• University of Cambridge Featured Masters Courses
  • University of Southampton Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Anglia Ruskin University Featured Masters Courses
  • Ross University School of Veterinary Medicine Featured Masters Courses
De Montfort University Featured Masters Courses
Plymouth Marjon University (St Mark & St John) Featured Masters Courses
Imperial College London Featured Masters Courses
Queen’s University Belfast Featured Masters Courses
Bath Spa University Featured Masters Courses
"wind"×
0 miles

Masters Degrees (Wind)

We have 160 Masters Degrees (Wind)

  • "wind" ×
  • clear all
Showing 1 to 15 of 160
Order by 
This MSc is for ambitious engineering graduates who wish to strengthen, lead and transform the high-growth global wind energy industry. Read more

Why this course?

This MSc is for ambitious engineering graduates who wish to strengthen, lead and transform the high-growth global wind energy industry.

This course offers engineering graduates the opportunity to study at one of Europe's largest and leading University power and energy technology groups - the Institute for Energy & Environment.

The Institute is home to over 200 staff and researchers conducting strategic and applied research in key technical and policy aspects of energy systems. It houses the Centres for Doctoral Training in Wind & Marine Energy Systems, and Future Power Networks and Smart Grids, which are dedicated to pioneering research and advanced skills training.

On this course you'll develop and enhance your technical expertise of wind energy and deepen your understanding of engineering, political and economic contexts of wind power. This course will provide an advanced level of knowledge to address current and future challenges of this exciting and dynamic sector.

With links to key UK and global business and industry energy partners, you’ll have unique access to companies at the forefront of wind energy developments.

See https://www.strath.ac.uk/courses/postgraduatetaught/windenergysystems/

You’ll study

Two semesters of compulsory and optional classes, followed by a three-month specialist research project. There’s the opportunity to carry this out through our competitive MSc industrial internships.
The internships are offered in collaboration with selected department industry partners eg ScottishPower, Smarter Grid Solutions, SSE. You'll address real-world engineering challenges facing the partner, with site visits, access and provision of relevant technical data and/or facilities provided, along with an industry mentor and academic supervisor.

Facilities

You'll have exclusive access to our extensive computing network and purpose built teaching spaces including our outdoor test facility for photovoltaics high voltage laboratory, equipped with the latest technologies including:
- LDS 6-digital partial discharge test & measurement system
- Marx impulse generators & GIS test rigs
- £1M distribution network and protection laboratory comprising a 100kVA microgrid, induction machines and programme load banks

You'll have access to the UK’s only high-fidelity control room simulation suite and the Power Networks Demonstration Centre (PNDC). This is Europe’s first centre dedicated to the development and demonstration of “smart-grid” technologies.

Pre-Masters preparation course

The Pre-Masters Programme is a preparation course for international students (non EU/UK) who do not meet the entry requirements for MSc. The Pre-Masters programme provides progression to a number of degree options.

To find out more about the courses and opportunities visit isc.strath.ac.uk or call today on +44 (0) 1273 339333 and discuss your education future. You can also complete the online application form. To ask a question please fill in the enquiry form and talk to one of our multi-lingual Student Enrolment Advisers.

Learning & teaching

We use a blend of teaching and learning methods including interactive lectures, problem-solving tutorials and practical project-based laboratories. Our technical and experimental officers are available to support and guide you on individual subject material.

Each module comprises approximately five hours of direct teaching per week. To enhance your understanding of the technical and theoretical topics covered in these, you're expected to undertake a further five to six hours of self-study, using our web-based virtual learning environment (MyPlace), research journals and library facilities.

Individual modules are delivered by academic leaders, and with links to key UK and global industry energy partners, you'll have unique access to companies at the forefront of wind energy developments. 

The teaching and learning methods used ensure you'll develop not only technical engineering expertise but also communications, project management and leadership skills.

You'll undertake group projects. These will help to develop your interpersonal, communication and transferable skills essential to a career in industry.

- Industry engagement
Interaction with industry is provided through our internships, teaching seminars and networking events. The department delivers monthly seminars to support students’ learning and career development. Atkins Global, BAE Systems, Iberdrola, National Grid, ScottishPower, Siemens and Rolls-Royce are just a few examples of the industry partners you can engage with during your course.

Assessment

A variety of assessment techniques are used throughout the course. You'll complete at least six modules. Each module has a combination of written assignments, individual and group reports, oral presentations, practical lab work and, where appropriate, an end-of-term exam.

Assessment of the summer research project/internship consists of four elements, with individual criteria:
1. Interim report (10%, 1500 – 3000 words) – The purpose of this report is to provide a mechanism for supervisors to provide valuable feedback on the project’s objectives and direction.

2. Poster Presentation (15%) – A vital skill of an engineer is the ability to describe their work to others and respond to requests for information. The poster presentation is designed to give you an opportunity to practise that.

3. Final report (55%) – This assesses the communication of project objectives and context, accuracy and relevant of background material, description of practical work and results, depth and soundness of discussion and conclusions, level of engineering achievement and the quality of the report’s presentation.

4. Conduct (20%) - Independent study, project and time management are key features of university learning. The level of your initiative & independent thinking and technical understanding are assessed through project meetings with your supervisor and your written logbooks.

Careers

With the European Wind Energy Association (EWEA) forecasting UK/EU employment in wind energy related jobs to double to more than 500,000 by 2020, graduates of this course have excellent career prospects.

The UK electricity supply industry is currently undergoing a challenging transition driven by the need to meet the Government's binding European targets to provide 15% of the UK's total primary energy consumption from renewable energy sources by 2020.

Graduates of this course have unique access to key UK and global industry energy partners, who are committed to fulfilling these UK Government targets. These companies offer a diverse range of professional and technical employment opportunities in everything from research and development, construction and maintenance, to technical analysis and project design. Companies include Siemens Energy, Sgurr Energy, DNV GL, ScottishPower Renewables and SSE.

Find information on Scholarships here http://www.strath.ac.uk/engineering/electronicelectricalengineering/ourscholarships/.

Read less
This MSc teaches an international community of students about the latest advances in clean power developments and enables graduates to design and develop benign renewable energy solutions that can be implemented in countries around the world. Read more
This MSc teaches an international community of students about the latest advances in clean power developments and enables graduates to design and develop benign renewable energy solutions that can be implemented in countries around the world.

It is aimed at engineers and natural scientists pursuing or wishing to pursue a career in the renewable energy sector, particularly those in technical positions e.g. systems designers, technical consultants and R&D engineers and scientists.

Core study areas include solar power, wind power, water power, biomass, sustainability and energy systems, integration of renewables and a research project.

Optional study areas include advanced solar thermal, advanced photovoltaics, advanced wind, energy storage, energy system investment and risk management.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/renewable-energy-systems-tech/

Programme modules

Compulsory Modules:
- Solar Power
- Wind Power 1
- Water Power
- Biomass
- Sustainability and Energy Systems
- Integration of Renewables
- Research Project

Optional Modules (choose three):
- Advanced Solar Thermal
- Advanced Photovoltaics
- Wind Power 2
- Energy Storage
- Energy System Investment and Risk Management

How will you learn

You can select options to develop a chosen specialism in greater depth, including through your individual project which is often carried out with renewable energy companies or alongside the research portfolio of our international experts.

This is a very practical course backed up by strong theoretical understanding of the principles and facts behind renewable energy production.

Assessment is via a mixture of written and practical coursework and examinations. The individual research project is also assessed by viva. Because of its multidisciplinary nature, assessment may be done in collaboration with academic colleagues from Civil Engineering, Mechanical Engineering and Materials.

Facilities

We have current industrial equipment and laboratories for PV cell production, PV module production, qualification testing, PV quality control, energy storage research facilities, vacuum glazing, wind flow measurement, and instrumentation for energy consumption and monitoring.

You will benefit from experience with industrial tools and software for system design (e.g. PV Syst, WASP, ReSoft Windfarm, DNV GL Windfarmer), materials research hardware (e.g. pilot lines for commercial solar cell production) and quality control laboratories.

This enables you to acquire the practical skills that industry uses today and builds the foundations for developing your knowledge base throughout their career.

Careers and further study

There is a world-wide shortage of skilled engineers in this field and so the combination of hands on experience with global industry standard tools and techniques and the strong theoretical knowledge which graduates of this course acquire, makes them highly attractive to employers.

Students may carry out their projects as part of a short-term placement in a company and graduates of this course are often fast-tracked in their applications. Consequently we have an extensive network of alumni, many in top jobs.

Why choose electronic, electrical and systems engineering at Loughborough?

We develop and nurture the world’s top engineering talent to meet the challenges of an increasingly complex world. All of our Masters programmes are accredited by one or more of the following professional bodies: the IET, IMechE, InstMC, Royal Aeronautical Society and the Energy Institute.

We carefully integrate our research and education programmes in order to support the technical and commercial needs of society and to extend the boundaries of current knowledge.

Consequently, our graduates are highly sought after by industry and commerce worldwide, and our programmes are consistently ranked as excellent in student surveys, including the National Student Survey, and independent assessments.

- Facilities
Our facilities are flexible and serve to enable our research and teaching as well as modest preproduction testing for industry.
Our extensive laboratories allow you the opportunity to gain crucial practical skills and experience in some of the latest electrical and electronic experimental facilities and using industry standard software.

- Research
We are passionate about our research and continually strive to strengthen and stimulate our portfolio. We have traditionally built our expertise around the themes of communications, energy and systems, critical areas where technology and engineering impact on modern life.

- Career prospects
90% of our graduates were in employment and/or further study six months after graduating. They go on to work with companies such as Accenture, BAE Systems, E.ON, ESB International, Hewlett Packard, Mitsubishi, Renewable Energy Systems Ltd, Rolls Royce and Siemens AG.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/renewable-energy-systems-tech/

Read less
Renewable energy production is increasing rapidly and there is a global shortage of trained engineers. With this master’s course you’ll have a highly relevant qualification that’s accredited by the Engineering Council via the Institution of Mechanical Engineers (IMechE). Read more
Renewable energy production is increasing rapidly and there is a global shortage of trained engineers. With this master’s course you’ll have a highly relevant qualification that’s accredited by the Engineering Council via the Institution of Mechanical Engineers (IMechE).

The course covers topics such as photovoltaic, wind, thermo-mechanical energy conversion systems, hybrid renewable energy systems, energy efficiency, building energy modelling and engineering optimisation.

The University has a well-established reputation for renewable and sustainable energy technologies.

You’ll benefit from excellent technical facilities including specialist workshops. We also have a laboratory that’s dedicated to power networks, wind energy, photovoltaics and battery testing for electric vehicles.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

Internship

This option offers the opportunity to spend three months working full-time in one of the many companies/industries with which we have close links. You may be able to extend this over more than one semester in cases where it is adjacent to a vacation period. We will endeavour to help those who prefer this option to find and secure a suitable position but ultimately we are in the hands of the employers who are free to decide who they take into their organisation.

Research

If you take this option, you will be assigned to our Engineering, Physics and Materials Research Group. There is every possibility that you may contribute to published research and therefore you may be named as part of the research team, which would be a great start to a research career.

Study Abroad

We have exchange agreements with universities all over the world, including partners in Europe, Asia, the Americas and Oceania. If you take the Study Abroad option you will spend a semester at one of these partners, continuing your studies in English but in a new cultural and learning environment. Please note that this option may require you to obtain a visa for study in the other country.

Learn From The Best

Our teaching team includes experts from Renewable and Sustainable Energy Research Group. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent (Research Excellence Framework 2014).

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. Our industrial links help inform our curriculums and ensure a variety of site visits and input from practitioners via guest lectures.

Teaching And Assessment

Our teaching methods include lectures, seminars, workshops, individual tutorials, and group projects. As this is a master’s course there is a significant element of independent learning and self-motivated reflection.

You’ll undertake a master’s project that will hone your skills in evaluating and applying research techniques and methodologies. The topic of the project will reflect your own unique interests.

Assessments are designed to give feedback as well as to monitor your level of achievement. The assessed projects will enable you to test your skills in ways that relate to current industrial practice. Specific assessment methods include assignments, exams, technical reports and presentations.

The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

Module Overview
Year One
KB7003 - Building Energy and Environmental Modelling (Core, 20 Credits)
KB7030 - Research Methods (Core, 20 Credits)
KB7040 - Sustainable Development for Engineering Practitioners (Core, 20 Credits)
KB7042 - Thermo-Mechanical Energy Conversion Systems (Core, 20 Credits)
KB7043 - Multidisciplinary Design & Engineering Optimisation (Core, 20 Credits)
KB7045 - Wind, Photovoltaic and Hybrid Renewable Energy Systems (Core, 20 Credits)

Year Two
KB7052 - Research Project (Core, 60 Credits)
KF7005 - Engineering and Environment Advanced Practice (Core, 60 Credits)

Learning Environment

Northumbria University provides outstanding facilities for renewable and sustainable energy technologies. For example our New and Renewable Energy Laboratory is an excellent resource for research into power networks, wind energy, photovoltaics and battery testing for electric vehicles. All our facilities are backed up by a team of technicians who will give support and advice when you need it.

Technology Enhanced Learning (TEL) is embedded throughout the course with tools such as the ‘Blackboard’ eLearning Portal and electronic reading lists that will guide your preparation for seminars and independent research. Our use of lecture capture software will help you revise challenging material.

To facilitate group projects there is a working space called The Hub that’s well equipped for meetings and working with IT. The Zone is another area that’s popular with students undertaking group work or individual study.

Research-Rich Learning

Northumbria’s strong research ethos is an essential aspect of how you will develop as a critical, reflective and independent thinker. With our problem-solving approach you’ll acquire a wide range of research and analytical skills as you progress through the course. These skills will come together in the master’s project that you’ll undertake, which will require independent research and appropriate techniques of inquiry, critical evaluation and synthesis.

Throughout the course your learning will be directly impacted by the teaching team’s active research. One of Northumbria’s signature research themes is ‘Future Engineering’, which is about innovation in the engineering industry so that it’s fit for purpose in the 21st century. We also have particular interests in smart materials and sustainable technologies.

Give Your Career An Edge

MSc Renewable and Sustainable Technologies has been accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirements for registration as a Chartered Engineer. Chartered status is associated with improved employability and higher salaries.

The course will equip you with the expertise to design, optimise, apply and evaluate renewable and sustainable energy technologies. Your master’s project will extend your practical experience of industry-standard hardware and software tools. At the same time you’ll develop transferable key skills and personal attributes that promote employability and lifelong learning.

The Advanced Practice semester will help you develop a track record of achievement that will help you stand out from other job applicants.

A two-year master’s course, like this one, will carry particular weight with employers. They’ll understand that you’ll have a deeper understanding of topics as well as more hands-on practical experience.

When it comes to applying for jobs our Careers and Employment Service offers resources and support that will help you find roles matching your interests and skills. You will be able to access a range of workshops, one-to-one advice, and networking opportunities.

Your Future

By the end of this course you’ll be in an excellent position to start or continue a career in renewable and sustainable energy technologies. Renewable energy production could increase by up to 1,000% by 2050 compared to 2010, according to the UN Intergovernmental Panel on Climate Change, so there will be a pressing need for well-trained professionals.

You could also undertake a postgraduate research degree such as an MPhil, PhD and Professional Doctorate. If you decide to start up your own business, it’s good to know that the combined turnover of our graduates’ start-up companies is higher than that of any other UK university.

Whatever you decide to do, you will have the transferable skills that employers expect from a master’s graduate from Northumbria University. These include the ability to tackle complex issues through conceptualisation and undertaking research, the ability to contribute to new processes and knowledge, and the ability to formulate balanced judgements when considering incomplete or ambiguous data.

Read less
Renewable energy and cutting carbon emissions now top the global environmental agenda. This programme addresses the fundamentals of renewable energy and shows how solar, wind and other such energy sources can be efficiently integrated into practical power systems. Read more

Renewable energy and cutting carbon emissions now top the global environmental agenda. This programme addresses the fundamentals of renewable energy and shows how solar, wind and other such energy sources can be efficiently integrated into practical power systems.

You’ll study core power engineering topics such as power electronic converters, machines and control alongside modules specific to renewable energy sources, on topics like power system modelling, analysis and power converters.

At the same time, you’ll study a unique set of modules on the efficient generation of electricity from solar and wind power, as well as integrating renewable generators into micro-grids, with stability analysis and active power management. Power electronics design is covered in depth, including conventional and emerging converter topologies and advances in semiconductor power devices.

You’ll be prepared to meet the renewable energy challenges of the 21st century in a wide range of careers.

School of Electronic and Electrical Engineering

Our School is an exciting and stimulating environment where you’ll learn from leading researchers in specialist facilities. These include our Keysight Technologies wireless communications lab, as well as labs for embedded systems, power electronics and drives.

Depending on your choice of research project, you may also have access to our labs in ultrasound and bioelectronics or our Terahertz photonics lab, class 100 semiconductor cleanroom, traffic generators and analysers, FPGA development tools, sensor network test beds. We have facilities for electron-beam lithography and ceramic circuit fabrication – and a III-V semiconductor molecular beam epitaxy facility.

Accreditation

This course is accredited by the Institution of Engineering and Technology (IET) under licence from the UK regulator, the Engineering Council.

Course content

Core modules that run throughout the year will allow you to take part in different lab-based projects and explore different forms of renewable energy as well as how they can be integrated into electricity systems. You’ll also consider how renewable source-powered generations can be integrated into the grid and analysis and design of control systems.

To build your understanding of the global electronics industry, you’ll also complete a dissertation. This could take the form of a business, manufacturing or outsourcing plan, a proposal for research funding or an essay on a specific aspect of the industry.

You’ll complete your studies with three optional modules, selecting one from each of three pairs that cover different topics. If you have no experience of c-programming you’ll take a module that develops those skills, or another focusing on software development. You’ll choose between Power Electronics and Drives and Electric Drives and take another module from Energy Management and Conservation and Energy in Buildings.

Over the summer months you’ll also work on your research project. This gives you the chance to work as an integral part of one of our active research groups, focusing on a specialist topic in power electronics, power engineering and control and selecting the appropriate research methods.

Want to find out more about your modules?

Take a look at the Electrical Engineering and Renewable Energy Systems module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Industry Dissertation 15 credits
  • Mini Projects and Laboratory 15 credits
  • Grid-Connected Microgeneration Systems 15 credits
  • Micro-grid Laboratory 15 credits
  • Electric Power Generation by Renewable Sources 15 credits
  • Control Systems Design 15 credits
  • Main Project 45 credits

Optional modules

  • Energy Management and Conservation 15 credits
  • Micro- and Nano-Electromechanical Systems 15 credits
  • Power Electronics and Drives 15 credits
  • Electric Drives 15 credits
  • Programming 15 credits
  • Software Development 15 credits

For more information on typical modules, read Electrical Engineering and Renewable Energy Systems MSc(Eng) in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings. Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The research project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects by students on this programme have included:

  • Power Flow Control of a Distribution Network using FACTS Devices
  • Module Integrated Converters for Photovoltaic Energy Systems
  • Modelling and Control of Parallel Connected Inverters
  • Power Regulation in the Power System using an Energy Storage Device
  • Application of Current Source Converters to Power Flow Control in a Power System
  • Control of a Renewable Energy System based Microgrid having an Energy Storage System as Backup
  • Control of a Grid Connected Wind Energy System under Abnormal Operating Conditions
  • DC-AC Inverter for grid-side connection of an induction generator
  • Modelling and control of a DC motor simulating a wind turbine

Career opportunities

Renewable energy and efficient power conversion systems are of immense importance worldwide and graduates of this course can expect to find jobs in a wide variety of industries including the electronics, automotive, transport, construction, industrial automation, power utility, energy, oil and environmental sectors.

You’ll be well-placed to develop practical solutions to the problem of integrating renewable energy systems into established electricity distribution networks. You should be able to contribute to strategic planning, systems implementation and operation of sustainable power generation systems.

This programme is also excellent preparation for PhD study. 



Read less
Climate change is a major challenge for the 21st century, requiring an alternative supply of cleaner energy from renewable sources. Read more
Climate change is a major challenge for the 21st century, requiring an alternative supply of cleaner energy from renewable sources. This course is designed with an engineering focus that deals with applications, combined with the business element; applicable whether you work for a large organisation or a small to medium-size enterprise.

The MSc will meet, in part, the exemplifying academic benchmark requirements for registration as a Chartered Engineer. Accredited MSc graduates who also have a BEng(Hons) accredited for CEng, will be able to show that they have satisfied the educational base for CEng registration.

Key features
-The programme provides hands-on skills in 3D CAD and solid modelling, FEA and CFD analysis, Polysun and WindPRO simulations using industry-standard software.
-You can undertake a wide range of challenging and interesting sponsored and non-sponsored projects in the specific areas of wind power, solar power, biofuels and fuel-cells-related technologies.
-Excellent career progression and internship with leading renewable companies: around 80% of students who have graduated from this programme have been recruited by the relevant industries as a consultant such as Atkins, Alstom Power, Inditex, Vattenfall, Shell, SGS UK Ltd and many others.
-Completion of this programme would be an ideal progression to PhD level of research studies if you are interested in following an academic or research career in novel areas of renewable energy.

What will you study?

The course provides an in-depth knowledge of renewable energy systems design and development, commercial and technical consultancy and project management within the sustainable engineering environment.

You will gain technical skills in and knowledge of solar power, wind power, biofuel and fuel cell technologies, as well as renewable energy business and management. In addition, you will gain practical skills in up-to-date computer-aided simulation technologies such as Polysun for solar energy applications, WindPRO for wind farm applications and ECLIPSE for biomass applications.

Option modules enable you to specialise in project engineering and management, as well as risk management or engineering design and development. Advanced topics, such as 3D solid modelling, computer-aided product development and simulation, and computational fluid dynamics (CFD) analysis and simulation allow you to gain further practical and theoretical knowledge of analytical software tools used in product design.

Assessment

Coursework, exams, individual project.

Work placement scheme

Kingston University has set up a scheme that allows postgraduate students in the Faculty of Science, Engineering and Computing to include a work placement element in their course starting from September 2017. The placement scheme is available for both international and home/EU students.

-The work placement, up to 12 months; is optional.
-The work placement takes place after postgraduate students have successfully completed the taught portion of their degree.
-The responsibility for finding the placement is with the student. We cannot guarantee the placement, just the opportunity to undertake it.
-As the work placement is an assessed part of the course for international students, this is covered by a student's tier 4 visa.

Details on how to apply will be confirmed shortly.

Course structure

Please note that this is an indicative list of modules and is not intended as a definitive list.

If you start this course in January, you will complete the same modules as students who started in September but in a different format – please contact us at for more information.

Core modules
-Biomass and Fuel Cell Renewable Technology
-Solar Power Engineering
-Wind Power Engineering
-Project Dissertation

Option modules (choose one)
-Engineering Projects and Risk Management
-Computational Fluid Dynamics for Engineering Applications
-Computer Integrated Product Development

Read less
Renewable energy production is increasing rapidly and there is a global shortage of trained engineers. With this master’s course you’ll have a highly relevant qualification that’s accredited by the Engineering Council via the Institution of Mechanical Engineers (IMechE). Read more
Renewable energy production is increasing rapidly and there is a global shortage of trained engineers. With this master’s course you’ll have a highly relevant qualification that’s accredited by the Engineering Council via the Institution of Mechanical Engineers (IMechE).

The course covers topics such as photovoltaic, wind, thermo-mechanical energy conversion systems, hybrid renewable energy systems, energy efficiency, building energy modelling and engineering optimisation.

The University has a well-established reputation for renewable and sustainable energy technologies.

You’ll benefit from excellent technical facilities including specialist workshops. We also have a laboratory that’s dedicated to power networks, wind energy, photovoltaics and battery testing for electric vehicles.

For more information about the January start for this course, please view the website: https://www.northumbria.ac.uk/study-at-northumbria/courses/renewable-and-sustainable-energy-technologies-msc-ft-dtfrws6/

Learn From The Best

Our teaching team includes experts from Renewable and Sustainable Energy Research Group. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent (Research Excellence Framework 2014).

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. Our industrial links help inform our curriculums and ensure a variety of site visits and input from practitioners via guest lectures.

Teaching And Assessment

Our teaching methods include lectures, seminars, workshops, individual tutorials, and group projects. As this is a master’s course there is a significant element of independent learning and self-motivated reflection.

You’ll undertake a master’s project that will hone your skills in evaluating and applying research techniques and methodologies. The topic of the project will reflect your own unique interests.

Assessments are designed to give feedback as well as to monitor your level of achievement. The assessed projects will enable you to test your skills in ways that relate to current industrial practice. Specific assessment methods include assignments, exams, technical reports and presentations.

Module Overview
KB7003 - Building Energy and Environmental Modelling (Core, 20 Credits)
KB7030 - Research Methods (Core, 20 Credits)
KB7040 - Sustainable Development for Engineering Practitioners (Core, 20 Credits)
KB7042 - Thermo-Mechanical Energy Conversion Systems (Core, 20 Credits)
KB7043 - Multidisciplinary Design & Engineering Optimisation (Core, 20 Credits)
KB7045 - Wind, Photovoltaic and Hybrid Renewable Energy Systems (Core, 20 Credits)
KB7052 - Research Project (Core, 60 Credits)

Learning Environment

Northumbria University provides outstanding facilities for renewable and sustainable energy technologies. For example our New and Renewable Energy Laboratory is an excellent resource for research into power networks, wind energy, photovoltaics and battery testing for electric vehicles. All our facilities are backed up by a team of technicians who will give support and advice when you need it.

Technology Enhanced Learning (TEL) is embedded throughout the course with tools such as the ‘Blackboard’ eLearning Portal and electronic reading lists that will guide your preparation for seminars and independent research. Our use of lecture capture software will help you revise challenging material.

To facilitate group projects there is a working space called The Hub that’s well equipped for meetings and working with IT. The Zone is another area that’s popular with students undertaking group work or individual study.

Research-Rich Learning

Northumbria’s strong research ethos is an essential aspect of how you will develop as a critical, reflective and independent thinker. With our problem-solving approach you’ll acquire a wide range of research and analytical skills as you progress through the course. These skills will come together in the master’s project that you’ll undertake, which will require independent research and appropriate techniques of inquiry, critical evaluation and synthesis.

Throughout the course your learning will be directly impacted by the teaching team’s active research. One of Northumbria’s signature research themes is ‘Future Engineering’, which is about innovation in the engineering industry so that it’s fit for purpose in the 21st century. We also have particular interests in smart materials and sustainable technologies.

Give Your Career An Edge

MSc Renewable and Sustainable Technologies has been accredited by the Institution of Mechanical Engineers (IMechE) on behalf of the Engineering Council for the purposes of fully meeting the academic requirements for registration as a Chartered Engineer. Chartered status is associated with improved employability and higher salaries.

The course will equip you with the expertise to design, optimise, apply and evaluate renewable and sustainable energy technologies. Your master’s project will extend your practical experience of industry-standard hardware and software tools. At the same time you’ll develop transferable key skills and personal attributes that promote employability and lifelong learning.

When it comes to applying for jobs our Careers and Employment Service offers resources and support that will help you find roles matching your interests and skills. You will be able to access a range of workshops, one-to-one advice, and networking opportunities.

Your Future

By the end of this course you’ll be in an excellent position to start or continue a career in renewable and sustainable energy technologies. Renewable energy production could increase by up to 1,000% by 2050 compared to 2010, according to the UN Intergovernmental Panel on Climate Change, so there will be a pressing need for well-trained professionals.

You could also undertake a postgraduate research degree such as an MPhil, PhD and Professional Doctorate. If you decide to start up your own business, it’s good to know that the combined turnover of our graduates’ start-up companies is higher than that of any other UK university.

Whatever you decide to do, you will have the transferable skills that employers expect from a master’s graduate from Northumbria University. These include the ability to tackle complex issues through conceptualisation and undertaking research, the ability to contribute to new processes and knowledge, and the ability to formulate balanced judgements when considering incomplete or ambiguous data.

Read less
This course covers the planning, design, analysis and management frameworks of infrastructure systems. In particular, you will develop expertise in the. Read more

This course covers the planning, design, analysis and management frameworks of infrastructure systems. In particular, you will develop expertise in the:

  • Technical aspects of infrastructure engineering within a social, economic, environmental and political context
  • Factors that affect and drive infrastructure planning and funding
  • Interdependent nature of infrastructure across different sectors

You will qualify with a sound understanding of the whole life-cycle of infrastructure assets, the environmental impact of infrastructure projects, and formal asset-management techniques enabling you to maximise the benefits of infrastructure assets in the future.

The lectures given by our academic staff are complemented by visiting speakers from different infrastructure companies such as Network Rail, Thames Water, Environment Agency, Transport for London, ARUP, KPMG, etc., covering different aspect of infrastructure engineering and management. During the academic year, infrastructure specialists carry out Keynote Lectures focusing on important infrastructure projects and approaches. Past Keynote Speakers include Sir John Armitt, Sir Terry Morgan, Sir Michael Pitt, Sir David Higgins, Keith Clarke, James Stewart, Andrew Wolstenholme, Michele Dix, Humphrey Cadoux-Hudson. A number of field visits are also organised to provide an overview of real-life infrastructure operation and management. Past field visits have taken place to both the National Grid and Network Rail Control Centers.

Graduates from the programme are highly employable but have the potential to progress to relevant specialist PhD or EngD research programmes in the field.

Programme structure

This programme is studied full-time over one academic year and part-time or distance learning for between two to five academic years. It consists of eight taught modules and a dissertation.

Example module listing

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Infrastructure Engineering and Management Group Modules

Structural Engineering Group Modules

Bridge Engineering Group Modules

Geotechnical Engineering Group Modules

Construction Management Group Modules

Water and Environmental Engineering Group Modules

Wind Energy Group Modules

Dissertation

Modes of study 

Apart from the usual full-time mode, there are also part-time options. The majority of Bridge, Geotechnical and Structural Engineering modules can be studied by distance learning through the use of an interactive web-based e-learning platform (SurreyLearn).

Distance learning

This programme can be studied via distance learning, which allows a high level of flexibility and enables you to study alongside other commitments you may have. Get full information about our distance learning programme (PDF).

Academic support, facilities and equipment

Modules related to the different groups are taught by a total of 20 full or part-time members of academic staff, as well as a number of visiting lecturers from the industry and government.

In addition to the University Library and Learning Centre’s extensive resources, our excellent testing facilities can support experimentally based MSc dissertation projects. 

Educational aims of the programme

The programme aims to provide graduates with:

  • The state-of-the-art of infrastructure engineering and management that is required for the realisation of the complex delivery of new and management and of existing infrastructure.
  • A holistic overview of infrastructure as a system of systems, viewed within the social, economic and environmental context, and the drivers for sustainable infrastructure development and change.
  • A knowledge of the fundamental multi-disciplinary frameworks that can be adopted for the planning, design, management and operation of interconnected infrastructure systems.
  • A specialisation in an infrastructure area of their choice (i.e. bridge, building, geotechnical, water, wind) providing them with detailed background for the analysis and solution of specific problems associated with individual infrastructure components.

Global opportunities

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.



Read less
WHAT YOU WILL GAIN. - Advanced skills and know-how in the latest advanced technologies in power generation through Renewable Energy technologies, for professional or highly-skilled work and/or further learning. Read more
WHAT YOU WILL GAIN:

- Advanced skills and know-how in the latest advanced technologies in power generation through Renewable Energy technologies, for professional or highly-skilled work and/or further learning
- Credibility as an advanced practitioner in Renewable Energy technologies
- Ability to make independent judgments and high-level decisions in a variety of technical or managerial contexts
- The knowledge and skills to be actively involved in the planning, implementation and evaluation stages of a range of Renewable Energy power generation systems
- An EIT Graduate Certificate in Renewable Energy Technologies

Next intake starts May 15th, 2017. Applications now open; limited places available.

INTRODUCTION

The Graduate Certificate in Renewable Energy Technologies is an advanced program. It is presented at a considerably higher level than the Advanced Diploma and bachelor degree level programs and intending students should be aware of the greater challenge. This Certificate has identical standing and level to that of a university graduate diploma, but is focused on the career outcomes of a professional engineer and technologist. As the title suggests, it has a greater vocational or ‘job related’ emphasis, and focuses more on developing practical skills that you can apply to the workplace, rather than theory alone.

A feature of this program is that in using web collaborative technologies you will not only study and work with your peers around the world on various renewable energy design projects, but you will do this conveniently from your desktop using the latest techniques in live web and video conferencing. The Graduate Certificate in Renewable Energy Technologies focuses on the mainstream technologies viz. photovoltaic, wind and small hydro, but also covers other less common technologies such as biomass, osmotic and tide power generation, among others. The course deals with practical issues of renewable energy that will confront an advanced practitioner in the field. For example, you will be exposed to the modeling and simulation of wind turbines, and the design of wind farms. You will also be expected to undertake advanced design and conceptualisation work in which you will apply the calculations learned in less advanced programs. Some of the work and study you will be undertaking will involve pioneering technology and exploring new approaches. There is a definite ongoing need for highly qualified and skilled specialists in the Renewable Engineering field and this course caters for that need. Upon completing this program you will be able to show technical leadership in the field of Renewable Energy, and be recognised as an advanced practitioner in the field.

PRE-REQUISITES

Applications are considered on a case-by-case basis. Potential students include:

- Practising engineers or technologists with advanced knowledge, experience and education (such as an Advanced Diploma, or undergraduate degree)
- Practising engineers or technicians with demonstrated competence
- Engineers or technologists from another discipline (such as mechanical and chemical engineering) wanting to up-skill in this area
- It would not be suitable for a student with no relevant work experience. We will review your enrolment application and may recommend pre-course studies if required.

COURSE STRUCTURE

The Graduate Certificate is an intensive part-time program, conducted over 6 months. Unlike other universities or academic institutions, we operate almost all year round without extended breaks between semesters. The course is composed of 4 units, each conducted over 6 weeks.

Unit 1 - Fundamentals and Balance-of-Plant Components
Unit 2 - Small Hydro and Other Renewable Energy Technologies
Unit 3 - Photovoltaic (PV) Systems
Unit 4 - Wind Turbine Systems

COURSE FEES

What are the fees for my country?

The Engineering Institute of Technology (EIT) provides distance education to students located almost anywhere in the world – it is one of the very few truly global training institutes. Course fees are paid in a currency that is determined by the student’s location. A full list of fees in a currency appropriate for every country would be complex to navigate and, with today’s exchange rate fluctuations, difficult to maintain. Instead we aim to give you a rapid response regarding fees that is customised to your individual circumstances.

We understand that cost is a major consideration before a student commences study. For a rapid reply to your enquiry regarding courses fees and payment options, please enquire via the below button and we will respond within 2 business days.

Read less
Are you interested in working in the electrical power engineering and renewable energy sectors? This course will give you a thorough understanding of power electronics, electric drive systems, smart grids, wind power, photovoltaic and other distributed generation systems. Read more
Are you interested in working in the electrical power engineering and renewable energy sectors? This course will give you a thorough understanding of power electronics, electric drive systems, smart grids, wind power, photovoltaic and other distributed generation systems.

The course, which enjoys very high student satisfaction rates, has been carefully designed to meet the needs of industry. It also meets the academic requirements of the Institution of Engineering and Technology (IET), by whom it is fully accredited.

Electrical power engineers need to be able to work in multidisciplinary teams and to show organisational and commercial skills alongside technical knowledge. The course therefore has a strong focus on project management, self-development and employability.

You’ll benefit from the University’s excellent facilities that include specialist electrical and electronics laboratory resources. Northumbria has a well-established reputation for producing graduates who can apply their knowledge to generate creative solutions for sustainable electrical power systems.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

Learn From The Best

Our teaching team includes experts from the Northumbria Photovoltaics Application Centre (NPAC) and Power and Wind Energy Research (PaWER) group. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent (Research Excellence Framework 2014).

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. Our industrial links help inform our curriculums and ensure a variety of site visits and input from practitioners via guest lectures.

Teaching And Assessment

Our teaching methods include lectures, seminars, laboratory sessions, computer workshops, individual tutorials, and group projects. As this is a master’s course there is a significant element of independent learning and self-motivated reflection.

You’ll undertake a practical or theoretical master’s dissertation that will hone your skills in evaluating and applying research techniques and methodologies.

Assessments are designed to give feedback as well as to monitor your level of achievement. The assessed projects will enable you to test your skills in ways that relate to current industrial practice. Specific assessment methods include assignments, exams, technical reports and presentations.

The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

Learning Environment

Northumbria University provides outstanding facilities for electrical power engineering. Our laboratories have equipment that includes oscilloscopes, signal generators and Labview software as well as National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) to measure and control signal voltages.

Our New and Renewable Energy Laboratory is an excellent resource for research into power networks, wind energy, photovoltaics and battery testing for electric vehicles. All our facilities are backed up by a team of technicians who will give support and advice when you need it.

Technology Enhanced Learning (TEL) is embedded throughout the course with tools such as the ‘Blackboard’ eLearning Portal and electronic reading lists that will guide your preparation for seminars and independent research. Our use of lecture capture software will help you revise challenging material.

To facilitate group projects there is a working space called The Hub that’s well equipped for meetings and working with IT. The Zone is another area that’s popular with students undertaking group work or individual study.

Research-Rich Learning

Northumbria’s strong research ethos is an essential aspect of how you will develop as a critical, reflective and independent thinker. With our problem-solving approach you’ll acquire a wide range of research and analytical skills as you progress through the course. These skills will come together in the practical/theoretical dissertation that you’ll undertake, which will require independent research and appropriate techniques of inquiry, critical evaluation and synthesis.

Throughout the course your learning will be directly impacted by the teaching team’s active research. Our specialist interests include electrical and electronic engineering, mobile communication, microelectronic, renewable and sustainable energy technologies, and advanced materials.

Give Your Career An Edge

The course will equip you with the knowledge and skills you’ll need to work in the electrical power engineering and renewable energy sectors. At the same time you’ll develop transferable key skills and personal attributes that promote employability and lifelong learning.

The group projects will provide experience of working with others while also raising your awareness of commercial considerations and how industry operates. One project involves the development of an innovative product that must satisfy pre-determined criteria including a realistic business model.

Your dissertation can be linked to the University’s on-going research, giving you experience of being incorporated into a pre-existing working team and environment. Alternatively you can undertake a practice-based dissertation that’s linked to a project that you’ve chosen for its relevance to your interests, self-development and career prospects.

The Advanced Practice semester will help you develop a track record of achievement that will help you stand out from other job applicants.

A two-year master’s course, like this one, will carry particular weight with employers. They’ll understand that you’ll have a deeper understanding of topics as well as more hands-on practical experience.

When it comes to applying for jobs our Careers and Employment Service offers resources and support that will help you find roles matching your interests and skills. You will be able to access a range of workshops, one-to-one advice, and networking opportunities.

Your Future

By the end of this course you’ll be in an excellent position to start or continue a career in electrical power engineering and/or the renewable energy industry. Roles could include designing, developing and maintaining electrical control systems and components.

You could also undertake a postgraduate research degree such as an MPhil, PhD and Professional Doctorate. If you decide to start up your own business, it’s good to know that the combined turnover of our graduates’ start-up companies is higher than that of any other UK university.

Whatever you decide to do, you will have the transferable skills that employers expect from a master’s graduate from Northumbria University. These include the ability to tackle complex issues through conceptualisation and undertaking research, the ability to contribute to new processes and knowledge, and the ability to formulate balanced judgements when considering incomplete or ambiguous data.

Read less
Are you interested in working in the electrical power engineering and renewable energy sectors? This course will give you a thorough understanding of power electronics, electric drive systems, smart grids, wind power, photovoltaic and other distributed generation systems. Read more
Are you interested in working in the electrical power engineering and renewable energy sectors? This course will give you a thorough understanding of power electronics, electric drive systems, smart grids, wind power, photovoltaic and other distributed generation systems.

The course, which enjoys very high student satisfaction rates, has been carefully designed to meet the needs of industry. It also meets the academic requirements of the Institution of Engineering and Technology (IET), by whom it is fully accredited.

Electrical power engineers need to be able to work in multidisciplinary teams and to show organisational and commercial skills alongside technical knowledge. The course therefore has a strong focus on project management, self-development and employability.

You’ll benefit from the University’s excellent facilities that include specialist electrical and electronics laboratory resources. Northumbria has a well-established reputation for producing graduates who can apply their knowledge to generate creative solutions for sustainable electrical power systems.

In the second year, for one semester, you’ll undertake an internship, study in another country or join a research group. This valuable experience will enhance your employability and further develop your theoretical and practical skills.

This course can also be started in January - for more information, please view this web-page: https://www.northumbria.ac.uk/study-at-northumbria/courses/electrical-power-engineering-msc-ft-dtfepz6/

Learn From The Best

Our teaching team includes experts from the Northumbria Photovoltaics Application Centre (NPAC) and Power and Wind Energy Research (PaWER) group. Their experience, combined with their on-going active research, will provide an excellent foundation for your learning.

The quality of their research has put Northumbria University among the UK’s top 25% of universities for the percentage of research outputs in engineering that are ranked as world-leading or internationally excellent (Research Excellence Framework 2014).

Our reputation for quality is reflected by the range and depth of our collaborations with industry partners. Our industrial links help inform our curriculums and ensure a variety of site visits and input from practitioners via guest lectures.

Teaching And Assessment

Our teaching methods include lectures, seminars, laboratory sessions, computer workshops, individual tutorials, and group projects. As this is a master’s course there is a significant element of independent learning and self-motivated reflection.

You’ll undertake a practical or theoretical master’s dissertation that will hone your skills in evaluating and applying research techniques and methodologies.

Assessments are designed to give feedback as well as to monitor your level of achievement. The assessed projects will enable you to test your skills in ways that relate to current industrial practice. Specific assessment methods include assignments, exams, technical reports and presentations.

The Advanced Practice semester will be assessed via a report and presentation about your internship, study abroad or research group activities.

Learning Environment

Northumbria University provides outstanding facilities for electrical power engineering. Our laboratories have equipment that includes oscilloscopes, signal generators and Labview software as well as National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS) to measure and control signal voltages.

Our New and Renewable Energy Laboratory is an excellent resource for research into power networks, wind energy, photovoltaics and battery testing for electric vehicles. All our facilities are backed up by a team of technicians who will give support and advice when you need it.

Technology Enhanced Learning (TEL) is embedded throughout the course with tools such as the ‘Blackboard’ eLearning Portal and electronic reading lists that will guide your preparation for seminars and independent research. Our use of lecture capture software will help you revise challenging material.

To facilitate group projects there is a working space called The Hub that’s well equipped for meetings and working with IT. The Zone is another area that’s popular with students undertaking group work or individual study.

Research-Rich Learning

Northumbria’s strong research ethos is an essential aspect of how you will develop as a critical, reflective and independent thinker. With our problem-solving approach you’ll acquire a wide range of research and analytical skills as you progress through the course. These skills will come together in the practical/theoretical dissertation that you’ll undertake, which will require independent research and appropriate techniques of inquiry, critical evaluation and synthesis.

Throughout the course your learning will be directly impacted by the teaching team’s active research. Our specialist interests include electrical and electronic engineering, mobile communication, microelectronic, renewable and sustainable energy technologies, and advanced materials.

Give Your Career An Edge

The course will equip you with the knowledge and skills you’ll need to work in the electrical power engineering and renewable energy sectors. At the same time you’ll develop transferable key skills and personal attributes that promote employability and lifelong learning.

The group projects will provide experience of working with others while also raising your awareness of commercial considerations and how industry operates. One project involves the development of an innovative product that must satisfy pre-determined criteria including a realistic business model.

Your dissertation can be linked to the University’s on-going research, giving you experience of being incorporated into a pre-existing working team and environment. Alternatively you can undertake a practice-based dissertation that’s linked to a project that you’ve chosen for its relevance to your interests, self-development and career prospects.

The Advanced Practice semester will help you develop a track record of achievement that will help you stand out from other job applicants.

A two-year master’s course, like this one, will carry particular weight with employers. They’ll understand that you’ll have a deeper understanding of topics as well as more hands-on practical experience.

When it comes to applying for jobs our Careers and Employment Service offers resources and support that will help you find roles matching your interests and skills. You will be able to access a range of workshops, one-to-one advice, and networking opportunities.

Your Future

By the end of this course you’ll be in an excellent position to start or continue a career in electrical power engineering and/or the renewable energy industry. Roles could include designing, developing and maintaining electrical control systems and components.

You could also undertake a postgraduate research degree such as an MPhil, PhD and Professional Doctorate. If you decide to start up your own business, it’s good to know that the combined turnover of our graduates’ start-up companies is higher than that of any other UK university.

Whatever you decide to do, you will have the transferable skills that employers expect from a master’s graduate from Northumbria University. These include the ability to tackle complex issues through conceptualisation and undertaking research, the ability to contribute to new processes and knowledge, and the ability to formulate balanced judgements when considering incomplete or ambiguous data.

Read less
Commercial products today combine many technologies, and industry is increasingly interdisciplinary. This course is designed to meet this demand, giving you an interdisciplinary knowledge base in modern electronics including power, communications, control and embedded processors. Read more

Commercial products today combine many technologies, and industry is increasingly interdisciplinary. This course is designed to meet this demand, giving you an interdisciplinary knowledge base in modern electronics including power, communications, control and embedded processors.

You’ll develop a broad grasp of a range of interlocking disciplines, combining core modules developing your practical lab skills and industry awareness with a range of optional modules that allow you to focus on topics that suit your interests or career plans. Next-generation silicon technologies, electric drives and generating electric power from renewable sources are among the topics you could study.

This course will appeal to people with a broad interest in electronics and communications, as well as those who are interested in modern communications techniques, radio propagation, cellular mobile systems, control systems, power and drives, and modern system on-chip technology.

Specialist facilities

Our School is an exciting and stimulating environment where you’ll learn from leading researchers in specialist facilities. These include our Keysight Technologies wireless communications lab, as well as labs for embedded systems, power electronics and drives.

Depending on your choice of project, you may have use of our Terahertz photonics lab, ultrasound and bioelectronics labs, class 100 semiconductor cleanroom, traffic generators and analysers, FPGA development tools, sensor network test beds.

The School also contains facilities for electron-beam lithography and ceramic circuit fabrication – and a III-V semiconductor molecular beam epitaxy facility. The Faculty is also home to the £4.3 million EPSRC National Facility for Innovative Robotic Systems, set to make us a world leader in robot design and construction.

Accreditation

This course is accredited by the Institution of Engineering and Technology (IET) under licence from the UK regulator, the Engineering Council.

Course content

Throughout the course you’ll choose from a range of optional modules that allow you to pursue topics across electronic and electrical engineering as they relate to your interests or career plans. You could focus on FPGA design for system-on-chip, wireless communications systems nano-electromechanical systems among many others to gain a broad and deep understanding a range of subjects.

A set of core modules will support your learning. You’ll take part in a range of experiments linked to your subject on our lab module, and you’ll develop your skills in programming. If you have no experience of C programming you’ll take the Programming module, or you can take Software Development if you already have those skills.

To build your understanding of the global electronics industry, you’ll also complete a dissertation. This could take the form of a business, manufacturing or outsourcing plan, a proposal for research funding or an essay on a specific aspect of the industry.

Over the summer months you’ll also work on your research project. This may give you the chance to work as an integral part of one of our active research groups, focusing on a specialist topic in computer science and selecting the appropriate research methods.

Want to find out more about your modules?

Take a look at the Electronic and Electrical Engineering module descriptions for more detail on what you will study.

Course structure

Compulsory modules

  • Industry Dissertation 15 credits
  • Mini Projects and Laboratory 15 credits
  • Main Project 45 credits

Optional modules

  • Wireless Communications Systems Design 15 credits
  • Micro- and Nano-Electromechanical Systems 15 credits
  • Power Electronics and Drives 15 credits
  • Electric Power Generation by Renewable Sources 15 credits
  • Electric Drives 15 credits
  • FPGA Design for System-on-Chip 15 credits
  • Control Systems Design 15 credits
  • Embedded Microprocessor System Design 15 credits
  • Medical Electronics and E-Health 15 credits
  • Programming 15 credits
  • Software Development 15 credits

For more information on typical modules, read Electronic and Electrical Engineering MSc(Eng) in the course catalogue

Learning and teaching

Our groundbreaking research feeds directly into teaching, and you’ll have regular contact with staff who are at the forefront of their disciplines. You’ll have regular contact with them through lectures, seminars, tutorials, small group work and project meetings.

Independent study is also important to the programme, as you develop your problem-solving and research skills as well as your subject knowledge.

Assessment

You’ll be assessed using a range of techniques including case studies, technical reports, presentations, in-class tests, assignments and exams. Optional modules may also use alternative assessment methods.

Projects

The professional project is one of the most satisfying elements of this course. It allows you to apply what you’ve learned to a piece of research focusing on a real-world problem, and it can be used to explore and develop your specific interests.

Recent projects by students in the School of Electronic and Electrical Engineering have included:

  • Wireless sensor networks, the internet of things and bicycle traffic in the city.
  • Device to Monitor Activity of Ageing People
  • Wind turbine strain gauge system
  • Wind turbine teaching demonstrator
  • Virtual Machines Placement in Core Networks with Renewable Energy
  • Design and Analysis of High-Performance Internet Routers
  • Spatial Modulation for Massive MIMO System
  • Fuel cell for energy storage
  • Low cost design and fabrication of 3D MEMS components
  • Ultrasonic Wind Speed Detection
  • Core Quantum Networks
  • Microwave Low Noise Amplifier

A proportion of projects are formally linked to industry, and can include spending time at the collaborator’s site over the summer.

Career opportunities

Graduates of this course can expect to find jobs where industry needs a breadth of knowledge matched by a depth in certain areas.

You’ll be well equipped to integrate and co-ordinate the strands of a cross-disciplinary project and manage the interfaces between specialities. With these skills, you’ll be in a good position to progress to project management roles in companies working at the cutting edge of modern multi-faceted systems.

General Electric, AECOM, Deep Sea Electronics, Hyperdrive Innovation, Descon Engineering, Broadcom, Pakistan Oilfields Ltd., Wabtec Rail UK and many others are among the organisations where graduates from our School have found employment.



Read less
The Masters in Sustainable Energy is an interdisciplinary programme that will equip you for employment within the international energy sector. Read more
The Masters in Sustainable Energy is an interdisciplinary programme that will equip you for employment within the international energy sector. This programme addresses all the key aspects of sustainable energy, from the most advanced technologies through to ethical and economic considerations.

Why this programme

◾This programme provides an in-depth knowledge of the social and economic drivers of the current UK and international energy industry, and insights in the behavioural, business and technical aspects concerned with energy production and distribution.
◾Students will learn a range of technical knowledge in the science and engineering of energy production and use, with emphases towards chemical, electrical and mechanical engineering, dependent on the students’ preferences and past experience.
◾Electronic and Electrical Engineering at the University of Glasgow is consistently highly ranked recently achieving 1st in Scotland and 4th in the UK (Complete University Guide 2017).
◾Students will graduate from this programme with a complete scientific knowledge and appreciation of the relevance of traditional and emerging energy technologies.
◾Learning will be underpinned with regular industrial lectures and commentary so that the context is maintained and highlighted throughout the year.

Programme structure

Modes of delivery of the MSc in Sustainable Energy include lectures, seminars and tutorials and allow students the opportunity to take part in lab, project and team work.

You will take a combination of core and optional courses, and a project which you will select from a list of standard projects or you can suggest a project of your own choosing.

Core courses
◾Energy and environment
◾Energy conversion systems
◾Energy from waste
◾Integrated system design project
◾Renewable energy
◾MSc project.

Optional courses
◾Electrical energy systems
◾Environmental biotechnology
◾Environmental ethics and behavioural change
◾Impacts of climate change
◾Introduction to wind engineering
◾Nuclear power reactors
◾Power electronics
◾Project planning, appraisal and implementation
◾Theory and principles of sustainability.

Projects

-◾To complete the MSc degree you must undertake a project worth 60 credits, which will integrate subject knowledge and skills that you acquire during the MSc programme
◾The project is an important part of your MSc where you can apply your newly learned skills and show to future employers that you have been working on cutting edge projects relevant to the industry.
◾You can choose a topic from a list of MSc projects in Sustainable Energy. Alternatively, should you have your own idea for a project, department members are always open to discussion of topics.

Example projects

Examples of projects can be found online

*Posters shown are for illustrative purposes

Industry links and employability

◾You will be taught by academic staff with expertise from across a range of disciplines within the Colleges of Science & Engineering and Social Sciences. This interdisciplinary approach will provide you with high quality teaching of contemporary, industrially relevant courses which will together provide an excellent background in sustainable energy.
◾You will benefit from significant input from industry to our teaching programme, including teaching on some courses, guest lectures and seminars. There are also informal opportunities to meet people from industry at open events and visits to company offices. Projects may be carried out in conjunction with industry.
◾Many of the courses within the programme will be backed up by specific project work and much of this will be linked in to research activities across the University.

Career prospects

The degree is designed to develop future leaders and decision makers in the growing international energy business. Graduates may expect to forge careers in established energy generation and transmission companies (for instance in the UK, National Grid, Scottish and Southern Energy, etc.), energy consultancy businesses, traditional oil, gas and construction companies who are moving rapidly into renewables, or fresh new companies in the wind, marine, solar or biomass sectors. Scotland, in particular, has seen great expansion in sustainable energy businesses in the last decade, with some of the best worldwide potential for wind, wave and tidal generation.

Graduates of this programme have gone on to positions such as:
Research Assistant at a university
Geothermal Energy Engineer at Town Rock Energy
Hydropower Engineer at Renewables First
Research Analyst at Cognolink
Research and Development Consultant.

Accreditation

The MSc Sustainable Energy is accredited by the Institution of Mechanical Engineering. An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng).

Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Read less
Composite materials are increasingly replacing traditional metallic components in several industrial applications, such as aerospace engineering, wind turbine blades and the automotive industry. Read more
Composite materials are increasingly replacing traditional metallic components in several industrial applications, such as aerospace engineering, wind turbine blades and the automotive industry. This MSc provides you with an in-depth theoretical understanding and practical knowledge of advanced composite materials.

The programme is based in the Advanced Composites Centre for Innovation and Science (ACCIS), one of the world's leading centres in composite materials, which houses a number of state-of-the-art composites manufacturing facilities.

ACCIS has strong industrial and research links with companies like Rolls-Royce, Airbus, BAE Systems and GE Aviation as well as government research labs such as the UK's Defence Science and Technology Laboratory, the European Space Agency and the US Army International Technology Centre.

Programme structure

Core subjects
-Composites Design and Manufacture
-Smart Materials
-Nanocomposites and Nano engineering
-Research Skills
-Elements of Polymer Composites

And either:
-Advanced Composites Analysis or
-Structures and Materials

after discussion with the programme director.

Optional units
You will select from a list of options which will include the following:
-Engineering Design for Wind and Marine Power
-Nonlinear Structural Dynamics
-Ultrasonic Non-Destructive Testing
-Structural Engineering 4
-Advanced Techniques in Multi-Disciplinary Design
-Nonlinear Behaviour of Materials
-Nature's Materials - Biomimetics, Biomaterials and Sustainability

Project
To complete the programme you will carry out a research project, which may be either academically or industrially led.

Careers

Graduates from this programme could enter a career in one of the rapidly growing composites-related industries, such as aerospace, marine, automotive and wind turbine, materials testing/manufacturing or in engineering consultancy sectors. Some of our MSc graduates continue to PhD study, either at Bristol or other relevant PhD programmes.

Read less
This programme provides state-of-the-art education in the fields of sustainable energy generation, distribution and consumption. It is intended to respond to a growing skills shortage for engineers with a high level of training in renewable energy, smart grids and sustainability. Read more
This programme provides state-of-the-art education in the fields of sustainable energy generation, distribution and consumption. It is intended to respond to a growing skills shortage for engineers with a high level of training in renewable energy, smart grids and sustainability.

By the time you graduate, you will have a thorough understanding of sustainability standards, various renewable energies, smart grid and power electronics for renewable energy and energy use management in buildings, urban design and other areas. Research on sustainable energy technology has opened up many job opportunities in industry, government institutions and research centres.

What are benefits of the programme?

• studying at international university recognised throughout the world
• close cooperation with world-famous universities and research centres to solve major technical challenges including energy crises and environmental pollution
• excellent research opportunities, using advanced experimental equipment including a network analyser, power analyser, Dspace controller, wind turbine and PV testing system
• continuous development of core modules to meet the requirement of industrial innovation
• cutting-edge research in the intelligent and efficient utilisation of solar, wind energy and other renewable energy sources

Lab Facilities

Power electronics laboratory equipped with advanced experimental equipment
• Sustainable energy laboratory equipped with advanced experimental equipment including a 600W wind turbine, two 270W solar modules, batteries, an inverter with sinusoidal output and main controller
• Electric machine and power system laboratory

Modules

• Sustainable Energy and Environment
• Nuclear Energy Technology
• Power System Network and Smart Grid
• Integration of Energy Strategies in the Design of Buildings
• Photovoltaic Energy Technology
• Renewable Kinetic Energy Technologies
• Power Electronics and Applications for Renewable Energy
• Sustainable Urban Planning Strategies
• Msc Project

What are my career prospects?

Graduates of this programme will typically work on professional tasks including the implementation of sustainable energy technologies within existing or new systems, and modelling and evaluation of the impact on ecosystems, economics and society. Graduates may be employed as electric power system engineers, electric power system consultants, sustainable technology consultants, electric power projects managers, sustainable cities and building design consultants, managers and team leaders in government.

Read less
This is the distance learning version of the full time MSc in Renewable Energy Systems Technology. By using the same course materials distance learning students are able to achieve the same outcomes as the full-time MSc in Renewable Energy Systems Technology. Read more
This is the distance learning version of the full time MSc in Renewable Energy Systems Technology.

By using the same course materials distance learning students are able to achieve the same outcomes as the full-time MSc in Renewable Energy Systems Technology. We have developed new ways of learning, which offer students flexibility in place, pace and mode to meet the demand for this highly sought after qualification but who cannot attend traditional university classes.

By the end of the course, our renewable energy MSc graduates, will have gained a comprehensive understanding of renewable energy technologies and developed a range of important transferable
skills.

Core study areas include solar power, wind power, water power, biomass, sustainability and energy systems, integration of renewables and a research project.

Optional study areas include advanced solar thermal, advanced photovoltaics, energy storage, energy system investment and risk management.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/renewable-energy-system-tech-dl/

Programme modules

Compulsory Modules:
- Sustainability and Energy Systems
- Integration of Renewables
- Solar 1
- Wind 1
- Water Power
- Biomass
- Research Project

Optional Modules (choose three):
- Energy Storage
- Advanced Solar Thermal
- Advanced Photovoltaics
- Wind 2
- Energy System Investment and Risk Management

Normally students are required to obtain 180 Master's level credits in these modules to become a Master of Science in Renewable Energy Systems Technology graduate. However optional leave awards of Postgraduate Diploma (120 credits) or Postgraduate Certificate (60 credits) are possible.

How you will learn

All of our renewable energy MSc Modules consist of a series of Study Units, each covering a specific subject area (see programme modules). Instead of face-to-face lectures and tutorials, the main learning routes for distance learning students are via the University’s virtual learning environment (LEARN). The learning resources for each Study Unit include:
- On line study materials
- Live streamed and recorded lectures
- Virtual and remote laboratories
- Tutorials, assignments and computer aided assessments
- Access to past exam papers

In addition there are several important communication features built into LEARN which include:
- Discussion forums (for communicating with tutors and fellow learners)
- Specialist tutor groups
- Assignment and tutorial upload facility (to allow tutors to check your progress and provide you with feedback)
- Online tutorial sessions with module lectures

Distance learning students also have the option to attend on campus modules.

- Assessment
By examination, coursework, group work and research project. Examinations are held in January and May/June with coursework and group work throughout the programme. The individual MSc research project is assessed by written report and viva voce. Students receive regular feedback on their progress from on-line support officers, tutors and academic staff.

It is also possible for distance learning students to take exams at a suitable local venue either a local British council or a recognised university. For further information about this process please contact the course administrator.

- Technical Requirements
To make full use of distance learning resources, the following are minimum requirements:
- Good specification PC or laptop running the latest operating system
- A printer if you wish to print out materials
- Good computer skills (see below)
- Fast and reliable access to the Internet via Broadband

You will require the skills that allow one to:
- Open, copy, and move files and directories on your hard drive
- Move around the desktop with several applications (programmes) opened at the same time
- Create documents using a software package such as MS Word or similar.
- Be able to zip files and make pdf files
- Manipulate and analyse data using spread sheet software such as MS Excel

Careers and further study

The flexibility offered by this MSc allows graduates already working in or seeking to enter the sector, the opportunity to gain strong technical knowledge whilst continuing to work.This combination of knowledge and practical experience makes them highly attractive to existing and future employers worldwide.

Fees: Structure and scholarships

Unlike the full time course distance learning students pay as they study and will pay for modules prior to registration at the beginning of each semester. There are no additional registration fees.
However please note that distance learning fees are reviewed annually and may increase during your period of study.

Why choose electronic, electrical and systems engineering at Loughborough?

We develop and nurture the world’s top engineering talent to meet the challenges of an increasingly complex world. All of our Masters programmes are accredited by one or more of the following professional bodies: the IET, IMechE, InstMC, Royal Aeronautical Society and the Energy Institute.

We carefully integrate our research and education programmes in order to support the technical and commercial needs of society and to extend the boundaries of current knowledge.

Consequently, our graduates are highly sought after by industry and commerce worldwide, and our programmes are consistently ranked as excellent in student surveys, including the National Student Survey, and independent assessments.

- Facilities
Our facilities are flexible and serve to enable our research and teaching as well as modest preproduction testing for industry.
Our extensive laboratories allow you the opportunity to gain crucial practical skills and experience in some of the latest electrical and electronic experimental facilities and using industry standard software.

- Research
We are passionate about our research and continually strive to strengthen and stimulate our portfolio. We have traditionally built our expertise around the themes of communications, energy and systems, critical areas where technology and engineering impact on modern life.

- Career prospects
90% of our graduates were in employment and/or further study six months after graduating. They go on to work with companies such as Accenture, BAE Systems, E.ON, ESB International, Hewlett Packard, Mitsubishi, Renewable Energy Systems Ltd, Rolls Royce and Siemens AG.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/eese/renewable-energy-system-tech-dl/

Read less

Show 10 15 30 per page



Cookie Policy    X