• Birmingham City University Featured Masters Courses
  • University of Northampton Featured Masters Courses
  • University of Surrey Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Bristol Featured Masters Courses
  • Cardiff University Featured Masters Courses
  • Northumbria University Featured Masters Courses
King’s College London Featured Masters Courses
Cranfield University Featured Masters Courses
Queen Mary University of London Featured Masters Courses
University of the West of England, Bristol Featured Masters Courses
University of Manchester Featured Masters Courses
"wind" AND "energy"×
0 miles

Masters Degrees (Wind Energy)

We have 130 Masters Degrees (Wind Energy)

  • "wind" AND "energy" ×
  • clear all
Showing 1 to 15 of 130
Order by 
Why this course?. This MSc is for ambitious engineering graduates who wish to strengthen, lead and transform the high-growth global wind energy industry. Read more

Why this course?

This MSc is for ambitious engineering graduates who wish to strengthen, lead and transform the high-growth global wind energy industry.

This course offers engineering graduates the opportunity to study at one of Europe's largest and leading University power and energy technology groups - the Institute for Energy & Environment.

The Institute is home to over 200 staff and researchers conducting strategic and applied research in the key technical and policy aspects of energy systems. It also houses the UK’s only Government funded Centres for Doctoral Training in Wind & Marine Energy Systems, and Future Power Networks and Smart Grids, both of which are dedicated to pioneering research and advanced skills training. 

On this course you'll develop and enhance your technical expertise of wind energy and deepen your understanding of the engineering, political and economic contexts of wind power. This course will provide you with an advanced level of knowledge to address the current and future challenges of this exciting and dynamic sector. 

With links to key UK and global business and industry energy partners, you’ll have unique access to companies at the forefront of wind energy developments.

You’ll study

There are two semesters of compulsory and optional classes, followed by a three-month research project in a specialist area. There’s the opportunity to carry this out through our department's competitive MSc industrial internships.

The internships are offered in collaboration with selected department industry partners eg ScottishPower, Smarter Grid Solutions, SSE. You'll address real-world engineering challenges facing the partner, with site visits, access and provision of relevant technical data and/or facilities provided, along with an industry mentor and academic supervisor.

Facilities

You'll have exclusive access to our extensive computing network and purpose built teaching spaces including our outdoor test facility for photovoltaics high voltage laboratory, equipped with the latest technologies including:

  • LDS 6-digital partial discharge test & measurement system
  • Marx impulse generators & GIS test rigs
  • £1M distribution network and protection laboratory comprising a 100kVA microgrid, induction machines and programme load banks

You'll have access to the UK’s only high-fidelity control room simulation suite and the Power Networks Demonstration Centre (PNDC). This is Europe’s first centre dedicated to the development and demonstration of “smart-grid” technologies.

Learning & teaching

We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.

Each module comprises approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.

Individual modules are delivered by academic leaders, and with links to key UK and global industry energy partners, you'll have unique access to companies at the forefront of wind energy developments.

The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.

You'll undertake group projects. These will help to develop your interpersonal, communication and transferable skills essential to a career in industry.

Industry engagement

Interaction with industry is provided through our internships, teaching seminars and networking events. The department delivers monthly seminars to support students’ learning and career development. Atkins Global, BAE Systems, Iberdrola, National Grid, ScottishPower, Siemens and Rolls-Royce are just a few examples of the industry partners you can engage with during your course.

Assessment

A variety of assessment techniques are used throughout the course. You'll complete at least six modules. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.

Assessment of the summer research project/internship consists of four elements, with individual criteria: 

  1. Interim report (10%, 1500 – 3000 words) – The purpose of this report is to provide a mechanism for supervisors to provide valuable feedback on the project’s objectives and direction.
  2. Poster Presentation (15%) – A vital skill of an engineer is the ability to describe their work to others and respond to requests for information. The poster presentation is designed to give you an opportunity to practise that.
  3. Final report (55%) – This assesses the communication of project objectives and context, accuracy and relevant of background material, description of practical work and results, depth and soundness of discussion and conclusions, level of engineering achievement and the quality of the report’s presentation.
  4. Conduct (20%) - Independent study, project and time management are key features of university learning. The level of your initiative & independent thinking and technical understanding are assessed through project meetings with your supervisor and your written logbooks.

Careers

With the European Wind Energy Association (EWEA) forecasting UK/EU employment in wind energy related jobs to double to more than 500,000 by 2020, graduates of this course have excellent career prospects.

The UK electricity supply industry is currently undergoing a challenging transition driven by the need to meet the Government's binding European targets to provide 15% of the UK's total primary energy consumption from renewable energy sources by 2020.

Graduates of this course have unique access to key UK and global industry energy partners, who are committed to fulfilling these UK Government targets. These companies offer a diverse range of professional and technical employment opportunities in everything from research and development, construction and maintenance, to technical analysis and project design. Companies include Siemens Energy, Sgurr Energy, DNV GL, ScottishPower Renewables and SSE.



Read less
The programme offers a new and unique approach to energy issues and does not teach how to produce more energy but how to use energy more efficiently! The curriculum provides education in alternative energy materials science and engineering with a strong technology component with specialisations on either materials or processes in sustainable energetics. Read more

The programme offers a new and unique approach to energy issues and does not teach how to produce more energy but how to use energy more efficiently! The curriculum provides education in alternative energy materials science and engineering with a strong technology component with specialisations on either materials or processes in sustainable energetics. The goal of this programme is to educate specialists who are able to design, develop and improve materials for use in sustainable energy systems.

The programme offers a joint degree from two of the biggest and most respected universities in Estonia: Tallinn Tech and the University of Tartu

Key features

  • Integrating lectures, laboratory, theoretical classes and experience in industries
  • Professors of the programme are highly recognised scientists. In 2013 Professor Enn Mellikov received the Estonian National Science Award in the field of solar energy
  • Specialisation in Materials will concentrate on solar panels and fuel cells
  • Specialisation in Processes will teach all about the different ways to produce energy: oil shale, wind energy, water, etc.

Course outline

The goal of the programme is to educate engineers and material scientists in the field of sustainable energetics. For that reason there are two specializations to choose between:

  • Specialization on Materials will concentrate on solar panels and fuel cells
  • Specialization on Processes will teach all about the different ways to produce energy: oil shale, wind energy, water etc. It also gives an overview about how to analyse different methods and how to combine them

Master's programme is connected to the industry and will offer experience in the Estonian Energy Company already during the studies.

The main aim of the curriculum is to educate engineers able to solve or minimize problems connected first of all with the utilization but also with the conversion, transportation and storage of energy. The curriculum provides education in alternative energy materials science and engineering at MSc level with a strong technology component.

The curriculum offers an integrated approach towards current and long term materials and energetics issues, focusing on technologies and concepts in sustainable development of industrial production and use of energy.

The courses will be taught both, in Tallinn University of Technology and University of Tartu in compact courses integrating lectures, laboratory and theoretical classes blocked to just several days duration enabling also the integration of foreign visiting students.

Energy is becoming more and more a major cost factor for all the players in the energy business due to increased worldwide consumption on the one hand and on the other hand a need to restrict the production of greenhouse gases.

By 2030, the world's energy needs are expected to be 50% greater than today. Nowadays, much of this energy comes from non-renewable sources, such as fossil fuels- coal, oil and gas. These fuels are being used faster rate than they are produced and may be unavailable for future generations. At the same time, there is a need for a 25% reduction in greenhouse gas emissions by 2050 to avoid serious changes in the Earth's climate system.

In 2009 Tallinn University of Technology launched in cooperation with University of Tartu a joint master programme „Materials and Processes of Sustainable Energetics“ which teaches different sustainable energy methods.

Keywords such as solar energyfuel cellsbiomass, and wind energy are just the tip of the iceberg to describe the programme. Student can choose specialization either in materials of sustainable energetics or processes of sustainable energetics. Specialization on materials of sustainable energetics will give the student knowledge about solar panels and fuel cells- there is already a spin-off company Crystalsol which specializes on building solar panels. Students who choose to study processes of sustainable energetics will learn different ways how to produce and combine sustainable energy- solar, wind, biomass, etc.

Volume of the programme is 2 years and graduates will be awarded with the Master of Science in Engineering.

Curriculum

Structure of curriculum

Future career options

Since the beginning of the programme, almost 50% of the graduates have continued their studies at PhD level in Tallinn University of Technology or in other universities in Europe or America. This has the result of many career possibilities as a researcher in the field of fuel cells and solar panels for material specialisation students whereas processes students are demanded in industries related to sustainable energetics.



Read less
Renewable energy production is increasing rapidly and there is a global shortage of trained engineers. With this master’s course you’ll have a highly relevant qualification that’s accredited by the Engineering Council via the Institution of Mechanical Engineers (IMechE). Read more
Renewable energy production is increasing rapidly and there is a global shortage of trained engineers. With this master’s course you’ll have a highly relevant qualification that’s accredited by the Engineering Council via the Institution of Mechanical Engineers (IMechE).

The course covers topics such as photovoltaic, wind, thermo-mechanical energy conversion systems, hybrid renewable energy systems, energy efficiency, building energy modelling and engineering optimisation.

The University has a well-established reputation for renewable and sustainable energy technologies.

You’ll benefit from excellent technical facilities including specialist workshops. We also have a laboratory that’s dedicated to power networks, wind energy, photovoltaics and battery testing for electric vehicles.

For more information about the January start for this course, please view the website: https://www.northumbria.ac.uk/study-at-northumbria/courses/renewable-and-sustainable-energy-technologies-msc-ft-dtfrws6/

Learn From The Best

Our teaching team includes experts from Renewable and Sustainable Energy Research Group. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent (Research Excellence Framework 2014).

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. Our industrial links help inform our curriculums and ensure a variety of site visits and input from practitioners via guest lectures.

Teaching And Assessment

Our teaching methods include lectures, seminars, workshops, individual tutorials, and group projects. As this is a master’s course there is a significant element of independent learning and self-motivated reflection.

You’ll undertake a master’s project that will hone your skills in evaluating and applying research techniques and methodologies. The topic of the project will reflect your own unique interests.

Assessments are designed to give feedback as well as to monitor your level of achievement. The assessed projects will enable you to test your skills in ways that relate to current industrial practice. Specific assessment methods include assignments, exams, technical reports and presentations.

Module Overview
KB7003 - Building Energy and Environmental Modelling (Core, 20 Credits)
KB7030 - Research Methods (Core, 20 Credits)
KB7040 - Sustainable Development for Engineering Practitioners (Core, 20 Credits)
KB7042 - Thermo-Mechanical Energy Conversion Systems (Core, 20 Credits)
KB7043 - Multidisciplinary Design & Engineering Optimisation (Core, 20 Credits)
KB7045 - Wind, Photovoltaic and Hybrid Renewable Energy Systems (Core, 20 Credits)
KB7052 - Research Project (Core, 60 Credits)

Learning Environment

Northumbria University provides outstanding facilities for renewable and sustainable energy technologies. For example our New and Renewable Energy Laboratory is an excellent resource for research into power networks, wind energy, photovoltaics and battery testing for electric vehicles. All our facilities are backed up by a team of technicians who will give support and advice when you need it.

Technology Enhanced Learning (TEL) is embedded throughout the course with tools such as the ‘Blackboard’ eLearning Portal and electronic reading lists that will guide your preparation for seminars and independent research. Our use of lecture capture software will help you revise challenging material.

To facilitate group projects there is a working space called The Hub that’s well equipped for meetings and working with IT. The Zone is another area that’s popular with students undertaking group work or individual study.

Research-Rich Learning

Northumbria’s strong research ethos is an essential aspect of how you will develop as a critical, reflective and independent thinker. With our problem-solving approach you’ll acquire a wide range of research and analytical skills as you progress through the course. These skills will come together in the master’s project that you’ll undertake, which will require independent research and appropriate techniques of inquiry, critical evaluation and synthesis.

Throughout the course your learning will be directly impacted by the teaching team’s active research. One of Northumbria’s signature research themes is ‘Future Engineering’, which is about innovation in the engineering industry so that it’s fit for purpose in the 21st century. We also have particular interests in smart materials and sustainable technologies.

Give Your Career An Edge

MSc Renewable and Sustainable Technologies has been accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirements for registration as a Chartered Engineer. Chartered status is associated with improved employability and higher salaries.

The course will equip you with the expertise to design, optimise, apply and evaluate renewable and sustainable energy technologies. Your master’s project will extend your practical experience of industry-standard hardware and software tools. At the same time you’ll develop transferable key skills and personal attributes that promote employability and lifelong learning.

When it comes to applying for jobs our Careers and Employment Service offers resources and support that will help you find roles matching your interests and skills. You will be able to access a range of workshops, one-to-one advice, and networking opportunities.

Your Future

By the end of this course you’ll be in an excellent position to start or continue a career in renewable and sustainable energy technologies. Renewable energy production could increase by up to 1,000% by 2050 compared to 2010, according to the UN Intergovernmental Panel on Climate Change, so there will be a pressing need for well-trained professionals.

You could also undertake a postgraduate research degree such as an MPhil, PhD and Professional Doctorate. If you decide to start up your own business, it’s good to know that the combined turnover of our graduates’ start-up companies is higher than that of any other UK university.

Whatever you decide to do, you will have the transferable skills that employers expect from a master’s graduate from Northumbria University. These include the ability to tackle complex issues through conceptualisation and undertaking research, the ability to contribute to new processes and knowledge, and the ability to formulate balanced judgements when considering incomplete or ambiguous data.

Read less
Renewable energy production is increasing rapidly and there is a global shortage of trained engineers. With this master’s course you’ll have a highly relevant qualification that’s accredited by the Engineering Council via the Institution of Mechanical Engineers (IMechE). Read more
Renewable energy production is increasing rapidly and there is a global shortage of trained engineers. With this master’s course you’ll have a highly relevant qualification that’s accredited by the Engineering Council via the Institution of Mechanical Engineers (IMechE).

The course covers topics such as photovoltaic, wind, thermo-mechanical energy conversion systems, hybrid renewable energy systems, energy efficiency, building energy modelling and engineering optimisation.

The University has a well-established reputation for renewable and sustainable energy technologies.

You’ll benefit from excellent technical facilities including specialist workshops. We also have a laboratory that’s dedicated to power networks, wind energy, photovoltaics and battery testing for electric vehicles.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

Internship

This option offers the opportunity to spend three months working full-time in one of the many companies/industries with which we have close links. You may be able to extend this over more than one semester in cases where it is adjacent to a vacation period. We will endeavour to help those who prefer this option to find and secure a suitable position but ultimately we are in the hands of the employers who are free to decide who they take into their organisation.

Research

If you take this option, you will be assigned to our Engineering, Physics and Materials Research Group. There is every possibility that you may contribute to published research and therefore you may be named as part of the research team, which would be a great start to a research career.

Study Abroad

We have exchange agreements with universities all over the world, including partners in Europe, Asia, the Americas and Oceania. If you take the Study Abroad option you will spend a semester at one of these partners, continuing your studies in English but in a new cultural and learning environment. Please note that this option may require you to obtain a visa for study in the other country.

Learn From The Best

Our teaching team includes experts from Renewable and Sustainable Energy Research Group. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent (Research Excellence Framework 2014).

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. Our industrial links help inform our curriculums and ensure a variety of site visits and input from practitioners via guest lectures.

Teaching And Assessment

Our teaching methods include lectures, seminars, workshops, individual tutorials, and group projects. As this is a master’s course there is a significant element of independent learning and self-motivated reflection.

You’ll undertake a master’s project that will hone your skills in evaluating and applying research techniques and methodologies. The topic of the project will reflect your own unique interests.

Assessments are designed to give feedback as well as to monitor your level of achievement. The assessed projects will enable you to test your skills in ways that relate to current industrial practice. Specific assessment methods include assignments, exams, technical reports and presentations.

The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

Module Overview
Year One
KB7003 - Building Energy and Environmental Modelling (Core, 20 Credits)
KB7030 - Research Methods (Core, 20 Credits)
KB7040 - Sustainable Development for Engineering Practitioners (Core, 20 Credits)
KB7042 - Thermo-Mechanical Energy Conversion Systems (Core, 20 Credits)
KB7043 - Multidisciplinary Design & Engineering Optimisation (Core, 20 Credits)
KB7045 - Wind, Photovoltaic and Hybrid Renewable Energy Systems (Core, 20 Credits)

Year Two
KB7052 - Research Project (Core, 60 Credits)
KF7005 - Engineering and Environment Advanced Practice (Core, 60 Credits)

Learning Environment

Northumbria University provides outstanding facilities for renewable and sustainable energy technologies. For example our New and Renewable Energy Laboratory is an excellent resource for research into power networks, wind energy, photovoltaics and battery testing for electric vehicles. All our facilities are backed up by a team of technicians who will give support and advice when you need it.

Technology Enhanced Learning (TEL) is embedded throughout the course with tools such as the ‘Blackboard’ eLearning Portal and electronic reading lists that will guide your preparation for seminars and independent research. Our use of lecture capture software will help you revise challenging material.

To facilitate group projects there is a working space called The Hub that’s well equipped for meetings and working with IT. The Zone is another area that’s popular with students undertaking group work or individual study.

Research-Rich Learning

Northumbria’s strong research ethos is an essential aspect of how you will develop as a critical, reflective and independent thinker. With our problem-solving approach you’ll acquire a wide range of research and analytical skills as you progress through the course. These skills will come together in the master’s project that you’ll undertake, which will require independent research and appropriate techniques of inquiry, critical evaluation and synthesis.

Throughout the course your learning will be directly impacted by the teaching team’s active research. One of Northumbria’s signature research themes is ‘Future Engineering’, which is about innovation in the engineering industry so that it’s fit for purpose in the 21st century. We also have particular interests in smart materials and sustainable technologies.

Give Your Career An Edge

MSc Renewable and Sustainable Technologies has been accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirements for registration as a Chartered Engineer. Chartered status is associated with improved employability and higher salaries.

The course will equip you with the expertise to design, optimise, apply and evaluate renewable and sustainable energy technologies. Your master’s project will extend your practical experience of industry-standard hardware and software tools. At the same time you’ll develop transferable key skills and personal attributes that promote employability and lifelong learning.

The Advanced Practice semester will help you develop a track record of achievement that will help you stand out from other job applicants.

A two-year master’s course, like this one, will carry particular weight with employers. They’ll understand that you’ll have a deeper understanding of topics as well as more hands-on practical experience.

When it comes to applying for jobs our Careers and Employment Service offers resources and support that will help you find roles matching your interests and skills. You will be able to access a range of workshops, one-to-one advice, and networking opportunities.

Your Future

By the end of this course you’ll be in an excellent position to start or continue a career in renewable and sustainable energy technologies. Renewable energy production could increase by up to 1,000% by 2050 compared to 2010, according to the UN Intergovernmental Panel on Climate Change, so there will be a pressing need for well-trained professionals.

You could also undertake a postgraduate research degree such as an MPhil, PhD and Professional Doctorate. If you decide to start up your own business, it’s good to know that the combined turnover of our graduates’ start-up companies is higher than that of any other UK university.

Whatever you decide to do, you will have the transferable skills that employers expect from a master’s graduate from Northumbria University. These include the ability to tackle complex issues through conceptualisation and undertaking research, the ability to contribute to new processes and knowledge, and the ability to formulate balanced judgements when considering incomplete or ambiguous data.

Read less
Overview. This is a 12 month full-time Masters degree (See http://www.postgraduate.hw.ac.uk/prog/msc-renewable-energy-development-red-/ ) course taught at our Orkney Campus. Read more

Overview

This is a 12 month full-time Masters degree (See http://www.postgraduate.hw.ac.uk/prog/msc-renewable-energy-development-red-/ ) course taught at our Orkney Campus. It involves studying 8 taught courses and completing a research dissertation equivalent to 4 taught courses. If you can demonstrate that you have already mastered the subject, you may apply for an exemption from one of the taught courses and undertake a Design Project instead.

For more information visit http://www.hw.ac.uk/schools/life-sciences/research/icit.htm

Distance learning

The Renewable Energy Development MSc/Diploma is also available for independent distance learning. For distance learners, the main difference is that you will undertake the Development Project alone rather than as part of a group. You can still obtain the full MSc in Renewable Energy Development, or you can opt to study fewer courses, depending on your needs.

Programme content

- Energy in the 21st Century

This course is designed to give you a broad understanding of the environmental, political and socio-economic context for current developments in renewable energy. The course examines the extent of current energy resources and how energy markets function. It covers some energy basics you will need for the rest of the programme (e.g. thermodynamics, efficiency conversions) as well as environmental issues associated with energy use, climate change and the political and policy challenges involved in managing energy supply and achieving energy security.

- Economics of renewable energy

This course gives an understanding of the economic principles and mechanisms which affect energy markets today. It covers price mechanisms, the economics of extracting energy and the cost-efficiency of renewable energy technologies. You will learn about economic instruments used by policy-makers to address environment and energy issues, economic incentives to stimulate renewable energy development and about environmental valuation.

- Environmental Policy & Risk

This course explores the legal and policy context in which renewable energy is being exploited. You will gain an understanding of international law, particularly the Law of the Sea, property rights and how these relate to different energy resources. The course also looks at regulatory issues at the international, European and UK level, which affect how energy developments are taken forward, as well as risk assessment and management in the context of renewable energy developments.

- Environmental Processes

Particularly for those without a natural science background, this course provides a broad overview of the environmental processes which are fundamental to an understanding of renewable energy resources and their exploitation. You will study energy flows in the environment, environmental disturbance associated with energy use, and an introduction to the science of climate change. You will also learn about ecosystems and ecological processes including population dynamics and how ecosystems affect and interact with energy generation.

- Renewable Technology I: Generation

This course explores how energy is extracted from natural resources: solar, biomass, hydro, wind, wave and tide. It examines how to assess and measure the resources, and the engineering solutions which have been developed to extract energy from them. You will develop an understanding of the technical challenges and current issues affecting the future development of the renewable energy sector.

- Renewable Technology II: Integration

This course explores the technical aspects of generating renewable energy and integrating it into distribution networks. You will learn about the electricity grid and how electrical power and distribution systems work. You will find out about different renewable fuel sources and end uses, and the challenges of energy storage.

- Development Appraisal

Looking at what happens when renewable energy technologies are deployed, this course examines development constraints and opportunities: policy and regulatory issues (including strategic environmental assessment, environmental impact assessment, landscape assessment, capacity issues and the planning system). It also looks at the financial aspects (valuation of capital assets, financing projects and the costs of generating electricity) and at project management.

- Development Project

This is a team project, where students have the opportunity to apply what they have learned through the other courses in relation to a hypothetical project. You have to look at a range of issues including resource assessment, site selection, development layout, consents, planning and economic appraisal, applying the knowledge and tools you have studied.

- Optional design project

For students who can demonstrate existing knowledge covered by one of the courses, there is the option of understanding a design project supervised by one of our engineers.

- Dissertation

This research project (equivalent in assessment to 4 taught courses) allows you to focus on a specific area of interest, with opportunities to collaborate with businesses and other stakeholders. You choose your dissertation subject, in discussion with your supervisor.

- Additional information

If you study at our Orkney Campus, you will also benefit from a number of activities including guest lectures and practical sessions, which help to develop your skills and knowledge in your field of study, and offer opportunities to meet developers and others involved in the renewable energy industry.

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Renewable Energy Development (RED) MSc. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent. We offer a range of English language courses to help you meet the English language requirement prior to starting your masters programme:

- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);

- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);

- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)

Distance learning students

Please note that independent distance learning students who access their studies online will be expected to have access to a PC/laptop and internet.

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-renewable-energy-development-red-/



Read less
The. Master in Global Energy Transition and Governance. aims to give a. deep understanding of the complexity of the current energy transformations in Europe and worldwide. Read more

The Master in Global Energy Transition and Governance aims to give a deep understanding of the complexity of the current energy transformations in Europe and worldwide. The programme offers a unique, multidisciplinary approach which distinguishes it from other Master courses in the field of energy studies: It analyses the links between the different levels of energy governance, from an international to a local level, offering problem-focused learning at the crossroads of theory and practice. The one-year Master programme stretches over three terms and takes place in two study locations: Nice and Berlin. Working language is English.

Overview of the year

Nice

The first term in Nice encompasses classes on the basics of the four energy modules (International energy governance, Economic energy governance, the EU energy governance and Energy and territories). Each module is complemented by seminars dealing with current energy issues. An academic or professional expert is invited for each event.

Berlin

For their second term students move on to Berlin where teaching in the four modules continues in the form of workshops. Each module organises a half-ay workshop with an expert. Students prepare the workshops in group work delivering papers on themes linked to the topic of the seminar (climate negotiations, energy stock exchange, the role of the EU interconnections in the European energy market, the EU funds and the territorial energy policy). To better understand the local energy challenges in the framework of the German Energy Transition Field, visits will also be organised in co-peration with local institutions and companies. Another focus of this term will be put on the methodology classes, one dedicated to the research work and the Master'sthesis, the second one to project management.

Nice

In April students return to Nice. The third term aims at deepening their knowledge on the four energy modules. A special focus is also given to the methodological support for the students' work on their  thesis including individual meetings with the academic supervisors. In the two simulations the participants will forge their negotiation techniques with regard to the construction of wind farms at local level and work out of a strategy for an international energy cooperation. Written and oral exams in June will conclude this term.

During this term students will finalise their work on their thesis in close contact with their academic supervisors. The thesis will be delivered in mid-June and defended at the end of June.

Curriculum

International energy governance

This module delivers the theoretical knowledge on the main international energy related issues and conflicts (resource curse, neoinstitutionalism, developmentalism, weak/strong States etc.).

It also provides the participants with concrete examples of the emergence and regulation of energy conflicts worldwide in order to analyse better how they exert pressure on the security and diversification of the energy supply.

With their graduation, students become part of CIFE’s worldwide Alumni network.

Economic energy governance

Economic and market fundamentals are applied to the energy sector in order to understand the current multiple national, regional, and local low carbon energy pathways in the world.

The module examines how the different markets are regulated and how they influence the transitions from fossil fuels to renewable energies. The economic perspective will highlight the role of liberalisation, privatisation and regulation of the sector.

European energy governance

The aim of this module is to highlight the EU priorities and its decision-making process regarding clean energy transition in Europe, thus helping to understand political economy factors that both inhibit and accelerate it.

While focusing on how the different EU policies challenge institutional architectures and multilevel governance schemes, the module provides an insight into issues currently facing European policy makers such as social acceptance, sustainability of renewable energies as well as rapid advancement in clean energy technologies.

Energy and territories

Participants will examine how EU regions and cities and more generally territories develop their own low carbon strategy at the crossroads of many policies (housing, waste management, transport, fuel poverty, environment and energy) and in the framework of a multilevel governance system.

Concrete examples of local and regional strategies will be delivered in order to analyse the levers and obstacles for more decentralisation.

Methodology modules

Students will acquire skills in research methodology, energy project management and the elaboration of energy strategies. They will concretely experiment different methodological tools: first of all through the research work for their thesis, second thanks to the methodological tools of project management. Students will be involved in a simulation game in which they will have to decide on the construction of a wind park in a territory. In a negotiation game, participants will have to elaborate a common strategy in the perspective of international energy cooperation.

Thesis

For their thesis participants will carry out a profound research work on an energy issue, chosen and elaborated in regular coordination with their supervisor.

The thesis will require the application of the methodological tools which the students have acquired during the programme.

The academic work will involve in-depth desk research, possible interviews with external partners and the writing of a thesis of approximately 17,000 words. Candidates will defend their thesis in an oral exam.

Applications and Scholarships

Candidates can submit their application dossier by using the form available on the Institute's website : http://www.ie-ei.eu/en/11/Registration

They should also include all the relevant documents, or send them by post or email. An academic committee meets regularly in order to review complete applications.

A limited number of scholarship funds can be awarded to particularly qualified candidates to cover some of the costs related to studies or accommodation.

The deadline for applications is 15 June of the current year.



Read less
Rational and economic use of energy, with the least damage to the environment, is vital for the future of our planet. Achieving energy efficiency and reducing environmental pollution are increasingly important aspects of professional engineering. Read more

Rational and economic use of energy, with the least damage to the environment, is vital for the future of our planet. Achieving energy efficiency and reducing environmental pollution are increasingly important aspects of professional engineering. This course equips graduates and practicing engineers with an in-depth understanding of the fundamental issues of energy thrift in the industrial and commercial sectors.

Who is it for?

The course has been developed to provide up-to-date technical knowledge and skills required for achieving the better management of energy, designing of energy-efficient systems and processes, utilisation of renewable energy sources and the cost effective reduction and control of pollution. This knowledge can be directly applied to help various sectors of the economy in improving their competitiveness in the face of dwindling resources, probable substantial increases in unit energy costs and the urgent requirement to comply with the increasingly restrictive pollution control standards.

The course is suitable for engineering and applied science graduates who wish to embark on successful careers as environmentally aware energy professionals.

Why this course?

The MSc in Energy Systems and Thermal Processes, established in 1972, was the first of its type to be instituted in Europe, and remains the most prestigious degree in technical energy management in the UK. The course has evolved over the past 40 years from discussions with industrial experts, employers, sponsors and previous students. The content of the study programme is updated regularly to reflect changes arising from technical advances, economic factors and changes in legislation, regulations and standards. 

In addition to management, communication, team work and research skills, each student will attain at least the following outcomes from this degree course:

  • Demonstrate competence in the current concepts and theories governing energy flows, heat transfer and energy conversions
  • Demonstrate an in-depth understanding of the issues involved in the management of energy in industry and commerce, and the design of energy-efficient systems and processes
  • Effectively acquire and critically review information from various sources
  • Apply effectively learnt techniques and technologies to achieve cost-effective conservation of energy and reduction of environmental pollution in industrial/commercial applications
  • Assess the potential and viability of energy policies and projects and making informed judgement in the absence of complete data.

Informed by Industry

We have a world-class reputation for its industrial-scale research facilities and pilot-scale demonstration programmes in the energy area. Close engagement with the energy sector over the last 40 years has produced long-standing strategic partnerships with the sectors most prominent organisations including Alstom Power, BP, Cummins Power Generation, Doosan Babcock, E.ON, npower, Rolls Royce, Shell, Siemens and Total.

Our strategic links with industry ensure that all of the materials taught on the course are relevant, timely and meet the needs of organisations competing within the energy sector. This industry-led education makes our graduates some of the most desirable in the world for energy companies to recruit.

Accreditation

This MSc degree is accredited by Institution of Mechanical Engineers (IMechE).

Course details

The taught programme for the Energy Systems and Thermal Processes masters is generally delivered from October to March and is comprised of eight compulsory taught modules and one optional module to select from a choice of three. A typical module consists of five days of intensive postgraduate level structured lectures, tutorials or workshops covering advanced aspects of each subject.

Students on the part-time programme will complete all of the compulsory modules based on a flexible schedule that will be agreed with the Course Director.

Group project

The Energy Audit group project is part of the Energy Management for Industry module. It requires teams of students to carry out energy audits on selected industrial/commercial sites. Teams must produce prioritised recommendations to reduce energy costs. Each team is expected to present findings and conclusions at various stages and submit a final report for assessment. 

Part-time students are encouraged to participate in a group project as it provides a wealth of learning opportunities. However, an option of an individual dissertation is available if agreed with the Course Director.

Individual project

The individual research project allows you to delve deeper into a specific area of interest. As our academic research is so closely related to industry, it is common for our industrial partners to put forward real practical problems or areas of development as potential research topics. The individual research project component takes place between April and August.

For part-time students, it is common that their research project is undertaken in collaboration with their place of work. 

Research projects will involve designs, computer simulations, feasibility assessments, reviews, practical evaluations and experimental investigations.

Typical areas of research include: 

  • Modelling of energy-conversion systems and thermal processes
  • Renewable energy utilisation schemes
  • Control of environmental pollution
  • Combustion and heat transfer processes.

Recent individual research projects Include:

  • Feasibility study for a mini hydropower plant in Peru
  • Developing a self-powered generator for energy usage
  • Feasibility assessment of Installing photovoltaic systems in a house in Alicante, Spain
  • Biomass gasification plants for decentralised small scale rural electrification in Northern Ghana: Assessing the economic viability of its utilisation
  • Thermal analysis on a vertical axis wind turbine generator
  • Investigation of jet pump performance under multiphase flow conditions.

Assessment

Taught modules 40%, Group projects 20%, Individual project 40%

Your career

There is a considerable demand for environmentally aware energy specialists with in-depth technical knowledge and practical skills. Our industry-led education makes graduates of this program some of the most desirable in the world for recruitment by companies and organisations competing in the energy sector.

Graduates of the course have been successful in gaining employment in energy, environmental and engineering consultancies and design practices, research organisations and government departments. A number of our MSc graduates follow further research studies leading to PhD degrees at Cranfield and in other academic institutions.

Recent graduates have gained positions with:

  • Alstom Power
  • Blue Circle Cement
  • British Gas
  • Ceylon Electricity Board, Sri Lanka
  • DELPHI Automotive Systems, Mexico
  • Electrolux, Denmark
  • Energy Saving Trust
  • Environmental Agency
  • Ministry of Energy (Botswana, Jordan, Tanzania, Uganda)
  • Powergen
  • Scottish Power
  • Unilever.


Read less
This is a 12 month full-time MSc degree course (See http://www.postgraduate.hw.ac.uk/prog/msc-marine-renewable-energy/#overview ) taught at our Orkney Campus. Read more

Overview

This is a 12 month full-time MSc degree course (See http://www.postgraduate.hw.ac.uk/prog/msc-marine-renewable-energy/#overview ) taught at our Orkney Campus. It involves studying 8 taught courses. If you can demonstrate that you have already mastered the subject, you may apply for an exemption from one of the taught courses and undertake a Design Project instead. The MSc programme is completed with a research dissertation equivalent to 4 taught courses.

For more information visit http://www.hw.ac.uk/schools/life-sciences/research/icit.htm

Distance Learning

The Marine Renewable Energy MSc/Diploma is also available for independent distance learning. For distance learners, the main difference is that you will undertake the Development Project alone rather than as part of a group. You can still obtain the full MSc in Marine Renewable Energy, or you can opt to study fewer courses, depending on your needs.

Scholarships available

We have a number of fully funded Scottish Funding Council (SFC) scholarships available for students resident in Scotland applying for Marine Renewable Energy. Find out more about this scholarship and how to apply http://www.hw.ac.uk/student-life/scholarships/postgraduate-funded-places.htm .

Programme content

The Diploma and MSc degree course involves studying the 8 taught courses outlined below. If a student can demonstrate that they have already mastered the subject, they may undertake a Development Project instead of one of these courses.

- Energy in the 21st Century
This course is designed to give you a broad understanding of the environmental, political and socio-economic context for current developments in renewable energy. The course examines the extent of current energy resources and how energy markets function. It covers some energy basics you will need for the rest of the programme (e.g. thermodynamics, efficiency conversions) as well as environmental issues associated with energy use, climate change and the political and policy challenges involved in managing energy supply and achieving energy security.

- Economics of renewable energy
This course gives an understanding of the economic principles and mechanisms which affect energy markets today. It covers price mechanisms, the economics of extracting energy and the cost-efficiency of renewable energy technologies. You will learn about economic instruments used by policy-makers to address environment and energy issues, economic incentives to stimulate renewable energy development and about environmental valuation.

- Environmental Policy & Risk
This course explores the legal and policy context in which renewable energy is being exploited. You will gain an understanding of international law, particularly the Law of the Sea, property rights and how these relate to different energy resources. The course also looks at regulatory issues at the international, European and UK level, which affect how energy developments are taken forward, as well as risk assessment and management in the context of renewable energy developments.

- Oceanography & Marine Biology
This course is designed to give you an understanding of the science of waves and tides, and how this affects efforts to exploit energy from these resources. You will also learn about marine ecosystems and how these may be impacted by energy extraction and about the challenges and impacts associated with carrying out engineering operations in the marine environment.

- Marine Renewable Technologies
You will gain an understanding of renewable energy technologies which exploit wind, wave and tidal resources. The focus is on technical design issues which developers face operating in the marine environment, as well as the logistics of installation, operations and maintenance of marine energy converters.

- Renewable Technology: Integration
This course explores the technical aspects of generating renewable energy and integrating it into distribution networks. You will learn about the electricity grid and how electrical power and distribution systems work. You will find out about different renewable fuel sources and end uses, and the challenges of energy storage.

- Development Appraisal
Looking at what happens when renewable energy technologies are deployed, this course examines development constraints and opportunities: policy and regulatory issues (including strategic environmental assessment, environmental impact assessment, landscape assessment, capacity issues and the planning system). It also looks at the financial aspects (valuation of capital asses, financing projects and the costs of generating electricity) and at project management.

- Development Project
This is a team project, where students have the opportunity to apply what they have learned through the other courses in relation to a hypothetical project. You have to look at a range of issues including resource assessment, site selection, development layout, consents, planning and economic appraisal, applying the knowledge and tools you have studied.

- Dissertation
This research project (equivalent in assessment to 4 taught courses) allows you to focus on a specific area of interest, with opportunities to collaborate with businesses and other stakeholders. You choose your dissertation subject, in discussion with your supervisor.

- Additional information
If you study at our Orkney Campus, you will also benefit from a number of activities including guest lectures and practical sessions which help to develop your skills and knowledge in your field of study, and offer opportunities to meet developers and other involved in the renewable energy industry.

English language requirements

If your first language is not English, or your first degree was not taught in English, we’ll need to see evidence of your English language ability. The minimum requirement for English language is IELTS 6.5 or equivalent. We offer a range of English language courses (http://www.hw.ac.uk/study/english.htm ) to help you meet the English language requirement prior to starting your masters programme:
- 14 weeks English (for IELTS of 5.5 with no more than one skill at 4.5);
- 10 weeks English (for IELTS of 5.5 with minimum of 5.0 in all skills);
- 6 weeks English (for IELTS 5.5 with minimum of 5.5 in reading & writing and minimum of 5.0 in speaking & listening)

Distance learning students

Please note that independent distance learning students who access their studies online will be expected to have access to a PC/laptop and internet.

Find information on Fees and Scholarships here http://www.postgraduate.hw.ac.uk/prog/msc-marine-renewable-energy/#overview

Visit the Marine Renewable Energy MSc/Diploma page on the Heriot-Watt University web site for more details!

Read less
This programme is appropriate for you if are seeking to develop the skills and confidence to address the critical global challenges of energy and diminishing natural resources. Read more

This programme is appropriate for you if are seeking to develop the skills and confidence to address the critical global challenges of energy and diminishing natural resources. Clean energy, optimal use of resources and the economics of climate change are the key issues facing society, and form the fundamental themes of this programme.

Course details

You explore the world’s dependency on hydrocarbon-based resources, together with strategies and technologies to decarbonise national economies. The course examines global best practice, government policies, industrial symbiosis and emerging risk management techniques. You also address the environmental, economic and sociological (risk and acceptability) impacts of renewable energy provision and waste exploitation as central elements. 

The programme develops the problem-solvers and innovators needed to face the enormous challenges of the 21st century - those who can play key roles in driving energy and environmental policies, and in formulating forward-looking strategies on energy use and environmental sustainability at corporate, national and global scales.

What you study

For the PgDip award you must successfully complete 120 credits of taught modules. For an MSc award you must successfully complete the 120 credits of taught modules and a 60-credit master's research project. 

Energy, environment, risk managing projects, sustainability and integrated waste management are the main foci of the programme, but you also explore the financial aspects of energy and environmental management. Economics is integral to the development of policies and is often a key influencing factor.

This programme aims to develop a comprehensive knowledge and understanding of the role and place of energy in the 21st century and the way the environment impinges on the types of energy used and production methods. It also aims to investigate the environment as it is perceived, and contextualise its actual importance to mankind. Specific objectives for this course are to establish the financial validity for the pursuit of alternative energy forms and management of the environment.

You are encouraged to take up opportunities of voluntary placements with local industries to conduct real-world research projects. These placements are assessed in line with the assessment criteria and learning outcomes of the Project module. 

Examples of past MSc research projects

  • The taxonomy of facilitated industrial symbioses
  • Assessment of the climate change impacts of the Tees Valley
  • Exploring the links between carbon disclosure and carbon performance
  • Hydrothermal carbonisation of waste biomass
  • Quantifying the impact of biochar on soil microbial ecology
  • Potential for biochar utilisation in developing rural economies
  • Carbon trading opportunities for renewable energy projects in developing countries
  • Exploring the potential for wind energy in Libya
  • Demand and supply potential of solar panel installations
  • A feasibility study of the application of zero-carbon retrofit technologies in building communal areas
  • Energy recovery from abandoned oil wells through geothermal processes

Course structure

Core modules

  • Concepts of Sustainability
  • Economics of Climate Change
  • Energy and Global Climate Change
  • Global Energy Policy
  • Integrated Waste Management and Exploitation
  • Project
  • Research Methods and Proposal

Modules offered may vary.

Teaching

How you learn

The course provides a number of contact teaching and assessment hours (through lectures, tutorials, projects, assignments), but you are also expected to spend time on your own, called 'self-study' time, to review lecture notes, prepare course work assignments, work on projects and revise for assessments. For example, each 20-credit module typically has around 200 hours of learning time. 

In most cases, around 60 hours are spent in lectures, tutorials and in practical exercises. The remaining learning time is for you to gain a deeper understanding of the subject. Each year of full-time study consists of modules totalling 180 credits; hence, during one year of full-time study a student can expect to have 1,800 hours of learning and assessment.

How you are assessed

Modules are assessed by a variety of methods including examination and in-course assessment with some utilising other approaches such as group-work or verbal/poster presentations.

Employability

Work placement

There may be short-term placement opportunities for some students, particularly during the project phase of the course. This University is also in the process of seeking accreditation for the Waste Management module from the Chartered Institution of Wastes Management.

Career opportunities

Successful graduates from this course are well placed to find employment. As an energy and environmental manager, you might find yourself in a role responsible for overseeing the energy and environmental performance of private, public and voluntary sector organisations, as well as in a wide range of engineering industries.

Energy and environmental managers examine corporate activities to establish where improvements can be made and ensure compliance with environmental legislation across the organisation. You might be responsible for reviewing the whole operation, carrying out energy and environmental audits and assessments, identifying and resolving energy and environmental problems and acting as agents of change. Your role could include the training of the workforce to develop the ability to recognise their own contributions to improved energy and environmental performance.

Your role may also include the development, implementation and monitoring of energy and environmental strategies, policies and programmes that promote sustainable development at corporate, national or global levels.



Read less
Renewable energy is an essential and vital resource for the world’s future, and future there is an urgent need for engineers capable of solving the industry’s complex challenges in this field. Read more

About the course

Renewable energy is an essential and vital resource for the world’s future, and future there is an urgent need for engineers capable of solving the industry’s complex challenges in this field.

Studying Renewable Energy Engineering at Brunel provides graduates with the knowledge and skills to make a strategic real-world impact in the resolution of the world’s energy problems.

Graduates from Brunel’s MSc in Renewable Energy Engineering will develop:

- The versatility and depth to deal with new, demanding and unusual challenges across a range of renewable energy issues, drawing on an understanding of all aspects of renewable energy principles including economic assessment.

- The imagination, initiative and creativity to enable them to follow a successful engineering career with national and international companies and organisations.

- Specialist knowledge and transferable skills for successful careers including, where appropriate, progression to Chartered Engineer status.

Aims

Huge business incentives, markets and a wide variety of employment opportunities throughout the world are expected with the development of renewable energy resources as a substitute for fossil fuel technology.

The purpose of the MSc programme is to help meet this demand by cultivating qualified and skilled professionals with specialist knowledge in relevant technologies within the renewable energy sector.

The primary aim is to create Master’s degree graduates with qualities and transferable skills ready for demanding employment in the renewable energy sector. These graduates will have the independent learning ability required for continuing professional development and acquiring new skills at the highest level, and the programme also establishes a strong foundation for those who expect to continue onto a PhD or industrial research and development.

Initial programme learning outcomes

The programme will provide opportunities for students to develop and demonstrate knowledge and understanding, qualities, skills and other attributes in the following areas:

Knowledge and understanding of:

1.The principles and environmental impact of renewable energy technologies, including solar (thermal and electricity), wind, tidal, wave and hydro, geothermal, biomass and hydrogen.
3. The principles of energy conversion and appropriate thermodynamic machines.
4. The heat and mass transfer processes that relate to energy systems and equipment.
5. The principles, objectives, regulation, computational methods, economic procedures, emissions trading, operation and economic impact of energy systems.
6. The diversity of renewable energy system interactions and how they can be integrated into actual energy control systems and industrial processes.

At the cognitive thinking level, students will be able to:

1. Select, use and evaluate appropriate investigative techniques.
2. Assemble and critically analyse relevant primary and secondary data.
3. Recognise and assess the problems and critically evaluate solutions to challenges in managing renewable energy projects.
4. Evaluate the environmental and financial sustainability of current and potential renewable energy activities
5. Develop a thesis by establishing the basic principles and following a coherent argument.

In terms of practical, professional and transferable skills, students will be able to:

1. Define and organise a substantial advanced investigation.
2. Select and employ appropriate advanced research methods.
3. Organise technical information into a concise, coherent document.
4. Communicate effectively both orally and in writing.
5. Design and select renewable energy equipment and systems based on specific requirements/conditions.
6. Work as part of, and lead, a team.

Course Content

The taught element of the course (September to April) includes eight modules; delivery will be by a combination of lectures, tutorials and group/seminar work. A further four months (May to September) is spent undertaking the dissertation.

Compulsory modules:

Renewable Energy Technologies I-Solar Thermal and electricity systems
Renewable Energy Technologies II-Wind, Tidal, Wave, Hydroelectricity
Renewable Energy Technologies III-Geothermal, Biomass, Hydrogen
Power Generation from Renewable Energy   
Renewable Energy Systems for the Built Environment
Energy Conversion Technologies
Environmental Legislation: Energy and Environmental Review and Audit
Advanced Heat and Mass Transfer
Dissertation

Teaching

Students are introduced to subject material, including key concepts, information and approaches, through a mixture of standard lectures and seminars, laboratory practical, field work, self-study and individual research reports. Supporting material isavailable online. The aim is to challenge students and inspire them to expand their own knowledge and understanding.

Preparation for work is achieved through the development of 'soft' skills such as communication, planning, management and team work. In addition, guest speakers from industries provide a valuable insight into the real world of renewable energy.

Many of the practical activities in which the students engage, develop into enjoyable experiences. For example, working in teams for laboratory and field work and site visits. We encourage students to develop personal responsibility and contribution throughout the course. Many elements of coursework involve, and reward, the use of initiative and imagination. Some of the projects may be linked with research in CEBER, CAPF and BIPS research centres.

1 Year Full-Time: The taught element of the course (September to April) is delivered by a combination of lectures, tutorials and group/seminar work. From May to September students undertake the dissertation.

3-5 Years Distance Learning: The programme is designed to enable you to conduct most of your studies at home, in your own time and at your own pace. Students are supplied with a study pack in the form of text books and CD-ROMs; cut-off dates for receipt of assignments are specified at the beginning of each stage. Examinations can be taken either at Brunel University London or in the country you are resident in. The dissertation is carried out in one year.

Modules are assessed either by formal examination, written assignments or a combination of the two.

Assessment

Each module is assessed either by formal examination, written assignments or a combination of the two. Cut-off dates for receipt of assignments are specified at the beginning of the academic year. Examinations are normally taken in May. The MSc dissertation project leading to submission of the MSc Dissertation is normally carried out over four months (FT students) or one year (DL students).

Special Features

Excellent facilities
We have extensive and well-equipped laboratories, particular areas of strength being in fluid and biofluid mechanics, IC engines, vibrations, building service engineering, and structural testing. Our computing facilities are diverse and are readily available to all students. The University is fully networked with both Sun workstations and PCs. Advanced software is available for finite and boundary element modelling of structures, finite volume modelling of flows, and for the simulation of varied control systems, flow machines, combustion engines, suspensions, built environment, and other systems of interest to the research groups.

About Mechanical Engineering at Brunel
Mechanical Engineering offers a number of MSc courses all accredited by professional institutes as appropriate additional academic study (further learning) for those seeking to become qualified to register as Chartered Engineers (CEng). Accrediting professional institutes vary by course and include the Institute of Mechanical Engineers (IMechE), Energy Institute (EI) and Chartered Institute of Building Services Engineers (CIBSE).

Teaching in the courses is underpinned by research activities in aerospace engineering, automotive/motorsport engineering, solid and fluid mechanics, and energy & environment. Staff generate numerous publications, conference presentations and patents, and have links with a wide range of institutions both within and outside the UK. The discipline benefits from research collaboration with numerous outside organisations including major oil companies, vehicle manufacturers, and other leading industrial firms and governmental laboratories. We have links with at least six teaching hospitals and work with universities in China, Poland, Egypt, Turkey, Denmark, Japan, Brazil, Germany, Belgium, Greece, Italy and the US.

Women in Engineering and Computing Programme

Brunel’s Women in Engineering and Computing mentoring scheme provides our female students with invaluable help and support from their industry mentors.

Accreditation

The requirement of UK-SPEC reinforces the need for a recent graduate with a Bachelor degree to take an appropriate postgraduate qualification in order to become a chartered engineer (currently, an accredited Bachelors degree does not enable the graduate to proceed to Chartered Engineer status without additional learning at M level).

This MSc program will be compliant with the further learning requirements of UK-SPEC. Accreditation will be sought from the Institute of Mechanical Engineering (IMechE) and Energy Institute. As a result, it will appeal to recent graduates who have not yet obtained the appropriate qualifications but intend to become Chartered Engineers. Most importantly, it will appeal to Mechanical, Chemical and Building Services Engineering graduates who wish to specialise in energy, or suitably experienced graduates of related subjects such as Physics.

Read less
UCC have developed a Masters in Engineering Science in Sustainable Energy, in recognition of the growing international market for sustainable energy systems and the shortage of qualified engineers. Read more
UCC have developed a Masters in Engineering Science in Sustainable Energy, in recognition of the growing international market for sustainable energy systems and the shortage of qualified engineers. This programme is open to Engineering graduates of all disciplines with an 8 month programme option leading to a Postgraduate Diploma in Sustainable Energy.

Visit the website: http://www.ucc.ie/en/ckr26/

Course Details

In Part I students take modules to the value of 50 credits and a Preliminary Research Report in Sustainable Energy (NE6008) to the value of 10 credits. Part II consists of a Dissertation in Sustainable Energy (NE6009) to the value of 30 credits which is completed over the summer months.

Part I

Students take 50 credits as follows:

NE3002 Energy in Buildings (5 credits)
EE3011 Power Electronic Systems (5 credits)
EE4010 Electrical Power Systems (5 credits)
NE3003 Sustainable Energy (5 credits)
NE4006 Energy Systems in Buildings (5 credits)
NE6003 Wind Energy (5 credits)
NE6004 Biomass Energy (5 credits)
NE6005 Ocean Energy (5 credits)
NE6006 Solar and Geothermal Energy (5 credits)
NE6007 Energy Systems Modelling (5 credits)

Depending on the background of the student, the Programme Coordinator may decide to replace some of the above taught modules from the following list of modules up to a maximum of 20 credits:

CE4001 The Engineer in Society (Law, Architecture and Planning) (5 credits)
EE3012 Electromechanical Energy Conversion (5 credits)
EE4001 Power Electronics, Drives and Energy Conversion (5 credits)
EE4002 Control Engineering (5 credits)
EE6107 Advanced Power Electronics and Electric Drives (5 credits)
ME6007 Mechanical Systems (5 credits)
NE4008 Photovoltaic Systems (5 credits)
PE6003 Process Validation and Quality (5 credits)

In addition, all students must take 10 credits as follows:

NE6008 Preliminary Research Report in Sustainable Energy (10 credits)

Part II

NE6009* Dissertation in Sustainable Energy (30 credits)

*must be submitted on a date in September as specified by the Department

Detailed Entry Requirements

Candidates must have a BE(Hons) or BEng (Hons) Degree or equivalent engineering qualification, with a minimum grade 2H2. However, candidates with equivalent academic qualifications and suitable experience may be accepted subject to the approval of College of Science, Engineering and Food Science. In all cases, the course of study for each candidate must be approved by the Programme Coordinator.
Candidates, for whom English is not their primary language, should possess an IELTS of 6.5 (or TOEFL equivalent) with no less than 6.0 in each individual category.

Candidates from Grandes Écoles Colleges are also eligible to apply if they are studying a cognate discipline in an ENSEA or EFREI Graduate School and are eligible to enter the final year (M2) of their programme.

Assessment

- Postgraduate Diploma in Sustainable Energy -

Students who pass but fail to achieve the requisite grade of 50% across the taught modules and the Preliminary Research Report will be eligible for the award of a Postgraduate Diploma in Sustainable Energy. Candidates passing Part I of the programme who do not wish to proceed to Part II may opt to be conferred with a Postgraduate Diploma in Sustainable Energy.

How to apply: http://www.ucc.ie/en/study/postgrad/how/

Funding and Scholarships

Information regarding funding and available scholarships can be found here: https://www.ucc.ie/en/cblgradschool/current/fundingandfinance/fundingscholarships/

Read less
Created in the context of the rapid advancement of the renewable-energy industry, this Masters programme investigates both renewable energy and systems technologies. Read more

Created in the context of the rapid advancement of the renewable-energy industry, this Masters programme investigates both renewable energy and systems technologies.

It is designed to build your competence and confidence in the R&D and engineering tasks that are demanded of scientific engineers in the renewable and sustainable-development sector.

Programme structure

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Facilities, equipment and academic support

Modules related to the different groups are taught by a total of six full-time members of staff and a number of visiting lecturers.

As part of their learning experience, students have at their disposal a wide range of relevant software needed to support the programme material dissertation projects. In recent years, this work included the design of various knowledge-based and business systems on the internet, the application of optimisation algorithms, and semantic web applications.

Numerous laboratory facilities across the Faculty and the University are also available for those opting for technology-based projects, such as the process engineering facility, a control and robotics facility and signal processing labs.

The work related to the MSc dissertation can often be carried out in parallel with, and in support of, ongoing research. In the past, several graduates have carried on their MSc research to a PhD programme.

Career prospects

Engineers and scientists are increasingly expected to have skills in information systems engineering and decision-support systems alongside their main technical and/or scientific expertise.

Graduates of this programme will be well prepared to help technology-intensive organisations make important decisions in view of vast amounts of information by adopting, combining, implementing and executing the right technologies.

Educational aims of the programme

This programme investigates both renewable energy and systems technologies in order to produce scientific researchers and engineers who are competent in the R&D and engineering tasks applicable to the renewable energy and sustainable development sectors.

Its primary aims lie in developing a global understanding of the major types of renewable energy technologies, in-depth knowledge of the technology for biomass-based renewable energy, and knowledge and skills in systems modelling and optimisation.

A balanced curriculum will be provided with a core of renewable energy and systems engineering modules supplemented by a flexible element by way of elective modules that permit students to pursue an element of specialisation relevant to their backgrounds, interests and/or career aspirations.

An integrated approach is taken so as to provide a coherent view that explores the interrelationships between the various components of the programme.

Programme learning outcomes

Knowledge and understanding

The programme aims to develop the knowledge and understanding in both renewable energy and systems engineering. The key learning outcomes include:

  • State-of- the-art knowledge in renewable energy technologies, in terms of: the sources, technologies, systems, performance, and applications of all the major types of renewable energy; approaches to the assessment of renewable energy technologies; the processes, equipment, products, and integration opportunities of biomass-based manufacturing
  • State-of- the-art knowledge in process systems engineering methods, in the areas of: modelling and simulation of process systems; mathematical optimization and decision making; process systems design
  • Advanced level of understanding in technical topics of preference, in one or more of the following aspects: process and energy integration, economics of the energy sector, sustainable development, supply chain management

Intellectual / cognitive skills

The programme aims to strengthen cognitive skills of the students, particularly in the aspects of problem definition, knowledge and information acquiring, synthesis, and creativity, as collectively demonstrable through the successful completion of the research dissertation. The key learning outcomes include the abilities to:

  • Select, define and focus upon an issue at an appropriate level
  • Collect and digest knowledge and information selectively and independently to support a particular scientific or engineering enquiry
  • Develop and apply relevant and sound methodologies for analysing the issue, developing solutions, recommendations and logical conclusions, and for evaluating the results of own or other’s work

Professional practical skills

The programme primarily aims to develop skills for applying appropriate methods to analyze, develop, and assess renewable technologies and systems. The key learning outcomes include the abilities to:

  • Assess the available renewable energy systems
  • Design and select appropriate collection and storage, and optimise and evaluate system design
  • Apply generic systems engineering methods such as modelling, simulation, and optimization to facilitate the assessment and development of renewable energy technologies and systems

Key / transferable skills

The programme aims to strengthen a range of transferable skills which are relevant to the needs of existing and future professionals in knowledge intensive industries irrespective of their sector of operation. The key learning outcomes include the further development of the skills in the following areas:

  • Preparation and delivery of communication and presentation
  • Report and essay writing
  • Use of general and professional computing tools
  • Collaborative working with team members
  • Organizing and planning of work
  • Research into new areas, particularly in the aspect of literature review and skills acquisition

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
This MSc Energy and Environmental Management (with Advanced Practice) course is ideal if are seeking to develop your skills and confidence to address the critical global challenges of energy and diminishing natural resources. Read more

This MSc Energy and Environmental Management (with Advanced Practice) course is ideal if are seeking to develop your skills and confidence to address the critical global challenges of energy and diminishing natural resources. Clean energy, optimal use of resources and the economics of climate change are the key issues facing society, and form the fundamental themes of this programme.

Course details

You explore the world’s dependency on hydrocarbon-based resources, together with strategies and technologies to decarbonise national economies. This course examines global best practice, government policies, industrial symbiosis and emerging risk management techniques. You also address the environmental, economic and sociological (risk and acceptability) impacts of renewable energy provision and waste exploitation as central elements.There are three routes you can select from to gain a postgraduate Master’s award:

  • MSc Energy and Environmental Management – one year full time
  • MSc Energy and Environmental Management – two years part time
  • MSc Energy and Environmental Management – two years full time

The one-year programme is a great option if you want to gain a traditional MSc qualification – you can find out more here. This two-year master’s degree with advanced practice enhances your qualification by adding to the one-year master’s programme an internship, research or study abroad experience.The MSc Energy and Environmental Management (with Advanced Practice) offers you the chance to enhance your qualification by completing an internship, research or study abroad experience in addition to the content of the one-year MSc. This two-year programme is an opportunity to enhance your qualification by spending one semester completing a vocational internship, research internship or by studying abroad. Although we can’t guarantee an internship, we can provide you with practical support and advice on how to find and secure your own internship position. A vocational internship is a great way to gain work experience and give your CV a competitive edge. Alternatively, a research internship develops your research and academic skills as you work as part of a research team in an academic setting – ideal if you are interested in a career in research or academia. A third option is to study abroad in an academic exchange with one of our partner universities. This option does incur additional costs such as travel and accommodation. You must also take responsibility for ensuring you have the appropriate visa to study outside the UK, where relevant.

What you study

For the MSc with advanced practice, you complete 120 credits of taught modules, a 60-credit master’s research project and 60 credits of advanced practice.

Energy, environment, risk managing projects, sustainability and integrated waste management are emphasised on the programme, but you also explore the financial aspects of energy and environmental management. Economics is integral to developing policies and is often a key influencing factor.

You develop a comprehensive knowledge and understanding of the role and place of energy in the 21st century, and how the environment impinges on the types of energy used and the way they are produced. You investigate the environment as it is perceived, and contextualise its actual importance to mankind. Specific objectives for this course are to establish the financial validity of pursing alternative energy forms and managing the environment.

Examples of past MSc research projects

  • The taxonomy of facilitated industrial symbioses
  • Assessment of the climate change impacts of the Tees Valley
  • Exploring the links between carbon disclosure and carbon performance
  • Hydrothermal carbonisation of waste biomass
  • Quantifying the impact of biochar on soil microbial ecology
  • Potential for biochar utilisation in developing rural economies
  • Carbon trading opportunities for renewable energy projects in developing countries
  • Exploring the potential for wind energy in Libya
  • Demand and supply potential of solar panel installations
  • A feasibility study of the application of zero-carbon retrofit technologies in building communal areas
  • Energy recovery from abandoned oil wells through geothermal processes

Course structure

Core modules

  • Concepts of Sustainability
  • Data Acquisition and Signal Processing Techniques
  • Economics of Climate Change
  • Energy and Global Climate Change
  • Global Energy Policy
  • Integrated Waste Management and Exploitation
  • Research Methods and Proposal
  • Research Project (Advanced Practice)

Advanced Practice options

  • Research Internship
  • Study Abroad
  • Vocational Internship

Modules offered may vary.

Teaching

How you learn

You learn through a variety of teaching methods including lectures, tutorials, projects and assignments. You are also expected to participate in self-directed study, to review lecture notes, prepare assignments, work on projects and revise for assessments. Each 20-credit module typically has around 200 hours of learning time. 

You usually spend around 60 hours in lectures, tutorials and in practical exercises over the duration of the course. The remaining learning time is for you to gain a deeper understanding of the subject. Each year of full-time study consists of modules totalling 180 credits. During one year of full-time study you can expect to have 1,800 hours of learning and assessment.

How you are assessed

Modules are assessed by a variety of methods including exams and in-course assessment with some using other approaches such as group work, or verbal or poster presentations. 

Your Advanced Practice module is assessed by an individual written reflective report (3,000 words) together with a study or workplace log, where appropriate, and through a poster presentation.

Employability

Career opportunities

Successful graduates from this course are well-placed to find employment. As an energy and environmental manager, you might find yourself responsible for overseeing the energy and environmental performance of a private, public or voluntary sector organisation, or in one of a wide range of engineering industries.

Work placement

There may be short-term placement opportunities for some students, particularly during the project phase of the course. This University is also in the process of seeking accreditation for the Waste Management module from the Chartered Institution of Wastes Management.



Read less
The Master of Science course in Energy Engineering is aimed at students trained as general engineers with skills on the new technologies relevant to the energy conversion and its rational use. Read more
The Master of Science course in Energy Engineering is aimed at students trained as general engineers with skills on the new technologies relevant to the energy conversion and its rational use. Candidates will be required to plan, design and manage energy systems blending creative solutions with up-to-date technologies relative to energy conversion and efficiency enhancement.

At the end of the course, engineers will be good at operating in the current technological/industrial environment - i.e. a dynamic and competitive one - and sensitive to the main industry, environment and security issues and standards.

The main aim of the course is to offer an in-depth theoretical and practical understanding of the most advanced energy conversion technologies, including renewable energy generation and energy storage.

Please visit http://www.en2.unige.it for any further information.

The Course is held at Savona Campus, in the city of Savona.

WHAT WILL YOU STUDY AND FUTURE PROSPECTS

The course consists of modules that include thermo-fluid dynamics and thermo-chemical dynamics, as well as fluid machinery and energy conversion systems (co-generation, fuel cells, power plants from renewable energy sources and smart grids), traditional energy and civil engineering plants, electric networks, economics, available and emerging technologies for reducing greenhouse gas emissions and environmental monitoring.

A rising interest in and increased urge for 20/20/20 policies in Europe has resulted in a growing industrial demand for highly qualified Energy Engineers with a sound knowledge and specific skills to analyze, design and develop effective solutions in a broad range of contexts. Furthermore, in the last few years both emerging industrial countries and developing ones have increased their awareness of environmental issues and energy production and started implementing large energy engineering projects thus boosting the job opportunities worldwide. The course is aimed at students seeking high qualification in the following main fields:

Energy conversion processes from chemical, bio-chemical, thermal sources into mechanical and electrical ones

Sustainable & Distributed Energy: renewable energy (solar, geothermal, wind, hydro), fuel cells, bio-fuels, smart power grids, low emission power plants Sustainable Development: C02 sequestration, LCA analysis, biomass exploitation, Energy Audit in buildings, energy from waste, recycling, modeling and experimental techniques devoted to optimum energy management.

The MSc course work in partnership with industries and research institutes in Liguria, in Italy and abroad.

WHAT DOES THE MASTER IN ENERGY ENGINEERING OFFER TO ITS STUDENTS

In the last years both industrialization and population growth have brought to a higher demand for sustainable energy, smart energy management with reduced environmental impact. As a result the MSc Energy Engineering was born out of the need to better cope with Sustainable Development issues and progress in energy conversion technologies, in including renewable energy generation and energy storage, NZE buildings, with an increasing attention devoted to greenhouse gas emissions reduction through a multidisciplinary approach.

This MSc course is taught in English and students are supported in achieving higher English language skills. The University of Genoa set its modern campus in Savona and in the last few years, public and private funds have been invested to improve its infrastructures, sport facilities, hall of residence, library and an auditorium.

The University of Genoa and Siemens jointly developed a smart polygeneration microgrid in Savona Campus – officially commissioned on February 2014.

Since then the campus has largely generated enough power to satisfy its own needs with the help of several networked energy producers, i.e. total capacity 250Kw of electricity and 300kW of heating.

The grid includes microgasturbines, absorption chillers, a photovoltaic plant, a solar power station and electrochemical and thermal storage systems.

This huge facility together with a series of laboratories located at the Campus (e.g. Combustion Lab, Energy Hub Lab) offer the students a unique opportunity for hands-on activities, e.g. to measure and investigate the performance of real scale innovative energy systems.

Read less
This fresh, new programme for 2017 is a collaboration between the School of GeoSciences and the School of Social and Political Sciences. Read more

This fresh, new programme for 2017 is a collaboration between the School of GeoSciences and the School of Social and Political Sciences.

The world is facing an ‘energy trilemma’; how to achieve energy security, energy equity and environmental sustainability. Whilst equipping students with an active understanding of low carbon technologies, policies and markets, this new MSc programme is focused squarely on analysing the social, societal and environmental dimensions of energy transitions. You will examine how citizens are involved in and are affected by changes in energy systems.

On a more theoretical level, the programme will enable you to relate supply-side issues to geo-politics and political economy, whilst energy demand will be studied in relation to broader challenges of sustainable consumption.

On a more practical level you will explore the potential of ‘smart’ ICT to affect consumption and inform strategic choices in sustainable living at household and community level. With Scotland being a world leader in renewable electricity generation (especially wind and marine), but also being economically dependent on declining North Sea oil and gas and suffering from high levels of energy poverty, this interdisciplinary MSc. benefits from close access to a high number of insightful case studies, which will serve to examine links between global and local issues, explore international best practices and identify locally suited pathways to more sustainable energy management.

Applicants receiving an offer of admission, either unconditional or conditional, will be asked to pay a tuition fee deposit of £1,500. Please see the fees and costs section for more information.

Programme structure

The programme has been designed to develop transdisciplinary perspectives on the energy trilemma and integrative analytical skills (qualitative and quantitative) which are in short supply in the energy sector. The full-time programme is divided into two semesters of taught courses, followed by a field trip at Easter before the dissertation period over the summer. We are happy to accommodate different working patterns for part-time students, including a half day a week schedule for three-year part time study.

The programme consists of four core modules (20 credits each, two core courses per semester), two optional modules (20 credits, one for each semester) and a 60 credit dissertation.

Compulsory courses*

Semester 1:

  • Energy and Society I: Key themes and issues
  • Energy in the Global South

Semester 2:

  • Energy and Society II: Methods and applications
  • Energy Policy and Politics

Students will also undertake one 20 credit course per semester. The University of Edinburgh offers an unrivalled selection of relevant optional courses for the MSc in Energy, Society and Sustainability. Bearing in mind your particular background and interests, the Programme Director will assist you in your choice from a large menu of optional courses related to six potential specialisation pathways; sustainable technologies and economics, politics, development, environmental sustainability, science and technology and public policy.

Optional courses may include*:

  • Technologies for Sustainable Energy (10 credits) AND
  • Energy and Environmental Economics (10 credits)
  • Applications in Ecological Economics
  • Global Environment: Key issues
  • Global Environmental Politics
  • Resource Politics and Development
  • Governance, Development and Poverty in Africa
  • Principles of Sustainable Development
  • Human Dimensions of Environmental Sustainability
  • Climate Change Management
  • Case Studies in Sustainable Development
  • Science, Knowledge and Expertise
  • Development, Science and Technology
  • Controversies in Science and Technology
  • Economic Issues in Public Policy (Semester 1)
  • Political Issues in Public Policy (Semester 2)

**Please note, courses are offered subject to timetabling and availability and are subject to change.

Learning outcomes

The programme aims for students to develop transdisciplinary skills in the assessment of the transition potential of energy systems towards greater sustainability, focussing especially on the human dimension of technological change and working and experimenting with energy users to co-produce knowledge about pathways to change.

Upon successful completion of the programme, students will have gained:

  • Understanding of energy systems and the energy trilemma
  • Understanding of social theories that underpin human attitudes and behaviour in relation to energy use
  • Understanding the non-technical and more-than-technical aspects of energy transitions
  • Understanding how energy-related decisions are linked to other societal challenges and socio-technical developments
  • Understanding of energy literacy

Career opportunities

UK research councils cite a major skills gap in the energy sector, one of the biggest growth sectors within the UK economy in recent years. Demand has never been higher for sound evidence on behavioural change, public engagement with energy issues, and public support for community and commercial investments in low carbon energy generation. We train our graduates to translate complex science into effective policies and new business opportunities. We have strong links with government departments, energy relevant NGOs and key industry players who want to make use of these skills. Committed to helping you meet prospective employers and network with those active in the field, we organise careers events and encourage dissertations conducted in partnership with external organisations.



Read less

Show 10 15 30 per page



Cookie Policy    X