• Leeds Beckett University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • University of York Featured Masters Courses
King’s College London Featured Masters Courses
University of St Andrews Featured Masters Courses
University of Kent Featured Masters Courses
University of Birmingham Featured Masters Courses
Coventry University Featured Masters Courses
"welding" AND "engineerin…×
0 miles

Masters Degrees (Welding Engineering)

  • "welding" AND "engineering" ×
  • clear all
Showing 1 to 10 of 10
Order by 
The postgraduate level Welding Engineering programme will provide graduates with a fundamental understanding of welding technologies and an awareness of recent technical developments within the relevant industries. Read more
The postgraduate level Welding Engineering programme will provide graduates with a fundamental understanding of welding technologies and an awareness of recent technical developments within the relevant industries. It will also improve communication, presentation, analytical and problem solving skills. Our graduates are highly sought after by international companies using welding and joining technologies, and are able to attain positions of significant engineering responsibility.

Read less
This Masters programme is aimed at engineering graduates aspiring to senior level positions in large manufacturing or service provider organisations, or as part of an engineering supply chain. Read more
This Masters programme is aimed at engineering graduates aspiring to senior level positions in large manufacturing or service provider organisations, or as part of an engineering supply chain. Graduates from related disciplines can embrace engineering continuous improvement, operations management and enterprise requirement planning (ERP) applications in engineering.

About the programme

In many engineering organisations ERP is the main software system application that controls and assists in the management of all functional departments and the whole facility, often globally. This unique programme has a UK and global appeal for career development and future plans are currently being developed to offer SAP ERP certification. It satisfies both the operations management and continuous improvement (CI) elements within engineering, and the application of ERP systems such as SAP and/or Oracle. Many companies use ERP within the supply chain including Terex, Tata Steels, RollsRoyce, Honeywell, Audi, and BMW.

This programme will develop the skills you need to interface with functional users, other than engineers, giving you an informed view for further configuration or customisation.

Your learning

Core topics include ERP, continuous improvement and operations management with options of Total Productive Maintenance (TPM), Project Management and modules with further planning and management of resources.

Our lecturers are seasoned industry experts, and we complement their knowledge with industry visits to determine the effectiveness of various applications.

MSc students undertake a dissertation, selecting a specialism to achieve a greater understanding of the implementation and advanced use of software applications, management initiatives and planning within an engineering setting. There may be scope to integrate this dissertation with industry, where an engineering supervisor will be allocated to assist your MSc journey and to advise and introduce you to industry links.

Our Careers Adviser says

Graduates are equipped for the next step in their career in manufacturing and service operations. Most business organisations that implement ERP solutions use fully-trained, qualified implementation partners and consultants throughout their lifecycle.

There is demand for graduates who have had some initial education and training and hands-on experience in ERP solutions such as SAP. Businesses, ERP solution providers, and consulting organisations require top calibre trained ERP consultants and users. UWS graduates who are trained in ERP and supporting materials will possess a unique skill-set that will be a differentiator when competing in the employment market.

Professional recognition

We will seek accreditation for this programme in the near future from the Institution of Engineering and Technology (IET).

Industry-standard facilities

Our recently upgraded facilities will ensure you’re equipped to deal with the requirements of industry:
• Recent investment in new laboratories for engineering and physics will further enhance our reputation for applied interdisciplinary research
• Paisley Campus – fully equipped manufacturing workshop; materials testing and analysis facilities; metrology laboratory; rapid prototyping centre; and assembly and welding laboratories
• Significant investment in facilities for thin film technologies, micro-scale sensors and nuclear physics research
• Lanarkshire Campus – £2.1 million engineering centre, with particular focus on the design and engineering disciplines opened in 2008
• Both Lanarkshire and Paisley campuses have modern, dedicated IT facilities utilising a range of industrial applications software such as PRO/Engineer, Ansys, Fluent, WITNESS and MS Project.

Read less
The Department of Metallurgical and Materials Engineering offers a master of science in metallurgical engineering. Visit the website http://mte.eng.ua.edu/graduate/ms-program/. Read more
The Department of Metallurgical and Materials Engineering offers a master of science in metallurgical engineering.

Visit the website http://mte.eng.ua.edu/graduate/ms-program/

The program options include coursework only or by a combination of coursework and approved thesis work. Most on-campus students supported on assistantships are expected to complete an approved thesis on a research topic.

Plan I is the standard master’s degree plan. However, in exceptional cases, a student who has the approval of his or her supervisory committee may follow Plan II. A student who believes there are valid reasons for using Plan II must submit a written request detailing these reasons to the department head no later than midterm of the first semester in residence.

All graduate students, during the first part and the last part of their programs, will be required to satisfactorily complete MTE 595/MTE 596. This hour of required credit is in addition to the other degree requirements.

Course Descriptions

MTE 519 Principles of Casting and Solidification Processing. Three hours.
Overview of the principles of solidification processing, the evolution of solidification microstructure, segregation, and defects, and the use of analytical and computational tools for the design, understanding, and use of solidification processes.

MTE 520 Simulation of Casting Processes Three hours.
This course will cover the rationale and approach of numerical simulation techniques, casting simulation and casting process design, and specifically the prediction of solidification, mold filling, microstructure, shrinkage, microporosity, distortion and hot tearing. Students will learn casting simulation through lectures and hands-on laboratory/tutorial sessions.

MTE 539 Metallurgy of Welding. Three hours.
Prerequisite: MTE 380 or permission of the instructor.
Thermal, chemical, and mechanical aspects of welding using the fusion welding process. The metallurgical aspects of welding, including microstructure and properties of the weld, are also covered. Various topics on recent trends in welding research.

MTE 542 Magnetic Recording Media. Three hours.
Prerequisite: MTE 271.
Basic ferromagnetism, preparation and properties of magnetic recording materials, magnetic particles, thin magnetic films, soft and hard film media, multilayered magnetoresistive media, and magneto-optical disk media.

MTE 546 Macroscopic Transport in Materials Processing. Three hours.
Prerequisite: MTE 353 or permission of the instructor.
Elements of laminar and turbulent flow; heat transfer by conduction, convection, and radiation; and mass transfer in laminar and in turbulent flow; mathematical modeling of transport phenomena in metallurgical systems including melting and refining processes, solidification processes, packed bed systems, and fluidized bed systems.

MTE 547 Intro to Comp Mat. Science Three hours.
This course introduces computational techniques for simulating materials. It covers principles of quantum and statistical mechanics, modeling strategies and formulation of various aspects of materials structure, and solution techniques with particular reference to Monte Carlo and Molecular Dynamic methods.

MTE 549 Powder Metallurgy. Three hours.
Prerequisite: MTE 380 or permission of the instructor.
Describing the various types of powder processing and how these affect properties of the components made. Current issues in the subject area from high-production to nanomaterials will be discussed.

MTE 550 Plasma Processing of Thin Films: Basics and Applications. Three hours.
Prerequisite: By permission of instructor.
Fundamental physics and materials science of plasma processes for thin film deposition and etch are covered. Topics include evaporation, sputtering (special emphasis), ion beam deposition, chemical vapor deposition, and reactive ion etching. Applications to semiconductor devices, displays, and data storage are discussed.

MTE 556 Advanced Mechanical Behavior of Materials I: Strengthening Methods in Solids. Three hours. Same as AEM 556.
Prerequisite: MTE 455 or permission of the instructor.
Topics include elementary elasticity, plasticity, and dislocation theory; strengthening by dislocation substructure, and solid solution strengthening; precipitation and dispersion strengthening; fiber reinforcement; martensitic strengthening; grain-size strengthening; order hardening; dual phase microstructures, etc.

MTE 562 Metallurgical Thermodynamics. Three hours.
Prerequisite: MTE 362 or permission of instructor.
Laws of thermodynamics, equilibria, chemical potentials and equilibria in heterogeneous systems, activity functions, chemical reactions, phase diagrams, and electrochemical equilibria; thermodynamic models and computations; and application to metallurgical processes.

MTE 574 Phase Transformation in Solids. Three hours.
Prerequisites: MTE 373 and or permission of the instructor.
Topics include applied thermodynamics, nucleation theory, diffusional growth, and precipitation.

MTE 579 Advanced Physical Metallurgy. Three hours.
Prerequisite: Permission of the instructor.
Graduate-level treatments of the fundamentals of symmetry, crystallography, crystal structures, defects in crystals (including dislocation theory), and atomic diffusion.

MTE 583 Advanced Structure of Metals. Three hours.
Prerequisite: Permission of the instructor.
The use of X-ray analysis for the study of single crystals and deformation texture of polycrystalline materials.

MTE 585 Materials at Elevated Temperatures. Three hours.
Prerequisite: Permission of the instructor.
Influence of temperatures on behavior and properties of materials.

MTE 587 Corrosion Science and Engineering. Three hours.
Prerequisite: MTE 271 and CH 102 or permission of the instructor.
Fundamental causes of corrosion problems and failures. Emphasis is placed on tools and knowledge necessary for predicting corrosion, measuring corrosion rates, and combining this with prevention and materials selection.

MTE 591:592 Special Problems (Area). One to three hours.
Advanced work of an investigative nature. Credit awarded is based on the work accomplished.

MTE 595:596 Seminar. One hour.
Discussion of current advances and research in metallurgical engineering; presented by graduate students and the staff.

MTE 598 Research Not Related to Thesis. One to six hours.

MTE 599 Master's Thesis Research. One to twelve hours. Pass/fail.

MTE 622 Solidification Processes and Microstructures Three hours.
Prerequisite: MTE 519
This course will cover the fundamentals of microstructure formation and microstructure control during the solidification of alloys and composites.

MTE 643 Magnetic Recording. Three hours.
Prerequisite: ECE 341 or MTE 271.
Static magnetic fields; inductive head fields; playback process in recording; recording process; recording noise; and MR heads.

MTE 644 Optical Data Storage. Three hours.
Prerequisite: ECE 341 or MTE 271.
Characteristics of optical disk systems; read-only (CD-ROM) systems; write-once (WORM) disks; erasable disks; M-O recording materials; optical heads; laser diodes; focus and tracking servos; and signal channels.

MTE 655 Electron Microscopy of Materials. One to four hours.
Prerequisite: MTE 481 or permission of the instructor.
Topics include basic principles of operation of the transmission electron microscope, principles of electron diffraction, image interpretation, and various analytical electron-microscopy techniques as they apply to crystalline materials.

MTE 670 Scanning Electron Microscopy. Three hours
Theory, construction, and operation of the scanning electron microscope. Both imaging and x-ray spectroscopy are covered. Emphasis is placed on application and uses in metallurgical engineering and materials-related fields.

MTE 680 Advanced Phase Diagrams. Three hours.
Prerequisite: MTE 362 or permission of the instructor.
Advanced phase studies of binary, ternary, and more complex systems; experimental methods of construction and interpretation.

MTE 684 Fundamentals of Solid State Engineering. Three hours.
Prerequisite: Modern physics, physics with calculus, or by permission of the instructor.
Fundamentals of solid state physics and quantum mechanics are covered to explain the physical principles underlying the design and operation of semiconductor devices. The second part covers applications to semiconductor microdevices and nanodevices such as diodes, transistors, lasers, and photodetectors incorporating quantum structures.

MTE 691:692 Special Problems (Area). One to six hours.
Credit awarded is based on the amount of work undertaken.

MTE 693 Selected Topics (Area). One to six hours.
Topics of current research in thermodynamics of melts, phase equilibra, computer modeling of solidification, electrodynamics of molten metals, corrosion phenomena, microstructural evolution, and specialized alloy systems, nanomaterials, fuel cells, and composite materials.

MTE 694 Special Project. One to six hours.
Proposing, planning, executing, and presenting the results of an individual project.

MTE 695:696 Seminar. One hour.
Presentations on dissertation-related research or on items of current interest in materials and metallurgical engineering.

MTE 698 Research Not Related to Dissertation. One to six hours.

MTE 699 Doctoral Dissertation Research. Three to twelve hours. Pass/Fail.

Find out how to apply here - http://graduate.ua.edu/prospects/application/

Read less
Study at the forefront of ground-breaking innovation with word-leading researchers. We’ll equip you to think adventurously, overcome problems and be part of the process of enabling society to advance. Read more
Study at the forefront of ground-breaking innovation with word-leading researchers. We’ll equip you to think adventurously, overcome problems and be part of the process of enabling society to advance. You’ll test your practical skills in our brand new industry standard workshop.

You’ll gain an in-depth understanding of advanced design and analysis techniques, the use of modern materials and manufacturing technology. We’ll expand your knowledge in a wide range of mechanical engineering areas and related fields, giving you the scope to be creative and scientific in equal measure.

Our course will equip you with transferrable skills, including IT and management as well as data analysis. As a result you’ll be highly employable in the mechanical engineering marketplace, with a choice of different careers available to you.

Full-time - January start, 15 months. September start, 12 months.
Part-time - January start, 33 months. September start, 28 months.

See the website http://www.anglia.ac.uk/study/postgraduate/mechanical-engineering

Careers

Our course will help you find your career in engineering, or give you an additional skills boost if you’re already working in the industry. You may want to work directly in engineering and design or use this degree as a step towards a career in a related area, such as consultancy. You’re also in the perfect position to continue your academic career and move up to our Mechanical Engineering PhD.

Core modules

Computer Aided Engineering Analysis
Biomechanics
Automation and Robotics
Computational Fluid Dynamics
Innovative Product Design and Manufacture
Advanced Materials and Structural Integrity
Research Design and Methods
Dissertation

Assessment

You’ll be assessed in a variety of ways, including written assignments, portfolios, presentations, examinations and a dissertation.

Your faculty

The Faculty of Science & Technology is one of the largest of five faculties at Anglia Ruskin University. Whether you choose to study with us full- or part-time, on campus or at a distance, there’s an option whatever your level – from a foundation degree, to a BSc, MSc, PhD or professional doctorate.

Whichever course you pick, you’ll gain the theory and practical skills needed to progress with confidence. Join us and you could find yourself learning in the very latest laboratories or on field trips or work placements with well-known and respected companies. You may even have the opportunity to study abroad.

Everything we do in the faculty has a singular purpose: to provide a world-class environment to create, share and advance knowledge in science and technology fields. This is key to all of our futures.

Specialist facilities

Studying at our Chelmsford campus, you’ll have access to a comprehensive range of engineering facilities. These include our CADCAM centre, industrial scale CNC milling machine, CNC lathe, rapid prototyping machine, scanning electronic microscope, Instron bi-axial fatigue testing machine, tensile testing machine, material preparation facilities, welding equipment, various mechanical machines, various electronic testing and measuring equipment such as oscilloscopes, and signal generating/ testing facilities. You’ll also be able to access our materials lab and our computer aided engineering lab, our libraries, and open access computer suites.

Read less
This programme is for engineering graduates aspiring to responsible positions within aerospace, automotive and general mechanical engineering companies. Read more
This programme is for engineering graduates aspiring to responsible positions within aerospace, automotive and general mechanical engineering companies. It is also ideal for engineers holding a BEng degree that require a further learning element to qualify for Chartered Engineer registration.

About the programme

This programme is designed to deepen and widen your knowledge and understanding of mechanical engineering specialist topics. It offers a wide range of core modules that advances the core knowledge base of the disciplines and provides the necessary and continuing development of appropriate interpersonal and transferable skills at a level that a Mechanical Engineer would be expected to have, allowing you to function in an advanced engineering environment as senior engineers and managers. While the main focus of the programme is on taught modules, you will have the opportunity to explore a specific subject in more detail through the dissertation.

Your learning

The programme will be delivered by highly-qualified and experienced members of the School’s teaching staff through a combination of lectures, tutorials, practical classes, laboratories, case studies and specialist guest lectures. Assessment is principally by coursework assignments, laboratory investigations and examinations.

A key component of the programme is the research based dissertation. This will give you the opportunity to investigate a project in your chosen field of interest.

You will also be expected to present your work to internal staff and external industrialists as part of the learning and assessment process.

Core modules include:
- Advanced Structural Integrity
- Advanced Fluid Mechanics
- Computational Fluid Mechanics
- Advanced Finite Element Methods and Analysis
- Instrumentation and Measurement
- Advanced CAD/CAM
- Advanced Heat Transfer
- Composites Design and Analysis
- Project Management
- Research Methods.

Our Careers Adviser says

Our graduates will have developed expertise to improve their employability within design and development of the automotive, aerospace, offshore, oil and gas and all main stream mechanical engineering industry sectors.

It is expected that graduates will obtain professional employment with companies such as Rolls Royce, Howdens, Doosan Babcock, Babcock International, Spirit AeroSystems, BAE Systems, and Thales Optronics.

Professional recognition

The programme has been designed to satisfy the accreditation requirements of the Institution of Mechanical Engineers (IMechE) for CEng registration and we will be seeking this accreditation in the near future.

Industry-standard facilities

Our recently upgraded facilities will ensure you’re equipped to deal with the requirements of industry:
• Recent investment in new laboratories for engineering and physics will further enhance our reputation for applied interdisciplinary research
• Paisley Campus – fully equipped manufacturing workshop; materials testing and analysis facilities; metrology laboratory; rapid prototyping centre; and assembly and welding laboratories
• Significant investment in facilities for thin film technologies, micro-scale sensors and nuclear physics research
• Lanarkshire Campus – £2.1 million engineering centre, with particular focus on the design and engineering disciplines opened in 2008
• Both Lanarkshire and Paisley campuses have modern, dedicated IT facilities utilising a range of industrial applications software such as PRO/Engineer, Ansys, Fluent, WITNESS and MS Project.

Read less
This technical Masters programme is aimed at engineering graduates aspiring to responsible positions within consulting and contracting organisations, and is also for engineers who require the additional learning that addresses current Joint Board of Moderators (JBM) requirements for candidates to obtain chartered engineer status. Read more
This technical Masters programme is aimed at engineering graduates aspiring to responsible positions within consulting and contracting organisations, and is also for engineers who require the additional learning that addresses current Joint Board of Moderators (JBM) requirements for candidates to obtain chartered engineer status. Graduates from related disciplines can embrace further technical training that includes structural, geotechnical, materials engineering with project design and management at a level that prepares them well for senior positions within their areas of expertise.

About the programme

This programme has a UK and global appeal for career development and future plans are currently being developed to offer students the requisite skills to become CEng qualified through the Joint Board of Moderators. It satisfies the technical and managerial expectations required by civil engineering employers as the programme will develop the skills needed to interface with functional users, other than engineers, giving you a more holistic view of the processes behind successfully delivering a civil engineering project.

Your learning

Transferable and key skills are delivered throughout the programme through online material, specialist lectures, site visits, laboratory work, integrated project work and interaction with experienced professionals. Teaching staff are all experienced within industry and academia. Assessment is principally from coursework assignments, examinations and a research dissertation. You will also be expected to present your design work to internal staff and external industrialists as part of the learning and assessment process.

Our Careers Adviser says

Graduate employment may be found in both public or private sectors within civil engineering and other built environment disciplines such as transportation or public health dealing with many key activities such as construction, design, infrastructure, sustainability, environmental and transportation impacts and project management.

Professional recognition

We will seek accreditation for this programme as a technical MSc in the near future from the JBM.

Industry-standard facilities

Our recently upgraded facilities will ensure you’re equipped to deal with the requirements of industry:
• Recent investment in new laboratories for engineering and physics will further enhance our reputation for applied interdisciplinary research
• Paisley Campus – fully equipped manufacturing workshop; materials testing and analysis facilities; metrology laboratory; rapid prototyping centre; and assembly and welding laboratories
• Significant investment in facilities for thin film technologies, micro-scale sensors and nuclear physics research
• Lanarkshire Campus – £2.1 million engineering centre, with particular focus on the design and engineering disciplines opened in 2008
• Both Lanarkshire and Paisley campuses have modern, dedicated IT facilities utilising a range of industrial applications software such as PRO/Engineer, Ansys, Fluent, WITNESS and MS Project.

Read less
This programme is ideal for engineering or science graduates planning a career in research, development, production and/ or business involving thin film technologies and continuing personal development of current industry professionals. Read more
This programme is ideal for engineering or science graduates planning a career in research, development, production and/ or business involving thin film technologies and continuing personal development of current industry professionals.

About the programme

Thin film technologies are key enablers in a wide range of global research, development, manufacturing, industrial and high technology applications and products. This unique programme has appeal for a global audience.

The programme provides up-to-date coverage of evolving thin film technologies and latest developments in the field. It develops the multi-disciplinary skills needed for professional development within this rapidly expanding field and forms the basis for future professional chartered engineer and/or physicist status.

Programme delivery is provided by staff within the University’s Institute of Thin Films, Sensors and Imaging. The programme delivery also includes input from an industrial advisory group thus ensuring that the programme content is aligned with industrial requirements, applications and includes the latest technological developments.

Your learning

Core topics include thin film materials science, metrology and characterisation, theoretical modelling, physical and chemical-based thin film deposition methods including deposition system engineering and control, plasma processing, thin film devices and applications and research and project management. The programme content reflects the multidisciplinary nature of advanced thin film technologies and provides students with the necessary broad skill set. MSc students undertake experimental project work, providing practical skills in thin film deposition, characterisation and modelling, utilising the extensive range of equipment within the Institute of Thin Films, Sensors and Imaging.

Students are required to complete a dissertation, selecting a specialism in order to achieve a greater understanding of the implementation and advanced application of thin films. There may be scope to integrate this dissertation with industry, where an engineering supervisor will be allocated to assist your MSc journey and to advise and introduce you to industrial contacts.

On successful completion of the Postgraduate Diploma, students would then be invited to join the MSc programme.

Our Careers Adviser says

Graduates are equipped for a career in research, development, manufacturing and/or business, with global opportunities for employment. Most organisations that implement thin film based technologies employ fully trained, qualified technologists, consultants and technical marketing specialists throughout their lifecycle, with a consequent high global demand for such personnel across a wide range of applications, products and markets.

Professional recognition

We will seek accreditation for this programme in the near future from the Institute of Physics.

Industry-standard facilities

Our recently upgraded facilities will ensure you’re equipped to deal with the requirements of industry:
• Recent investment in new laboratories for engineering and physics will further enhance our reputation for applied interdisciplinary research
• Paisley Campus – fully equipped manufacturing workshop; materials testing and analysis facilities; metrology laboratory; rapid prototyping centre; and assembly and welding laboratories
• Significant investment in facilities for thin film technologies, micro-scale sensors and nuclear physics research
• Lanarkshire Campus – £2.1 million engineering centre, with particular focus on the design and engineering disciplines opened in 2008
• Both Lanarkshire and Paisley campuses have modern, dedicated IT facilities utilising a range of industrial applications software such as PRO/Engineer, Ansys, Fluent, WITNESS and MS Project.

Read less
Accelerate your tech start-up and learn how to manage a technology-based company at Canada’s most entrepreneurial university. Read more
Accelerate your tech start-up and learn how to manage a technology-based company at Canada’s most entrepreneurial university. UNB’s Master of Technology Management and Entrepreneurship (MTME) program combines technological thinking with practical business skills to promote an entrepreneurial mindset in students with science, computer science and engineering backgrounds. Students enjoy the project-based structure of the program which is highly focused on experiential learning.

Our small, collaborative classes are held in the J. Herbert Smith Centre for Technology Management and Entrepreneurship, a centre with over 25 years in the ever-changing world of technology. Students discover the market potential of their ideas and learn how to commercialize research with access to a machine shop, welding facilities and 3D printers. Our graduates have gone on to start successful companies of their own making. Others choose to work in Fortune 500 companies, government and not-for-profits.

Partnerships

-New Brunswick Innovation Foundation (NBIF)
-National Research Council (NRC)
-Business Development Bank of Canada
-Global Accelerator Network
-Atlantic Canada Opportunities Agency (ACOA)
-Futurpreneur Canada
-MITACS
-Shad Valley
-McCain Foods
-Siemens
-NB Power
-Remsoft
-Startup Fredericton
-Startup Canada
-Innovatia
-Symplicity Designs
-Sandler Sales Institute

Read less

  • 1
Show 10 15 30 per page


Share this page:

Cookie Policy    X