a placement by the end of your second semester we will transfer you onto the 1 year FT taught programme without the Industrial Experience, this change would also be applied to any visa if you were here on a student visa.

The industrial placement consists of 8-12 months spent working with an appropriate employer in a role that relates directly to your field of study. The placement is currently undertaken between the taught component and the project. This will provide you with the opportunity to apply the key technical knowledge and skills that you have learnt in your taught modules, and will enable you to gain a better understanding of your own abilities, aptitudes, attitudes and employment potential. The module is only open to students enrolled on a programme of study with integrated placement.

If you do not secure a placement you will be transferred onto the 1 year FT programme.

Why study your MSc in Telecommunication Systems at Queen Mary?

The School of Electronic Engineering and Computer Science is rated in the top 20 universities in the UK for studying computer science and electronic engineering. We are internationally recognised for our pioneering and ground-breaking research, and innovative public engagement programme.

This new programme responds to the rapid developments in telecommunication systems, such as social networking; seamless mobility; mobile data and the proliferation of applications for mobile and handheld devices.
The programme teaches the Java programming foundations for network and services design, provides an in-depth treatment of the technological foundations of converged, all-packet networks, and current mobile networks from WCDMA 3G to LTE and LTE-Advanced.

It will enable you to develop an extensive understanding of 21st Century networks, current mobile and WLAN technologies, software for network and services design, network modelling, sensors and the Internet of Things, security and authentication, mobile services, next generation mobile technologies.

We have a long history of successfully offering postgraduate programmes in Telecommunications and in Wireless Networks.
We have recently recruited new staff who are international experts in the fields of converged all-IP networks with particular knowledge in modelling, measurements and QoE, in middleware and in wireless networking.
As well as teaching you, lecturers do research in their various fields of expertise. Being taught by someone who is engaged in potentially world-changing research ensures that lectures are fully up-to-date.
Facilities

The School of Electronic Engineering and Computer Science offers taught postgraduate students their own computing laboratory. MSc students have exclusive use of the top floor in our purpose-built, climate controlled, award winning informatics teaching laboratory (ITL) outside of scheduled laboratory sessions. The ITL hosts over 250 state-of-the-art PCs capable of multimedia production and several laser printers. In addition, there are video conference facilities, seminar rooms, and on-site teaching services and technical support. There are also a number of breakout spaces available to students with full wi-fi access allowing you use your own mobile devices.

The ITL is primarily used for taught laboratory sessions and regularly hosts research workshops and drop-in lab facilities. For postgraduate students on taught and research degrees there are specialist laboratories to use for carrying out research. Our augmented human interaction (AHI) laboratory combines pioneering technologies including full-body and multi-person motion capture, virtual and augmented reality systems and advanced aural and visual display technologies. We also have specialist laboratories in multimedia; telecommunication networks; and microwave antennas. In addition to these spaces, PhD students have generous study space in our research laboratories. In 2011 we completed the £2m development of new experimental facilities in Antennas and Media and Arts Technology. We formed the Interdisciplinary Informatics Hub in Collaboration with the Schools of Biological and Chemical Sciences and Mathematical Sciences. These laboratories provided a meeting place for postgraduates from the three Schools to interact and exchange ideas.

Read less
Wireless communication and mobile computing are currently the largest growth sectors in electronics and are expected to continue growing in the future. Read more
Wireless communication and mobile computing are currently the largest growth sectors in electronics and are expected to continue growing in the future.

The impact on the consumer market is widespread with new mobile phones and tablets continually under development. Wireless communications is pervasive and extending to many everyday objects including vehicles, personal health, entertainment systems and the internet of things (IoT).

This one year full-time taught MSc integrates electronics, communications and computing from core principles to cutting-edge applications and provides you with valuable skills for future employment in this growth sector. One of the major features of the MSc is the teaching of embedded programming using ARM processors which are included in over 90% of all mobile phones. In addition to learning to program the processor during the group project, you will be involved in interfacing it to wireless nodes and sensors, and building real-world solutions to problems. We will provide you with your own development kit when you arrive.

The course content features:
-Modules in computing (C and embedded programming), electronics, internet, mobile and data communications.
-Specially designed modules to support recent developments in relevant technologies such as programming for embedded and mobile devices.
-A 60 credit group project in which you will develop skills and knowledge that will prepare you for working in industry or undertaking further academic study. The project will involve the design and practical implementation of internet and wireless devices using ARM processors.

Group Project

The project will involve the design and practical implementation of internet and wireless devices using ARM processors.

Facilities

Students taking the Embedded Wireless Systems taught MSc have the use of departmental laboratories equipped with dedicated computing equipment including STMicro ARM processor and expansion boards and licences for Keil uVision embedded C compiler, these will be used in a variety of modules including the group project.

Read less
This MSc programme targets the needs of a rapidly evolving telecommunications sector and provides an industrially relevant and exciting qualification in the latest broadband and mobile technologies being employed and developed. Read more
This MSc programme targets the needs of a rapidly evolving telecommunications sector and provides an industrially relevant and exciting qualification in the latest broadband and mobile technologies being employed and developed.

Study the techniques and technologies that enable broadband provision through fixed and wireless/mobile networks, and that modernise the core networks to provide ultra-high bit-rates and multi-service support. The Broadband and Mobile Communication Networks MSc at Kent is well-supported by companies and research establishments in the UK and overseas.

The programme reflects the latest issues and developments in the telecommunications industry, delivering high-quality systems level education and training. Gain deep knowledge of next-generation wireless communication systems including antenna technology, components and systems, and fibre optic and converged access networks.

Visit the website https://www.kent.ac.uk/courses/postgraduate/247/broadband-mobile-communication-networks

About the School of Engineering and Digital Arts

The School of Engineering and Digital Arts (http://www.eda.kent.ac.uk/) successfully combines modern engineering and technology with the exciting field of digital media. The School was established over 40 years ago and has developed a top-quality teaching and research base, receiving excellent ratings in both research and teaching assessments.

The School undertakes high-quality research that has had significant national and international impact, and our expertise allows us to respond rapidly to new developments. Our 30 academic staff and over 130 postgraduate students and research staff provide an ideal focus to effectively support a high level of research activity. We have a thriving student population studying for postgraduate degrees in a friendly and supportive teaching and research environment.

We have research funding from the Research Councils UK, European research programmes, industrial and commercial companies and government agencies including the Ministry of Defence. Our Electronic Systems Design Centre and Digital Media Hub provide training and consultancy for a wide range of companies. Many of our research projects are collaborative, and we have well-developed links with institutions worldwide.

Modules

The following modules are indicative of those offered on this programme. This list is based on the current curriculum and may change year to year in response to new curriculum developments and innovation. Most programmes will require you to study a combination of compulsory and optional modules. You may also have the option to take modules from other programmes so that you may customise your programme and explore other subject areas that interest you.

EL872 - Wireless/Mobile Communications (15 credits)
EL873 - Broadband Networks (15 credits)
EL822 - Communication Networks (15 credits)
EL827 - Signal & Communication Theory II (15 credits)
EL849 - Research Methods & Project Design (30 credits)
EL871 - Digital Signal Processing (DSP) (15 credits)
EL891 - System and Circuit Design (15 credits)
EL892 - Satellite and Optical Communication Systems (15 credits)
EL890 - MSc Project (60 credits)

Assessment

The project module is examined by a presentation and dissertation. The Research Methods and Project Design module is examined by several components of continuous assessment. The other modules are assessed by examinations and smaller components of continuous assessment. MSc students must gain credit from all the modules. For the PDip, you must gain at least 120 credits in total, and pass certain modules to meet the learning outcomes of the PDip programme.

Programme aims

This programme aims to:

- educate graduate engineers and equip them with advanced knowledge of telecommunications and communication networks (including mobile systems), informed by insights and problems at the forefront of these fields of study, for careers in research and development in industry or academia

- produce high-calibre engineers with experience in specialist and complex problem-solving skills and techniques needed for the interpretation of knowledge and for systems level design in the telecommunications field

- provide you with proper academic guidance and welfare support

- create an atmosphere of co-operation and partnership between staff and students, and offer you an environment where you can develop your potential

- strengthen and expand opportunities for industrial collaboration with the School of Engineering and Digital Arts.

Research areas

- Communications

The Group’s activities cover system and component technologies from microwave to terahertz frequencies. These include photonics, antennae and wireless components for a broad range of communication systems. The Group has extensive software research tools together with antenna anechoic chambers, network and spectrum analysers to millimetre wave frequencies and optical signal generation, processing and measurement facilities.

Current main research themes include:

- photonic components
- networks/wireless systems
- microwave and millimetre-wave systems
- antenna systems
- radio-over-fibre systems
- electromagnetic bandgaps and metamaterials
- frequency selective surfaces.

Careers

We have developed the programme with a number of industrial organisations, which means that successful students will be in a strong position to build a long-term career in this important discipline.

School of Engineering and Digital Arts has an excellent record of student employability. We are committed to enhancing the employability of all our students, to equip you with the skills and knowledge to succeed in a competitive, fast-moving, knowledge-based economy.

Graduates who can show that they have developed transferable skills and valuable experience are better prepared to start their careers and are more attractive to potential employers. Within the School of Engineering and Digital Arts, you can develop the skills and capabilities that employers are looking for. These include problem solving, independent thought, report-writing, time management, leadership skills, team-working and good communication.

Building on Kent’s success as the region’s leading institution for student employability, we offer many opportunities for you to gain worthwhile experience and develop the specific skills and aptitudes that employers value.

Find out how to apply here - https://www.kent.ac.uk/courses/postgraduate/apply/

Read less
This MSc has been designed to capture the essence of the rapidly developing fields of Embedded Microelectronics and Wireless Systems. Read more
This MSc has been designed to capture the essence of the rapidly developing fields of Embedded Microelectronics and Wireless Systems. It is suitable for a computer science or electrical/electronic engineering graduate who wishes to specialise in the high-speed technology of embedded microelectronics and wireless systems including mobile communications.

As a leading university we are committed to the advancement of embedded microelectronic systems. Research in the University is carried out in several faculty research centres such as Transport & Mobility, Manufacturing & Material Engineering and Cogents Lab, where advances in fields associated with embedded microelectronics and wireless systems include designing real-time wireless networks, the application of systems modelling, statistical and artificial intelligence techniques.

WHY CHOOSE THIS COURSE?

-Electrical and electronic research carried out in the Faculty is recognised as world-leading, 45% Internationally Excellent (RAE 2008)
-Excellent links with a number of industrial organisations enable access to the use of high-cost equipment for real-time investigations

WHAT WILL I LEARN?

The MSc in Embedded Microelectronics and Wireless Systems curriculum consists of a fixed menu of study and a substantial MSc project. Successful completion of both parts leads to the award of MSc in Embedded Microelectronics and Wireless Systems. Completion of the taught modules without a project leads to the award of a Postgraduate Diploma.

The mandatory modules are as follows:
-Digital System Design with VHDL
-Object Orientated Programming
-Digital Communications
-Digital Signal and Image Processing
-Robotics: Kinematics, Dynamics and Applications
-Embedded Operating Systems
-Wireless Intelligent Systems
-Microprocessor Applications
-Individual Project

Prospective students should be aware that most of the mandatory modules include an element of programming, usually in the C/C++ language.

HOW WILL THIS COURSE ENHANCE MY CAREER PROSPECTS?

Embedded Microelectronics and Wireless Systems are now ever-present in all aspects of technological life for example automotive, biotechnology, communications fixed and mobile networks, information technology, industrial electronics process control, security, and computer technology.

So much so that there is a demand for top graduates in the fields of embedded microelectronics and wireless systems to work either in their development or in the vast number of industries that employ these technologies.

Opportunities also exist to complete a PhD research degree upon completion of the master’s course. More information can be found on our Research page.

GLOBAL LEADERS PROGRAMME

Centre for Global Engagement logoTo prepare students for the challenges of the global employment market and to strengthen and develop their broader personal and professional skills Coventry University has developed a unique Global Leaders Programme.

The objectives of the programme, in which postgraduate and eligible undergraduate students can participate, is to provide practical career workshops and enable participants to experience different business cultures.

Read less
Surrey is a world leader in satellite communications, broadcasting, terrestrial mobile networks and the Internet. essential components of communication and information infrastructures. Read more
Surrey is a world leader in satellite communications, broadcasting, terrestrial mobile networks and the Internet: essential components of communication and information infrastructures.

This has allowed us to create a Masters programme in this burgeoning field that is delivered by academics and researchers with extensive theoretical expertise and practical experience.

PROGRAMME OVERVIEW

Mobile communications provide terrestrial coverage in densely populated areas, while satellite communications enable wireless communication in regions where mobile networking is not cost-effective. The programme gives you an in-depth understanding of the engineering aspects of these important current and future technologies.

Read about the experience of a previous student on this course, Gideon Ewa.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year, until a total of eight is reached. It consists of eight taught modules and a project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Digital Communications
-Fundamentals of Mobile Communications
-Principles of Telecommunications and Packet Networks
-Satellite Communications Fundamentals
-RF Systems and Circuit Design
-Applied Mathematics for Communication Systems
-Data and Internet Networking
-Advanced Signal Processing
-Advanced Mobile Communication Systems
-Networking and Service Management & Control
-Operating Systems for Mobile Systems Programming
-Advanced Satellite Communication Techniques
-Advanced 5G Wireless Technologies
-60-Credit Standard Project

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to:
-Attract well-qualified entrants, with a background in Electronic Engineering, Physical Sciences, Mathematics, Computing & Communications, from the UK, Europe and overseas
-Provide participants with advanced knowledge, practical skills and understanding applicable to the MSc degree
-Develop participants' understanding of the underlying science, engineering, and technology, and enhance their ability to relate this to industrial practice
-Develop participants' critical and analytical powers so that they can effectively plan and execute individual research/design/development projects
-Provide a high level of flexibility in programme pattern and exit point
-Provide students with an extensive choice of taught modules, in subjects for which the Department has an international and UK research reputation

Intended capabilities for MSc graduates:
-Underpinning learning– know, understand and be able to apply the fundamental mathematical, scientific and engineering facts and principles that underpin mobile and satellite communications
-Engineering problem solving - be able to analyse problems within the field of mobile and satellite communications and more broadly in electronic engineering and find solutions
-Engineering tools - be able to use relevant workshop and laboratory tools and equipment, and have experience of using relevant task-specific software packages to perform engineering tasks
-Technical expertise - know, understand and be able to use the basic mathematical, scientific and engineering facts and principles associated with the topics within mobile and satellite communications
-Societal and environmental context - be aware of the societal and environmental context of his/her engineering activities
-Employment context - be aware of commercial, industrial and employment-related practices and issues likely to affect his/her engineering activities
-Research & development investigations - be able to carry out research-and- development investigations
-Design - where relevant, be able to design electronic circuits and electronic/software products and systems

PROGRAMME LEARNING OUTCOMES

General transferable skills
-Be able to use computers and basic IT tools effectively
-Be able to retrieve information from written and electronic sources
-Be able to apply critical but constructive thinking to received information
-Be able to study and learn effectively
-Be able to communicate effectively in writing and by oral presentations
-Be able to present quantitative data effectively, using appropriate methods
-Be able to manage own time and resources
-Be able to develop, monitor and update a plan, in the light of changing circumstances
-Be able to reflect on own learning and performance, and plan its development/improvement, as a foundation for life-long learning

Underpinning learning
-Know and understand scientific principles necessary to underpin their education in electronic and electrical engineering, to enable appreciation of its scientific and engineering content, and to support their understanding of historical, current and future developments
-Know and understand the mathematical principles necessary to underpin their education in electronic and electrical engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of engineering problems
-Be able to apply and integrate knowledge and understanding of other engineering disciplines to support study of electronic and electrical engineering

Engineering problem-solving
-Understand electronic and electrical engineering principles and be able to apply them to analyse key engineering processes
-Be able to identify, classify and describe the performance of systems and components through the use of analytical methods and modelling techniques
-Be able to apply mathematical and computer-based models to solve problems in electronic and electrical engineering, and be able to assess the limitations of particular cases
-Be able to apply quantitative methods relevant to electronic and electrical engineering, in order to solve engineering problems
-Understand and be able to apply a systems approach to electronic and electrical engineering problems

Engineering tools
-Have relevant workshop and laboratory skills
-Be able to write simple computer programs, be aware of the nature of microprocessor programming, and be aware of the nature of software design
-Be able to apply computer software packages relevant to electronic and electrical engineering, in order to solve engineering problems

Technical expertise
-Know and understand the facts, concepts, conventions, principles, mathematics and applications of the range of electronic and electrical engineering topics he/she has chosen to study
-Know the characteristics of particular materials, equipment, processes or products
-Have thorough understanding of current practice and limitations, and some appreciation of likely future developments
-Be aware of developing technologies related to electronic and electrical engineering
-Have comprehensive understanding of the scientific principles of electronic engineering and related disciplines
-Have comprehensive knowledge and understanding of mathematical and computer models relevant to electronic and electrical engineering, and an appreciation of their limitations
-Know and understand, at Master's level, the facts, concepts, conventions, principles, mathematics and applications of a range of engineering topics that he/she has chosen to study
-Have extensive knowledge of a wide range of engineering materials and components
-Understand concepts from a range of areas including some from outside engineering, and be able to apply them effectively in engineering projects

Societal and environmental context
-Understand the requirement for engineering activities to promote sustainable development
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk issues
-Understand the need for a high level of professional and ethical conduct in engineering

Employment context
-Know and understand the commercial and economic context of electronic and electrical engineering processes
-Understand the contexts in which engineering knowledge can be applied (e.g. operations and management, technology development, etc.)
-Be aware of the nature of intellectual property
-Understand appropriate codes of practice and industry standards
-Be aware of quality issues
-Be able to apply engineering techniques taking account of a range of commercial and industrial constraints
-Understand the basics of financial accounting procedures relevant to engineering project work
-Be able to make general evaluations of commercial risks through some understanding of the basis of such risks
-Be aware of the framework of relevant legal requirements governing engineering activities, including personnel, health, safety and risk (including environmental risk) issues

Research and development
-Understand the use of technical literature and other information sources
-Be aware of the need, in appropriate cases, for experimentation during scientific investigations and during engineering development
-Be able to use fundamental knowledge to investigate new and emerging technologies
-Be able to extract data pertinent to an unfamiliar problem, and employ this data in solving the problem, using computer-based engineering tools when appropriate
-Be able to work with technical uncertainty

Design
-Understand the nature of the engineering design process
-Investigate and define a problem and identify constraints, including environmental and sustainability limitations, and health and safety and risk assessment issues
-Understand customer and user needs and the importance of considerations such as aesthetics
-Identify and manage cost drivers
-Use creativity to establish innovative solutions
-Ensure fitness for purpose and all aspects of the problem including production, operation, maintenance and disposal
-Manage the design process and evaluate outcomes
-Have wide knowledge and comprehensive understanding of design processes and methodologies and be able to apply and adapt them in unfamiliar situations
-Be able to generate an innovative design for products, systems, components or processes, to fulfil new needs

Project management
-Be able to work as a member of a team
-Be able to exercise leadership in a team
-Be able to work in a multidisciplinary environment
-Know about management techniques that may be used to achieve engineering objectives within the commercial and economic context of engineering processes
-Have extensive knowledge and understanding of management and business practices, and their limitations, and how these may be applied appropriately

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
The Wireless Communications and Networking programme is designed to address the rapidly increasing demand for qualified engineers and managers with well equipped knowledge in wireless and mobile communication systems and networks. Read more
The Wireless Communications and Networking programme is designed to address the rapidly increasing demand for qualified engineers and managers with well equipped knowledge in wireless and mobile communication systems and networks. This one-year programme offers six-month taught modules covering a wide range of subjects from fundamental information and communications technology (ICT) to contemporary developments in wireless and mobile industry. It also includes a six-month individual project with opportunities of participating in the project provided by industry. This programme is suitable for those who want to develop the knowledge and skills needed for a successful career in these specific and related areas.

The delivery of the programme is fully supported by the dedicated facilities in the Electronic Engineering Department and across the University, such as teaching and computing laboratories, and the involvement of experienced member of staff. Our research facilities in the Adaptive Communications and Networks Research Group and Wireless Network Laboratory are also available for use on MSc projects. To ensure its continuing relevance the programme is monitored by an industrial steering committee which includes representatives from major employers.

About the MSc in Wireless Communications and Networking:
-Prepares students for an intellectually challenging career as a qualified engineer.
-Provides students with a thorough grounding in the principles and the requisite specialist knowledge and skills to develop, manage and adapt current systems.
-An industrial advisory group (Steering Committee) reviews the programme on a continual basis.
-Guest lecturers presented by acknowledged experts from industry and academic institutions.
-An active alumni group on LinkedIn.
-Free student membership of the IET.

Modules

This MSc integrates a taught component of nine modules plus a major project and a project preparation module, constituting in total 180 credits. Taught modules and examinations/assessments are completed during six months, October to March. After successful completion students may then progress to the six month individual research project during April to October. The project is either undertaken in an industrial laboratory or at the University, often with guidance and direction from industrial partners. The module titles are:
-Mobile Data Networks (EE4016)
-Realtime Communication Networks (EE4017)
-Information Theory and Coding and Traffic Theory (EE401A)
-Digital Transmission (EE401B)
-Broadband Wireless Networks (EE4027)
-Pervasive and Mobile communication networks (EE4028)
-Radio Systems and Personal Communications Networks (EE402B)
-Internetworking (EE403B)
-Introductory Programming (EE404B)

Dissertation Stage
-MSc Project (EE4006)
-Project Preperation (EE4019)

Read less
The internet has developed at an astounding rate, connecting people in ways that we could never have imagined. On this programme you will study the advanced communications theory that underpins the science of networking, focusing on physical layer network communications, information theory and coding. Read more
The internet has developed at an astounding rate, connecting people in ways that we could never have imagined. On this programme you will study the advanced communications theory that underpins the science of networking, focusing on physical layer network communications, information theory and coding.

This programme prepares you for a career in telecommunications and its applications, for example the integration of voice and data applications, within a business context. The programme combines in-depth coverage of the main technical aspects of telecommunications with advanced business modules. At the end of the programme you will be equipped with the skills needed for a wide range of jobs in the expanding telecommunications industry, with emphasis on those that are relevant to business/financial needs, particularly in the small business and start-up sector.

This programme will:

-Provide an in-depth understanding of the key issues in next generation, all-packet networking
-Cover quality of service-enabled transport; support for generalized mobility; ubiquitous provision of services to users; core network consolidation
-Provide advanced communications theory to underpin the science
-Address probabilistic methods for network performance evaluation, and network security
-Provide an in-depth treatment of mobile networks from WCDMA 3G to LTE and LTE-Advanced
-Address the new areas of sensor networks and Internet of Things
-Teach you Java programming
-Industrial Experience

The industrial placement currently takes place towards the end of the first year for a maximum of 12 months. It is the student’s responsibility to secure their placement, the school will offer guidance and support in finding and securing the placement but the onus is on the student to secure the job and arrange the details of the placement.

Currently if you are not able to secure a placement by the end of your second semester we will transfer you onto the 1 year FT taught programme without the Industrial Experience, this change would also be applied to any visa if you were here on a student visa.

The industrial placement consists of 8-12 months spent working with an appropriate employer in a role that relates directly to your field of study. The placement is currently undertaken between the taught component and the project. This will provide you with the opportunity to apply the key technical knowledge and skills that you have learnt in your taught modules, and will enable you to gain a better understanding of your own abilities, aptitudes, attitudes and employment potential. The module is only open to students enrolled on a programme of study with integrated placement.

If you do not secure a placement you will be transferred onto the 1 year FT programme.

Why study your MSc in Telecommunication Systems at Queen Mary?

The School of Electronic Engineering and Computer Science is rated in the top 20 universities in the UK for studying computer science and electronic engineering. We are internationally recognised for our pioneering and ground-breaking research, and innovative public engagement programme.

This new programme responds to the rapid developments in telecommunication systems, such as social networking; seamless mobility; mobile data and the proliferation of applications for mobile and handheld devices.
The programme teaches the Java programming foundations for network and services design, provides an in-depth treatment of the technological foundations of converged, all-packet networks, and current mobile networks from WCDMA 3G to LTE and LTE-Advanced.

It will enable you to develop an extensive understanding of 21st Century networks, current mobile and WLAN technologies, software for network and services design, network modelling, sensors and the Internet of Things, security and authentication, mobile services, next generation mobile technologies.
-We have a long history of successfully offering postgraduate programmes in Telecommunications and in Wireless Networks.
-We have recently recruited new staff who are international experts in the fields of converged all-IP networks with particular knowledge in modelling, measurements and QoE, in middleware and in wireless networking.
-As well as teaching you, lecturers do research in their various fields of expertise. Being taught by someone who is engaged in potentially world-changing research ensures that lectures are fully up-to-date.

Facilities
The School of Electronic Engineering and Computer Science offers taught postgraduate students their own computing laboratory. MSc students have exclusive use of the top floor in our purpose-built, climate controlled, award winning informatics teaching laboratory (ITL) outside of scheduled laboratory sessions. The ITL hosts over 250 state-of-the-art PCs capable of multimedia production and several laser printers. In addition, there are video conference facilities, seminar rooms, and on-site teaching services and technical support. There are also a number of breakout spaces available to students with full wi-fi access allowing you use your own mobile devices.

The ITL is primarily used for taught laboratory sessions and regularly hosts research workshops and drop-in lab facilities. For postgraduate students on taught and research degrees there are specialist laboratories to use for carrying out research. Our augmented human interaction (AHI) laboratory combines pioneering technologies including full-body and multi-person motion capture, virtual and augmented reality systems and advanced aural and visual display technologies. We also have specialist laboratories in multimedia; telecommunication networks; and microwave antennas. In addition to these spaces, PhD students have generous study space in our research laboratories. In 2011 we completed the £2m development of new experimental facilities in Antennas and Media and Arts Technology. We formed the Interdisciplinary Informatics Hub in Collaboration with the Schools of Biological and Chemical Sciences and Mathematical Sciences. These laboratories provided a meeting place for postgraduates from the three Schools to interact and exchange ideas.

Read less
Engineers with a good knowledge of mobile communications systems are much sought after and careers in this industry offer both high rewards and opportunities to work on the latest technical advances. Read more
Engineers with a good knowledge of mobile communications systems are much sought after and careers in this industry offer both high rewards and opportunities to work on the latest technical advances.

We work closely with industry and understand the skills and knowledge required to operate successfully in this field. Our specialised curriculum comprehensively covers the principles and techniques involved. It will equip you with the toolset needed to design and develop next generation mobile communication and wireless systems. As fresh technologies emerge in this ever-expanding field, you will have the essential formal theory and confidence in your practical skills to support your long-term career development.

Core study areas include fundamentals of digital signal processing, personal radio communications, information theory and coding, communication channels and a research project.

Optional study areas include a research project, digital signal processing for software defined radio, mobile network technologies, intelligent signal processing, advanced individual project.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/mobile-communications/

Programme modules

All modules on the programme are compulsory. Together they form an intensive and comprehensive curriculum of the principles and techniques required to design and develop next generation mobile communication systems, enabling successful students to contribute effectively in a commercial environment.

Semester 1:
- Fundamentals of Digital Signal Processing
- Personal Radio Communications
- Information Theory and Coding
- Communication Channels

Semester 2:
- Research Project
- Digital Signal Processing for Software Defined Radio
- Mobile Network Technologies
- Intelligent Signal Processing
- Advanced Individual Project

Facilities

Importantly, the course is supported by the Centre for Mobile Communications Research and by way of advanced projects encourages access to staff and post-doctoral researchers who are part of our University’s thriving academic community. State-of-the-art testing and measurement systems related to communications engineering support this concentration of expertise.

Careers and further study

Gaining this masters degree shows potential employers that you have achieved the highly developed and complex levels of knowledge, which enable you to develop in-depth and creative responses to hardware and software technical challenges in this field.

Scholarships and bursaries

Scholarships and bursaries are available each year for UK/EU and international students who meet the criteria for award.

Why choose electronic, electrical and systems engineering at Loughborough?

We develop and nurture the world’s top engineering talent to meet the challenges of an increasingly complex world. All of our Masters programmes are accredited by one or more of the following professional bodies: the IET, IMechE, InstMC, Royal Aeronautical Society and the Energy Institute.

We carefully integrate our research and education programmes in order to support the technical and commercial needs of society and to extend the boundaries of current knowledge.

Consequently, our graduates are highly sought after by industry and commerce worldwide, and our programmes are consistently ranked as excellent in student surveys, including the National Student Survey, and independent assessments.

- Facilities
Our facilities are flexible and serve to enable our research and teaching as well as modest preproduction testing for industry.
Our extensive laboratories allow you the opportunity to gain crucial practical skills and experience in some of the latest electrical and electronic experimental facilities and using industry standard software.

- Research
We are passionate about our research and continually strive to strengthen and stimulate our portfolio. We have traditionally built our expertise around the themes of communications, energy and systems, critical areas where technology and engineering impact on modern life.

- Career prospects
90% of our graduates were in employment and/or further study six months after graduating. They go on to work with companies such as Accenture, BAE Systems, E.ON, ESB International, Hewlett Packard, Mitsubishi, Renewable Energy Systems Ltd, Rolls Royce and Siemens AG.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/mobile-communications/

Read less

Show 10 15 30 per page



Cookie Policy    X