• Leeds Beckett University Featured Masters Courses
  • University of York Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of Leeds Featured Masters Courses
  • University of Glasgow Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Swansea University Featured Masters Courses
  • Regent’s University London Featured Masters Courses
De Montfort University Featured Masters Courses
University of Greenwich Featured Masters Courses
Institute for Advanced Architecture of Catalonia Featured Masters Courses
Imperial College London Featured Masters Courses
University of Leeds Featured Masters Courses
"water" AND "resource" AN…×
0 miles

Masters Degrees (Water Resource Engineering)

  • "water" AND "resource" AND "engineering" ×
  • clear all
Showing 1 to 15 of 81
Order by 
There is a global demand for scientists, engineers and professionals trained in the area of water resources engineering and management. Read more
There is a global demand for scientists, engineers and professionals trained in the area of water resources engineering and management.

The water resource engineering and management masters at GCU is designed to expand students' educational horizons across traditional subject boundaries, encompassing sustainable development and technology and international policy / legislation in the area of water engineering and water resource management.

This course has several available start dates and study methods - for more information, please view the relevant web-page:
SEPTEMBER 2017 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P02849-1PTA-1718/Water_Resource_Engineering_and_Management_(Part-time)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2018 (Full Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P02848-1FTAB-1718/Water_Resource_Engineering_and_Management?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2018 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P02849-1PTAB-1718/Water_Resource_Engineering_and_Management_(Part-time)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

Programme Description

Growth of population and industrialisation requires increasing water demand. Meanwhile limited consumable water resources, climate change, no or less efficient sanitation and water pollution result in more water stress and scarcity problems globally, especially in the less developed countries. Subsequently, one billion people rely on unimproved drinking water sources and 2.5 billion people still lack access to improved sanitation facilities.

This programme aims to provide a high quality professional education for engineers and professionals in water engineering and water resources management.

Assessment

Students will be assessed via a combination of examinations, coursework, presentations, computer-based tests, case study analysis, reports and the final dissertation.

Read less
Engineers are the key to the development of society and solving the problems the world currently faces. They have the power to make the world fundamentally different. Read more
Engineers are the key to the development of society and solving the problems the world currently faces. They have the power to make the world fundamentally different.

The Master of Advanced Engineering is the key transitional stage in your career, transforming you into a global leader. Gain a depth of knowledge, mastering the crucial skills to become a leading contributor in your field.

Customise your degree - the Master of Advanced Engineering offers flexibility to complete your Master degree in just one year, or you can choose a two year option.

This course is designed to extend your knowledge in your chosen specialisation area and advance your leadership and complex problem-solving skills in a cross cultural environment.

Understand, reflect critically upon and apply methods in at least one specialist engineering area to design solutions to complex, multifaceted engineering problems.

Common core units will develop crucial skills in areas such as data analysis and entrepreneurship, translating theory into engineering practice. In discipline core units you will identify, interpret and critically appraise current developments and technologies within your specialisation.

Enhancement units are designed to provide breadth and are taken from either another engineering specialisation or in complementary areas such as information technology and business.

In addition, the two year version of the program offers a range of technical electives that will deepen your understanding of a specific topic, and two, year- long engineering project units. You will work closely with an academic on a topic of your choice and immerse yourself in a multidisciplinary design project.

The Master of Advanced Engineering could also be your stepping stone to a research degree. All of this in highly interactive, expert led classes.

Visit the website http://www.study.monash/courses/find-a-course/2016/advanced-engineering-e6001?domestic=true

Overview

Please select a specialisation for more details:

Chemical engineering

Your qualification will be a Master of Advanced Chemical Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Chemical Engineering allows you to engage in the areas of study including advanced reaction engineering, process design and optimization, conversion of bioresources into fuel, materials and specialty chemicals, and nanostructured membranes for sustainable separations and energy production with an emphasis on the latest developments in the field. In this course, you will develop specialised knowledge and skills that are important to Chemical Engineers in industry and research. This course provides graduates with enhanced opportunities for advancement in their careers.

Civil engineering (Infrastructure systems)

Your qualification will be a Master of Advanced Civil Engineering (Infrastructure Systems)

The Master of Advanced Civil Engineering (Infrastructure Systems) will equip graduates to work with in the area of infrastructure engineering and management. It will provide the fundamental knowledge associated with interfacing both structural and geotechnical designs for infrastructure systems. The program is designed to equip you with advanced skills necessary for managing the challenges posed by ageing and leading designs of new complex infrastructure systems. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills, as well as to develop theoretical and applied knowledge in the area of infrastructure engineering and management.

Civil engineering (Transport)

Your qualification will be a Master of Advanced Civil Engineering (Transport)

Please note that this specialisation is available only in Clayton.

The Master of Advanced Civil Engineering (Transport) program deals with the fundamental knowledge associated with transport engineering and management, traffic engineering, intelligent transport systems and transport planning. The program in is a response to the growing need for engineers with broad awareness of the characteristics and significance of transport, including its technological, economic and social impact. At the same time, the program outlines the state-of-the-art of transport engineering, as it may be applied to the solution of real problems in the planning, design, management and operation of transport facilities. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills as well as to develop theoretical and applied knowledge in the area of transport engineering and management.

Civil engineering (Water)

Your qualification will be a Master of Advanced Civil Engineering (Water)

Please note that this specialisation is available only in Clayton.

The Master of Advanced Civil Engineering (Water) allows you to major in water resources engineering and management. This program deals with the fundamental knowledge associated with surface and ground water flow, stormwater management, water quality, flood forecasting and mitigation. The program is designed to equip you with advanced skills necessary for managing the challenges posed by changing climatic condition on water resource management. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills as well as to develop theoretical and applied knowledge in the area of water resources engineering and management.

Electrical engineering

Your qualification will be a Master of Advanced Electrical Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Electrical Engineering will give you a broad introduction to advanced techniques in signal processing, communications, digital systems and electronics. The units have been chosen around the common theme of embedded systems: special purpose computing systems designed for specific applications. They are found just about everywhere including in consumer electronics, transportation systems, medical equipment and sensor networks. The course will mix theory and practice and will contain a significant amount of hands-on learning in laboratories and team-based design projects.

Energy and sustainability engineering

Your qualification will be a Master of Advanced Engineering (Energy and Sustainability)

Please note that this specialisation is available only in Malaysia.

The Master of Advanced Engineering (Energy and Sustainability) is designed for qualified engineers keen to deepen their knowledge in the energy and sustainability area. The course provides foundations in general engineering through engineering analysis and entrepreneurship units. Students can major in this program by examining energy and sustainability area from a multi-disciplinary perspective. Students can also choose elective units such as environment and air pollution control and smart grids to further enhance their knowledge in this area or undertake a minor research work to pursue a topic of interest related to this area.

Materials engineering

Your qualification will be a Master of Advanced Materials Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Materials Engineering encompasses practical aspects of the key classes of materials such as metals, polymers, biomaterials, nanomaterials and energy-related materials. This program particularly focuses on the most up-to-date aspects of the field, along with the utilisation of materials and their electronic, chemical and mechanical properties as underpinned by the microstructures that are revealed by modern characterisation techniques. This program is designed to prepare students to appreciate and exploit the central role of materials in addressing the present technical, economic and environmental problems involved in the design and construction of engineering structures, processes and devices. This course is ideally suited for new graduates as well as professional engineers who are eager to advance their applied knowledge in the area of Materials Engineering.

Mechanical engineering

Your qualification will be a Master of Advanced Mechanical Engineering

Please note that this specialisation is available only in Clayton.

Most modern engineering projects are multidisciplinary in nature and require a broad range of skills, proficiencies and perspectives to accomplish the task. The Master of Advanced Mechanical Engineering takes a systems approach to the design, monitoring and performance of complex mechanical engineering systems in the fields of renewable energy, aerospace, buildings, transportation, and biomedical devices. The systems approach also permeates the design of the course: four discipline-based core units are vertically integrated so that common problems are examined from different perspectives, culminating in a sustainable systems unit.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/engineering

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/advanced-engineering-e6001?domestic=true#making-the-application

Read less
This Master's degree is designed for students who wish to practice across a broad range environmental engineering and apply new sustainable risk management strategies for complex environmental problems. Read more
This Master's degree is designed for students who wish to practice across a broad range environmental engineering and apply new sustainable risk management strategies for complex environmental problems. Water, Waste and Environmental Engineering has been traditionally referred to as public health engineering in the United Kingdom. In this postgraduate course, the technical aspects of both natural and engineering environmental systems will be covered. There will be broad interdisciplinary subjects synthesizing knowledge from a wide spectrum of science and engineering, expanding the content of public health engineering, which in the UK has traditionally been responsible for developing the infrastructure for managing water and waste.

Students will develop engineering skills and be able to design, develop and apply concepts for water and waste as a resource based on environmental sensitivity and be competent in planning, modelling, design, construction, operations, maintenance and control of both engineered and natural water and earth resources.

Students who select this postgraduate programme will gain a skill set that will enable them to progress in the fields of:

- Environmental engineering
- Desalination and water reuse
- Water resources engineering
- Hydraulics and hydrology
- Environmental fluid hydraulics
- Environmental remediation
- Waste management
- Other specialities valued in both the private and public sectors.

The MSc in Water, Waste and Environmental Engineering will incorporate solid waste management, contaminated land treatment and the use of geographic information systems (GIS) with emphasis on management of the earth's resources.

The programme will explain the relationship between different earth resources including hydrosystems, both 'engineered' - hydro-power plants, water/wastewater treatment plants, sewers - and 'natural' - rivers, lakes, wetlands, irrigation districts, reservoirs etc., solid wastes, brownfield land, and geo-derived primary resources and their sustainable management.

The aims of the programme are:

- To show you how to design, implement and manage sustainable, risk-reduced eco-friendly solutions for reducing the environmental impact of exploitation of earth's resources in the context of environmental engineering-related issues facing global societies

- To provide you with the skills to further your careers in these areas

- To support you in understanding the innovative and pioneering approaches in this field and to be able to apply them to the solution of real-world problems in developing novel industrially-relevant solutions.

Visit the website http://www2.gre.ac.uk/study/courses/pg/enggen/wwee

What you'll study

Full time
- Year 1:
Students are required to study the following compulsory courses.

Environmental Engineering and Sustainability (15 credits)
Hydrosystems Engineering and Management (15 credits)
Individual Research Project for Civil and Environmental Engineering (60 credits)
Information Technologies for Environmental Engineering (15 credits)
Research, Planning and Communication (15 credits)
Waste Management and Remediation Technology (15 credits)
Desalination and Water Reuse (15 credits)
Water and Sanitation for Developing Countries (15 credits)
Water and Wastewater Engineering (15 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

Environmental Engineering and Sustainability (15 credits)
Information Technologies for Environmental Engineering (15 credits)
Waste Management and Remediation Technology (15 credits)
Desalination and Water Reuse (15 credits)

-Year 2:
Students are required to study the following compulsory courses.

Hydrosystems Engineering and Management (15 credits)
Individual Research Project for Civil and Environmental Engineering (60 credits)
Research, Planning and Communication (15 credits)
Water and Sanitation for Developing Countries (15 credits)
Water and Wastewater Engineering (15 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Teaching and learning

The number of contact hours (e.g. lectures, seminars and feedback on assignments) per module/course ranges from 50-75 hours for the one year full time programme or roughly equivalent to four hours per week per module. The expected self-study time is approximately 80-90 hours per module per year (roughly equivalent to four hours per week per module).

You will be taught by academics with a range of industrial and academia experience for each module.

Assessment

Project work, assignments and laboratory exercises in addition to substantial written examination of course materials will occur in most modules. The Environmental Engineering Research Project will require submission of a substantial final report/dissertation. Assessment of this module will involve participation in a poster and seminar presentation and a final oral examination.

Professional recognition

Accreditation will be sought from the Chartered Institution of Water and Environmental Management (CIWEM) and The Joint Board of Moderators (JBM) including the Institution of Civil Engineers, The Institution of Structural Engineers, the Chartered Institution of Highways and Transportation and Institute of Highway Engineers.

Career options

Postgraduate students from this programme will find such employment opportunities as engineers, scientist and technical managers in the private sector (engineering design firms, engineering consultancy, project management, risk management and waste management), in the public sector (environmental protection engineering, regulations and standards, local government) and in non-governmental sectors (NGOs, environmental advocacy) or may wish to pursue further qualifications such as a PhD within the Faculty of Engineering and Science at the University of Greenwich to become even more specialised. Employers of environmental engineers include engineering consultancies (such as AECOM, Atkins, Mott MacDonald Group, Hyder), government agencies (such as Environment Agency, Scottish Environment Protection Agency) and NGOs (such as Oxfam, Engineers without Boarders, Water Aid).

Careers and employability

FACULTY OF ENGINEERING & SCIENCE
We work with employers to ensure our degrees provide students with the skills and knowledge they need to succeed in the world of work. They also provide a range of work experience opportunities for undergraduates in areas such as civil engineering, manufacturing and business information technology.

Students also benefit from the services provided by the university’s Guidance and Employability Team, including ‘JobShop’, mentoring, volunteering and the student ambassador scheme.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
This programme is ideal for engineers and scientists who want to improve the delivery of water and sanitation services in low- and middle-income countries. Read more
This programme is ideal for engineers and scientists who want to improve the delivery of water and sanitation services in low- and middle-income countries. You will develop knowledge, expertise and skills in many aspects of inclusive and sustainable public health infrastructure and services.

The programme is based in the School of Civil and Building Engineering’s Water, Engineering and Development Centre (WEDC), one of the world’s leading education and research institutes of its kind.

Modules are taught by experts in a broad range of disciplines who have considerable experience of working in low- and middle- income countries. Classes include a mix of nationalities and past experiences, providing both a stimulating learning experience and a valuable future network.

Externally accredited, WEDC programmes are well-established, and held in high regard by practitioners and employers from both the emergency and development sectors.

Key Facts

- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.

- An outstanding place to study. The School of Civil and Building Engineering is ranked in the UK top 10 in the Guardian Good University Guide

- Excellent graduate prospects. Many of our graduates are employed by relief and development agencies.

- Professionally accredited. The Chartered Institution of Water and Environmental Management (CIWEM) have accredited this programme. Students registered for this programme are eligible for free student membership of CIWEM. The Joint Board of Moderators (JBM) has also accredited all WEDC MSc degrees as meeting requirements for Further Learning.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-waste/

Programme modules

Core modules:
- Water and Waste Engineering Principles
The aims of this module are for the student to understand the range of suitable technologies for water supply and engineering management of liquid and solid wastes in low- and middle-income countries.

- Management of Water and Sanitation
The aim of this module is to introduce the principles, concepts and key issues of managing sustainable water and environmental sanitation services for low-income consumers in developing countries.

- Water Utilities Management
The aim of this module is to better enable participants to plan for and manage urban water and sanitation services in developing countries.

- Data Collection, Analysis and Research
The aims of this module are to introduce the principles and approaches for doing research and studies on infrastructure and services in low- and middle-income countries and to prepare students to undertake the research dissertation module.

- Group Project
The aims of this module are for the student to work within a group to understand the necessary inter-relationships between different components of their programme of study; to consolidate and integrate material contained in earlier taught modules; and to learn how to work as part of a team.

- Research Dissertation
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to their degree.

Optional Modules (choose 3):
- Water Source Development
The aim of this module is for the student to understand the occurrence, location, exploration, exploitation and pollution of groundwater and surface water sources.

- Wastewater Treatment
The aims of this module are for the student to understand the various stages, and unit operation and process options, for treatment of wastewaters, particularly in low- and middle-income countries; and to understand the principles for planning and design of wastewater treatment facilities, particularly in low- and middle-income countries.

- Integrated Water Resources Management
The aim of this module is for participants to understand the concepts used in integrated planning and management of water resources in low and middle-income countries.

- Solid Waste Management
The aim of this module is to introduce participants with available and possible options in solid waste management for low and middle income countries. To make participants familiar with the key issues for low income countries.

- Water Distribution and Drainage Systems
The aim of this module is for the student to understand the most important aspects of how to design, construct and maintain piped water distribution, drainage and sewerage systems.

- Short Project
The aim of this module is for participants to be able to undertake extended study of a subject of their own choosing which is related to their Postgraduate Programme to enable them to conduct an independent review and analysis to understand state of art issues or a topic.

Facilities

All masters students have access to our excellent laboratory facilities which include equipment for field sampling and analysis of water and wastewater, and some of the largest hydraulics equipment in the UK. There are three dedicated water laboratory staff available to help you use our equipment who are specialists in pollutant analysis, hydraulics and running continuous trials.

Practical training includes:
- Hand-pump maintenance using the largest single site collection of hand-pumps;
- latrine slab construction;
- flow measurements; and
- water quality sampling and analysis.

Field visits are made to relevant UK facilities.

WEDC has a unique sector Resource Centre with a dedicated and skilled information officer. Over 19,000 items can be searched on a customized database allowing ready access to this collection of books, series, country files, student projects, videos, journals, maps, and manufacturers' catalogues.

The Resource Centre also provides a dedicated quiet study space for WEDC students. Many items including all WEDC publications and over 2500 papers presented at 37 WEDC International Conferences are available in the open access sector knowledge base.

How you will learn

The programme comprises both compulsory core modules and optional modules which may be selected. A group case study module draws together material from across the programme and develops team working skills. The individual research project and dissertation (frequently linked to specific needs of an agency) of between 75 and 150 pages in length concludes the programme. To support your learning you will have access to our comprehensive facilities including laboratories, hand-pumps, and a dedicated Resource Centre.

- Assessment
For most modules, students are assessed by one item of coursework (two items for foundation modules) and an in-class test. The Group Project module is assessed on the basis of written documents and spoken presentations, including an individual component for the module mark. The individual Research Dissertation is assessed on the basis of a written dissertation, and this module includes an oral when a student discusses their submitted dissertation with their supervisor and a second member of academic staff.

Careers and further study

Many WEDC students and alumni work for international NGOs (MSF, Oxfam, SCF, GOAL, WaterAid, etc.) and agencies (such as UNICEF), or National Governments. Graduate job titles include Sanitation Technical Manager, Water and Sanitation Consultant, Project Manager, Environmental Engineering Consultant and Civil Engineering Specialist.

Scholarships / Bursaries

Bursaries are available for self-funding international students.
The University also offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account. You can apply for one of these scholarships once you have received an offer for a place on this programme.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-waste/

Read less
This fully accredited MSc programme helps graduate engineers to acquire advanced capabilities and in-depth knowledge across a range of civil-engineering disciplines, including bridge engineering, construction management, and geotechnical, structural and water engineering. Read more
This fully accredited MSc programme helps graduate engineers to acquire advanced capabilities and in-depth knowledge across a range of civil-engineering disciplines, including bridge engineering, construction management, and geotechnical, structural and water engineering.

This well-established programme is delivered by experienced University staff, together with practising engineers from consultancies and local authorities.

PROGRAMME OVERVIEW

You can access six study streams on this Masters programme:
-Bridge Engineering
-Construction Management
-Geotechnical Engineering
-Structural Engineering
-Water Engineering and Environmental Engineering
-Infrastructure Engineering and Management

As well as supporting the career development of Civil Engineering graduates, this programme provides the necessary further learning for engineers working in the construction industry who hold related first degrees such as engineering geology or construction management.

It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil-engineering works.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time / distance learning for between two to five academic years. It consists of eight taught modules and a dissertation. This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules
-Steel Building Design
-Space Structures
-Structural Mechanics and Finite Elements
-Subsea Engineering
-Concrete Building Design
-Structural Safety and Reliability
-Earthquake Engineering
-Design of Masonry Structures

Bridge Engineering Group Modules
-Bridge Deck Loading and Analysis
-Prestressed Concrete Bridge Design
-Durability of Bridges and Structures
-Bridge Management
-Steel and Composite Bridge Design
-Long-Span Bridges

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Soil-Structure Interaction
-Deep Foundations and Earth Retaining Structures

Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Infrastructure Engineering Group Modules
-Infrastructure Investment and Financing
-Infrastructure Interdependencies and Resilience
-Infrastructure Asset Management
-Sustainability and Infrastructure

Water and Environmental Engineering Group Modules
-Environmental Health
-Water Treatment Optional
-Wastewater Treatment
-Applied Chemistry and Microbiology
-Pollution Control
-Groundwater Control
-Regulation and Management
-Water Resources

Dissertation
-Dissertation Project

EDUCATIONAL AIMS OF THE PROGRAMME

The Civil Engineering programme aims to provide graduate engineers with:
-Advanced capabilities and in-depth knowledge in a range of specialised aspects of civil engineering
-It is also designed to update the technical skills of practising engineers engaged in the planning, design, construction and operation of civil engineering works and to contribute to a personal professional development programme
-A working knowledge of some of the UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer in both a technical or non-technical capacity dependent upon module selection

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-The mathematical principles necessary to underpin their education in civil engineering and to enable them to apply mathematical methods, tools and notations proficiently in the analysis and solution of multi-disciplinary open ended engineering problems
-The properties, behaviour and use of relevant materials
-The management techniques which may be used to achieve civil engineering objectives within that context
-Some of the roles of management techniques and codes of practice in design
-The principles and implementation of some advanced design and management techniques specific to civil engineering
-Mathematical and computer models relevant to civil engineering, and an appreciation of their limitations
-The role of the professional engineer in society, including health, safety, environmental, sustainability, ethical issues and risk assessment within civil engineering
-The wider multidisciplinary engineering context and its underlying principles
-Developing technologies related to civil engineering and the ability to develop an ability to synthesize and critically appraise some of them
-The framework of relevant requirements governing engineering activities, including personnel, health, safety, and risk issues (an awareness of)
-The advanced design processes and methodologies and the ability to adapt them in open ended situations.

Intellectual / cognitive skills
-Analyse and solve problems
-Think strategically
-Synthesis of complex sets of information
-Understand the changing nature of knowledge and practice in the management of culturally diverse construction environments
-Select and transfer knowledge and methods from other sectors to construction-based organisation
-Produce sound designs to meet specified requirements such as Eurocodes, deploying commercial software packages as appropriate
-Dynthesis and critical appraisal of the thoughts of others

Professional practical skills
-Awareness of professional and ethical conduct
-Extract data pertinent to an unfamiliar problem, and apply its solution using computer based engineering tools where appropriate
-Evaluate and integrate information and processes in project work
-Present information orally to others
-Show a capability to act decisively in a coordinated way using theory, better practice and harness this to experience
-Use concepts and theories to make engineering judgments in the absence of complete data
-Observe, record and interpret data using appropriate statistical methods and to present results in appropriate forms for the civil engineering industry

Key / transferable skills
-Communicate engineering design, concepts, analysis and data in a clear and effective manner
-Collect and analyse research data
-Time and resource management planning

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
This programme is ideal for engineers and scientists who want to improve the delivery of water and environmental services in low-and middle-income countries. Read more
This programme is ideal for engineers and scientists who want to improve the delivery of water and environmental services in low-and middle-income countries. You will develop knowledge, expertise and skills in many aspects of water, sanitation and environmental management. The programme focuses on the conditions and aspirations of communities in low- and middle-income countries.

The programme is based in the School of Civil and Building Engineering’s Water, Engineering and Development Centre (WEDC), one of the world’s leading education and research institutes of its kind.

Modules are taught by experts in a broad range of disciplines who have considerable experience of working in low- and middle- income countries. Classes include a mix of nationalities and past experiences, providing both a stimulating learning experience and a valuable future network.

Externally accredited, WEDC programmes are well-established, and held in high regard by practitioners and employers from both the emergency and development sectors.

Key Facts

- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.

- An outstanding place to study. The School of Civil and Building Engineering is ranked in the UK top 10 in the Guardian Good University Guide

- Excellent graduate prospects. Many of our graduates are employed by relief and development agencies.

- Professionally accredited. The Chartered Institution of Water and Environmental Management (CIWEM) have accredited this programme. Students registered for this programme are eligible for free student membership of CIWEM. The Joint Board of Moderators (JBM) has also accredited all WEDC MSc degrees as meeting requirements for Further Learning.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-environmental-management/

Programme modules

Core modules:
- Management of Water and Sanitation
The aim of this module is to introduce the principles, concepts and key issues of managing sustainable water and environmental sanitation services for low-income consumers in developing countries.

- Water and Environmental Sanitation
The aim of this module is for participants to understand the range of suitable technologies for water supply and engineering management of liquid and solid wastes in low- and middle-income countries.

- Integrated Water Resources Management
The aim of this module is for participants to understand the concepts used in integrated planning and management of water resources in low and middle-income countries.

- Water Utilities Management
The aim of this module is to better enable participants to plan for and manage urban water and sanitation services in developing countries.

- Data Collection, Analysis and Research
The aims of this module are to introduce the principles and approaches for doing research and studies on infrastructure and services in low- and middle-income countries and to prepare students to undertake the research dissertation module.

- Group Project
The aims of this module are for the student to work within a group to understand the necessary inter-relationships between different components of their programme of study; to consolidate and integrate material contained in earlier taught modules; and to learn how to work as part of a team.

- Research Dissertation
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to their degree.

Optional Modules (choose 2):
- Water Source Development
The aim of this module is for the student to understand the occurrence, location, exploration, exploitation and pollution of groundwater and surface water sources.

- Environmental Assessment
The aim of this module is for participants to develop a broad understanding of both the needs for and the mechanisms of environmental assessment and management, with emphasis on aquatic environments, in low and middle-income countries.

- Small-scale Water Supply and Sanitation
The aim of this module is for the student to understand important aspects of the design, construction, operation and maintenance of small-scale water supplies and on-site sanitation options for low-income rural and urban communities.

- Solid Waste Management
The aim of this module is to introduce participants with available and possible options in solid waste management for low and middle income countries. To make participants familiar with the key issues for low income countries.

Facilities

All masters students have access to our excellent laboratory facilities which include equipment for field sampling and analysis of water and wastewater, and some of the largest hydraulics equipment in the UK. There are three dedicated water laboratory staff available to help you use our equipment who are specialists in pollutant analysis, hydraulics and running continuous trials.

Practical training includes:
- Hand-pump maintenance using the largest single site collection of hand-pumps;
- latrine slab construction;
- flow measurements; and
- water quality sampling and analysis.

Field visits are made to relevant UK facilities.

WEDC has a unique sector Resource Centre with a dedicated and skilled information officer. Over 19,000 items can be searched on a customized database allowing ready access to this collection of books, series, country files, student projects, videos, journals, maps, and manufacturers' catalogues.

The Resource Centre also provides a dedicated quiet study space for WEDC students. Many items including all WEDC publications and over 2500 papers presented at 37 WEDC International Conferences are available in the open access sector knowledge base.

How you will learn

The programme comprises both compulsory core modules and optional modules which may be selected. A group case study module draws together material from across the programme and develops team working skills. The individual research project and dissertation (frequently linked to specific needs of an agency) of between 75 and 150 pages in length concludes the programme. To support your learning you will have access to our comprehensive facilities including laboratories, hand-pumps, and a dedicated Resource Centre.

- Assessment
For most modules, students are assessed by one item of coursework (two items for foundation modules) and an in-class test. The Group Project module is assessed on the basis of written documents and spoken presentations, including an individual component for the module mark. The individual Research Dissertation is assessed on the basis of a written dissertation, and this module includes an oral when a student discusses their submitted dissertation with their supervisor and a second member of academic staff.

Careers and further study

Many WEDC students and alumni work for international NGOs (MSF, Oxfam, SCF, GOAL, WaterAid, etc.) and agencies (such as UNICEF), or National Governments. Graduate job titles include Sanitation Technical
Manager, Water and Sanitation Consultant, Project Manager, Technical Adviser, Environmental Engineering Consultant and Civil Engineering Specialist.

Scholarships and bursaries

Bursaries are available for self-funding international students.
The University also offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account.
You can apply for one of these scholarships once you have received an offer for a place on this programme.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-environmental-management/

Read less
The Water Technology programme is a two year programme with a joint degree. The programme is offered jointly by Wageningen University, University Twente and University of Groningen with education being provided at the Technological Top Institute for Water technology (TTIW Wetsus), in Leeuwarden. Read more

MSc Water Technology

The Water Technology programme is a two year programme with a joint degree. The programme is offered jointly by Wageningen University, University Twente and University of Groningen with education being provided at the Technological Top Institute for Water technology (TTIW Wetsus), in Leeuwarden

Programme summary

There are a lot of new and existing global problems related to the availability and quality of water for personal, agricultural and industrial use. And these problems require sustainable solutions with a minimal impact on the environment. Water technology has unfortunately not been a focal point of most academic research and education programmes, despite its enormous importance to society. Instead, the expertise of various research groups is usually concentrated on other processes and in some cases, only later dedicated to water treatment in spin-off projects. New technologies will be necessary to develop new concepts for the treatment of waste water. And also for the production of clean water from alternative sources like salt (sea) water, waste water or humid air in order to minimise the use of precious groundwater. These challenges require academically trained experts who can think out-of-the-box and help to find practical solutions in the near future. A dedicated joint Master Water Technology programme has been created to train and educate these experts.

The MSc Water Technology is situated in Leeuwarden, the capital of water technology, and is offered jointly by three Dutch universities: Wageningen University, the University of Twente and the University of Groningen. A combined technological approach, based on state-of-the-art universities in science and technology, will search for solutions to several developments within business and society; with a worldwide impact on the demand for and use of water. One dedicated Master programme with joint degree allows for flexibility and can be adapted to the changing needs of the labour market. Wageningen University offers a strong focus on environmental sciences, the University of Twente on science and technology, and the University of Groningen on fundamental sciences. Students will be educated in the multidisciplinary laboratory of the technological top institute for water technology called Wetsus.

The MSc Water Technology programme specifically targets students interested in beta science and technology. The programme offers a unique combination of scientific insights and technological applications from the field of Biotechnology and Chemical Engineering. This combined approach for problem solving within the global framework of water problems is an asset to the programme. The programme is a valuable addition for postgraduate students with a completed bachelor degree in Environmental Engineering, Chemical Engineering and Biotechnology; or in related fields with a strong knowledge of mathematics, physics, chemistry and/or biology, and with affinity of water processes. Students are challenged with examples and case studies of real (research) problems that they might encounter as water professionals.

Students apply for the MSc Water Technology programme at Wageningen University, but will be registered at the other two universities as well. They will have access to the facilities of all three universities. Upon the successful completion of the programme, students receive one joint degree MSc Water Technology issued by all participating universities.

Specialisations

There are no official specialisations within the programme Water Technology. Students specialise themselves by doing a thesis within one of the research fields. Some examples are: Priority compounds, Virus Control, Applied water physics, Desalination, Concentrates, Biofouling, Aquatic worms, Advanced waste water treatment, Algae, Separation at source, Resource recovery, Membrane processes and operation for wastewater treatment and reuse and Sensoring.

Your future career

This study domain is becoming more and more relevant due to the urgent need for new technologies to meet global water problems. Water technology for public drinking water production and sewage water treatment is a very large market. Furthermore, the largest use of fresh water is for irrigation purposes. The industrial water supply and industrial waste water treatment also represent a significant market. There is no question that businesses involved in water technology will grow tremendously. Besides this, human capital is a basic condition to guarantee the success and continuity of the development of sustainable technologies. In many EU countries, the lack of talented technological professionals is becoming an increasingly limiting factor. The programme prepares students for a professional position in the broad area of water technology. Graduates have good national and international career prospects in business and research.

Student Stefanie Stubbé.
"Wetsus gave me the opportunity to get personalized education: teachers that take the time for you and fellow students that challenge and collaborate with you at the same time. Water technology is going to be huge in the future; I already experienced that at several companies when I searched for an internship. Although it is sometimes hard work and far away from the "city-life" in the Netherlands; I've never regretted my choice to start this Master!"

Related programmes:
MSc Biotechnology
MSc Environmental Sciences

Read less
Running for over 35 years, this fully accredited MSc programme builds advanced capabilities in specialist aspects of bridge engineering. Read more
Running for over 35 years, this fully accredited MSc programme builds advanced capabilities in specialist aspects of bridge engineering.

Successful completion of this programme will aid you in pursuing a career as a bridge engineer with a consultancy, a specialist contractor or a local authority.

PROGRAMME OVERVIEW

Graduate students will find the programme of substantial use in developing their knowledge and skills base for bridge analysis, design and management.

The programme also offers the opportunity for practising bridge engineers to update their knowledge of current design and assessment codes and guidelines, become familiar with developments in new techniques for the design, construction and management of bridges.

The Bridge Engineering programme encompasses a wide range of modules addressing the whole life-analysis of bridge structures from design to end-of-life.

Optional modules from some of our other study streams are also offered, covering structural engineering, geotechnical engineering, water engineering, construction management, and infrastructure engineering and management.

Graduates are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

PROGRAMME STRUCTURE

This programme is studied over either one year (full-time) or between two and five years (part-time or distance learning). It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Bridge Engineering Group Modules
-Bridge Deck Loading and Analysis
-Prestressed Concrete Bridge Design
-Durability of Bridges and Structures
-Steel and Composite Bridge Design
-Long-Span Bridges

Structural Engineering Group Modules
-Steel Building Design
-Space Structures
-Structural Mechanics and Finite Elements
-Subsea Engineering
-Concrete Building Design
-Structural Safety and Reliability
-Earthquake Engineering
-Design of Masonry Structures

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Soil-Structure Interaction
-Foundation Engineering

Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Infrastructure Engineering and Management Group Modules
-Infrastructure Investment and Financing
-Infrastructure Interdependencies and Resilience
-Infrastructure Asset Management
-Sustainability and Infrastructure

Water and Environmental Engineering Group Modules
-Environmental Health
-Water Treatment
-Wastewater Treatment
-Applied Chemistry and Microbiology
-Pollution Control
-Groundwater Control
-Regulation and Management
-Water Resources Management and Hydraulic Modelling
-Water Policy and Management
-Dissertation
-Dissertation Project

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide graduates with:
-A comprehensive understanding of engineering mechanics for bridge analysis
-The ability to select and apply the most appropriate analysis methodology for problems in bridge engineering including advanced and new methods
-The ability to design bridge structures in a variety of construction materials
-A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of bridge structures and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas:

Knowledge and understanding
-A knowledge and understanding of the key UK and European standards and codes of practice relating to bridge engineering
-The ability to interpret and apply the appropriate UK and European standards and codes of practiceto bridge design for both familiar and unfamiliar situations
-A knowledge and understanding of the construction of different types of bridge structures using different types of materials (e.g. concrete and steel)
-A knowledge and understanding of the common and less common materials used in bridge engineering
-A comprehensive understanding of the principles of engineering mechanics underpinning bridge engineering
-The ability to critically evaluate bridge engineering concepts
-The ability to apply the appropriate analysis methodologies to common bridge engineering problems as well as unfamiliar problems
-The ability to understand the limitations of bridge analysis methods
-A knowledge and understanding to work with information that may be uncertain or incomplete
-A Knowledge and understanding of sustainable development related to bridges
-The awareness of the commercial, social and environmental impacts associated with bridges
-An awareness and ability to make general evaluations of risk associated with the design and construction of bridge structures including health and safety, environmental and commercial risk
-A critical awareness of new developments in the field of bridge engineering

Intellectual / cognitive skills
-The ability to tackle problems familiar or otherwise which have uncertain or incomplete data (A,B)
-The ability to generate innovative bridge designs (B)
-The ability to use theory or experimental research to improve design and/or analysis
-The ability to apply fundamental knowledge to investigate new and emerging technologies
-Synthesis and critical appraisal of the thoughts of others

Professional practical skills
-The awareness of professional and ethical conduct
-A Knowledge and understanding of bridge engineering in a commercial/business context
-Ability to use computer software to assist towards bridge analysis
-Ability to produce a high quality report
-Ability of carry out technical oral presentations

Key / transferable skills
-Communicate engineering design, concepts, analysis and data in a clear and effective manner
-Collect and analyse research data
-Time and resource management planning

Read less
This well-established and fully accredited MSc programme will develop the knowledge and skills acquired in your undergraduate programme. Read more
This well-established and fully accredited MSc programme will develop the knowledge and skills acquired in your undergraduate programme. It builds the advanced capabilities in analysis and codified design in specialised aspects of structural engineering that are required by industry.

PROGRAMME OVERVIEW

Our Structural Engineering postgraduate programme is delivered by the Faculty’s own staff, together with practising engineers from consultancies and local authorities.

For practising engineers engaged in the planning, design and construction of structural engineering works, this programme provides an opportunity to update their knowledge of current design practice and to become familiar with developments in codes and methods of analysis.

You will be able to choose from a rich and varied selection of specialist structural engineering subjects. The programme is offered in the standard full-time mode, in addition to part-time and distance learning options.

Graduates from the programme are highly employable and may progress to relevant specialist PhD or EngD research programmes in the field.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time or distance learning over two to five academic years. It consists of eight taught modules and a dissertation project.

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng (Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.

Structural Engineering Group Modules
-Steel Building Design
-Space Structures
-Structural Mechanics and Finite Elements
-Subsea Engineering
-Concrete Building Design
-Structural Safety and Reliability
-Earthquake Engineering
-Design of Masonry Structures

Bridge Engineering Group Modules
-Bridge Deck Loading and Analysis
-Prestressed Concrete Bridge Design
-Durability of Bridges and Structures
-Bridge Management
-Steel and Composite Bridge Design
-Long-Span Bridges

Geotechnical Engineering Group Modules
-Advanced Soil Mechanics
-Energy Geotechnics
-Geotechnical Structures
-Soil-Structure Interaction
-Deep Foundations and Earth Retaining Structures

Construction Management Group Modules
-Construction Management and Law
-Construction Organisation
-Project and Risk Management

Infrastructure Engineering Group Modules
-Infrastructure Investment and Financing
-Infrastructure Interdependencies and Resilience
-Infrastructure Asset Management
-Sustainability and Infrastructure

Water and Environmental Engineering Group Modules
-Environmental Health
-Water Treatment
-Wastewater Treatment
-Applied Chemistry and Microbiology
-Pollution Control
-Groundwater Control
-Regulation and Management
-Water Resources

Dissertation
-Dissertation Project

Apart from the usual full-time mode, there are also part-time options. The majority of Bridge, Geotechnical and Structural Engineering modules can be studied by distance learning through the use of an interactive web-based e-learning platform (SurreyLearn). This programme can be studied via distance learning, which allows a high level of flexibility and enables you to study alongside other commitments you may have.

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide graduates with:
-A comprehensive understanding of engineering mechanics for structural analysis
-The ability to select and apply the most appropriate analysis methodology for problems in structural engineering including advanced and new methods
-The ability to design structures in a variety of construction materials
-A working knowledge of the key UK and European standards and codes of practice associated with the design, analysis and construction of civil engineering structures and the ability to interpret and apply these to both familiar and unfamiliar problems
-The necessary technical further learning towards fulfilling the educational base for the professional qualification of Chartered Engineer

PROGRAMME LEARNING OUTCOMES

Knowledge and understanding
-A knowledge and understanding of the key UK and European standards and codes of practice relating to structural engineering
-The ability to interpret and apply the appropriate UK and European standards and codes of practice to structural design for both familiar and unfamiliar situations
-A knowledge and understanding of the construction of different types of structures using different types of materials (e.g. concrete and steel)
-A knowledge and understanding of the common and less common materials used in structural engineering
-A comprehensive understanding of the principles of engineering mechanics underpinning structural engineering
-The ability to critically evaluate structural engineering concepts
-The ability to apply the appropriate analysis methodologies to common structural engineering problems as well as unfamiliar problems
-The ability to understand the limitations of structural analysis methods
-A knowledge and understanding to work with information that may be uncertain or incomplete
-A Knowledge and understanding of sustainable development related to structures
-The awareness of the commercial, social and environmental impacts associated with structures
-An awareness and ability to make general evaluations of risk associated with the design and construction of structures including health and safety, environmental and commercial risk
-A critical awareness of new developments in the field of structural engineering

Intellectual / cognitive skills
-The ability to tackle problems familiar or otherwise which have uncertain or incomplete data
-The ability to generate innovative structural designs
-The ability to use theory or experimental research to improve design and/or analysis
-The ability to apply fundamental knowledge to investigate new and emerging technologies
-Produce sound designs to meet specified requirements such as Eurocodes, deploying commercial software packages as appropriate
-Synthesis and critical appraisal of the thoughts of others

Professional practical skills
-The awareness of professional and ethical conduct
-A Knowledge and understanding of structural engineering in a commercial/business context
-Ability to use computer software to assist towards structural analysis
-Ability to produce a high quality report
-Ability of carry out technical oral presentations

Key / transferable skills
-Communicate engineering design, concepts, analysis and data in a clear and effective manner
-Collect and analyse research data
-Time and resource management planning

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
Our mission is to educate engineers who can design infrastructures and plan human development while balancing environmental health and the society’s need for better living conditions. Read more

Mission and goals

Our mission is to educate engineers who can design infrastructures and plan human development while balancing environmental health and the society’s need for better living conditions. The MSc in Environmental and Land Planning Engineering focuses on a broad range of interdisciplinary professional capabilities and expertise required to deal with all the issues related to a sustainable utilization of natural resources. We provide a full track in English, which offers a panoply of specialized courses and laboratories addressing all the environmental components, air, water, soil and the biota, and the impacts due to natural hazards and to human activities, as well as their mitigation. We achieve the mission through advanced scientific and technological education.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/environmental-and-land-planning-engineering/environmental-engineering-for-sustainability-track/

Career opportunities

Graduates are expected to be employed in land and environmental service enterprises, engineering firms for design and construction of plants for water and air emissions treatment, energy generation and waste disposal, companies for producing and managing environmental instrumentation, remote sensors and environmental monitoring systems and networks, public authorities and agencies for land planning and control.

The track in Environmental engineering for sustainability is taught in English.

Presentation

See http://www.polinternational.polimi.it/uploads/media/Environmental_Engineering_for_Sustainability.pdf
Our mission is to educate engineers who can design infrastructures and plan human development while balancing environmental health and the society’s need for better living conditions. The MSc in Environmental and Land Planning Engineering focuses on a broad range of interdisciplinary professional capabilities and expertise required to deal with all the issues related to a sustainable utilization of natural resources. We provide a full track in English, which offers a panoply of specialized courses and laboratories addressing all the environmental components (air, water, soil and the biota) and the impacts due either to natural hazards or to human activities, as well as their mitigation. We achieve the mission through advanced scientific and technological education.
Graduates are expected to be employed in land and environmental service enterprises, engineering firms for design and construction of plants for water and air emissions treatment, energy generation and waste disposal, companies for producing and managing environmental instrumentation, remote sensors and environmental monitoring systems and networks, public authorities and agencies for land planning and control.
The track in Environmental engineering for sustainability is taught in English.

Subjects

Available courses include: chemistry for sustainability, soil remediation, engineering and process technologies for water, air and solid wastes treatment, hydrology and hydraulic engineering, ecology, energy systems technologies, environmental impact assessment and quality evaluation, environmental systems engineering and management, geotechnical and seismic engineering, water, land and soil resource management, surface and subsurface water quality modelling and evaluation.

See the website http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/environmental-and-land-planning-engineering/environmental-engineering-for-sustainability-track/

For contact information see here http://www.polinternational.polimi.it/educational-offer/laurea-magistrale-equivalent-to-master-of-science-programmes/environmental-and-land-planning-engineering/environmental-engineering-for-sustainability-track/

Find out how to apply here http://www.polinternational.polimi.it/how-to-apply/

Read less
The MSc in Sustainable Chemical Engineering is designed for ambitious graduates who aspire to play leading roles in managing, innovating and delivering resource efficient products, processes and systems in a sustainable way. Read more
The MSc in Sustainable Chemical Engineering is designed for ambitious graduates who aspire to play leading roles in managing, innovating and delivering resource efficient products, processes and systems in a sustainable way. The process industry has a high dependence on material and energy resources. Because of this, there is a strong interest in improving resource efficiency to increase competitiveness and decrease environmental impact.

Resource efficiency is about 'doing more and/or better with less' and delivering this sustainably presents a major opportunity and challenge for engineers and scientists. Industry needs skilled graduates with the expertise to take up this challenge now.

This course benefits from the support of our multidisciplinary EPSRC Centres for Doctoral Training:

- Sustainable Chemical Technologies (University of Bath)
- Water Informatics: Science and Engineering (Universities of Bath, Exeter, Bristol, Cardiff)
- Catalysis (Universities of Bath, Cardiff, Bristol).

The three Centres for Doctoral Training offer excellent opportunities for cross-disciplinary projects in engineering and science as well as access to a lively programme of talks and other events throughout the year. At the start of the MSc programme you will be assigned a doctoral student who will act as your mentor in addition to an academic tutor and supervisor.

Make an Impact: Sustainability for Professionals

If you are interested in sustainability, you can sign up for our free MOOC (massive open online course) Make an Impact: Sustainability for Professionals (https://www.futurelearn.com/courses/sustainability-for-professionals). The course starts in April.

Visit the website http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/sustainable-chemical-engineering/index.html

Learning Outcomes

This course teaches and builds on advanced concepts and technologies core to sustainable chemical engineering. It will train you how to integrate systems thinking and economic, environmental and social objectives in problem solving and decision making. You will graduate with the practical and interpersonal skills required by professionals to work in the emerging and expanding employment market in the green sector.

You will:

- gain a holistic understanding of the environmental, social, ethical, regulatory and economic dimensions of sustainable chemical engineering and how they interact

- apply methodologies and tools to design and evaluate alternative products, processes and systems based on sustainability criteria

- apply your knowledge of resource conservation to deal with complex scenarios, real-life problems and decision making in the face of incomplete or uncertain information

- develop 'big picture' thinking to evaluate alternative products, processes and systems using whole systems approaches, which consider the multiple criteria and stakeholders along the process industry value chain

- develop the skills to formulate and implement research and design projects independently and in professional multidisciplinary teams.

Structure

The programme creates many opportunities for interdisciplinary and active learning through authentic, industrially relevant case studies, games and project work. There are guest speakers from industry and other organisations, as well as opportunities for industrial visits. Transferable skills development, such as problem solving, teamwork, effective communication, networking and time and resource management, is embedded throughout the programme.

- Semester 1 (September to January):
The first semester consists of five taught compulsory units that provide you with a foundation in sustainability and systems analysis to apply throughout the programme.

The units advance your understanding of the concepts, technologies and issues in resource recovery, including the valorisation and the re-use of waste streams (waste2resource). You will examine in detail how resources can be conserved by transforming wastes and other feedstocks into high value products in the bioeconomy.

Each unit consists of lectures, tutorials and case studies, and is supplemented by private study and preparation for in-class activities.

Assessment is by a combination of coursework and examination.

- Semester 2 (February to May):
In the second semester you will take two further technical specialist units on resource conservation. These cover a range of advanced technologies and concepts, including process intensification and waste, water and energy integration.

You will also develop your understanding of Sustainable Chemical Engineering in a design, research and management context through three project-based units, focused on resource efficiency and conservation.

In the group activity, you will apply engineering and project management techniques to solve a design problem, just as an industry-based design team would.

Project unit 1 introduces you to research methods and project planning. You will then apply this to detailed background research in your discipline area to prepare for your individual summer dissertation project in Project unit 2.

Assessment is by a combination of coursework and examination.

- Semester 3 (June to September):
The final semester consists of an individual project leading to an MSc dissertation. Depending on your chosen area of interest, the project may involve theoretical, computational and/or experimental activities. You will conduct your individual project at Bath under the supervision of a member of academic staff, with opportunities for industrial co-supervision. You will have access to the state-of the-art facilities in the Department of Chemical Engineering.

Assessment is through a written dissertation and an oral presentation.


Facilities and equipment
The Department has a full range of research facilities with pilot plants for all major areas of research. Our analytical facilities include gas chromatography, mass spectrometry, high performance liquid chromatography (HPLC), UV-VIS, FTIR and Raman, photon correlation spectroscopy (PCS), microcalorimetry, adsorption measurement systems, surface and pore structure analysis systems and particle sizing equipment. Within the University, there is access to atomic force, scanning and transmission electron microscopes.

Research Excellence Framework 2014
We are proud of our research record: 89% of our research was graded as either world-leading or internationally excellent in the Research Excellence Framework 2014, placing us 10th in the UK for our submission to the Aeronautical, Mechanical, Chemical and Manufacturing Engineering.

Careers information
We are committed to ensuring that postgraduate students acquire a range of subject-specific and generic skills during their research training including personal effectiveness, communication skills, networking and career management. Most of our graduates take up research, consultancy or process and product development and managerial appointments in the commercial sector, or in universities or research institutes.

Find out how to apply here - https://secure.bath.ac.uk/prospectus/cgi-bin/applications.pl?department=chem-eng

We have Elite MSc Scholarships for £2,000 towards your tuition fees available for this course - http://www.bath.ac.uk/engineering/graduate-school/taught-programmes/funding/

Read less
This fully accredited MSc programme from the Centre for Environmental and Health Engineering is highly popular and relevant to the needs of future engineers, scientists and professionals in the environmental-health, water, pollution-control, waste-management and environmental sectors. Read more
This fully accredited MSc programme from the Centre for Environmental and Health Engineering is highly popular and relevant to the needs of future engineers, scientists and professionals in the environmental-health, water, pollution-control, waste-management and environmental sectors.

PROGRAMME OVERVIEW

This MSc attracts UK and overseas graduates who wish to take advantage of the considerable global interest in water, wastewater, sanitation and waste to develop their careers.

Many graduates from the programme go on to work for consultancies, water utilities, contractors, relief agencies, regulatory bodies and international organisations.

Graduates from the programme also have the potential to progress to relevant specialist PhD or EngD research programmes in the field.

In the past, scholarship students have been accepted from a range of schemes, including: Foreign Office and British Council Chevening, World Bank, Commonwealth, Thames Water, Commonwealth Shared Scholarships, and the Royal Academy of Engineering, together with students from numerous overseas national schemes.

PROGRAMME STRUCTURE

This programme is studied full-time over one academic year and part-time students must study at least two taught technical modules per academic year. It consists of eight taught modules and a dissertation project. The following modules are indicative, reflecting the information available at the time of publication. Please note that not all modules described are compulsory and may be subject to teaching availability and/or student demand.
-Environmental Health
-Water Treatment
-Wastewater Treatment
-Applied Chemistry & Microbiology
-Pollution Control
-Groundwater Control
-Regulation & Management
-European Study Tour
-Water Resources
-Dissertation Project

EDUCATIONAL AIMS OF THE PROGRAMME

The programme aims to provide graduates with:
-A comprehensive and robust understanding of key areas of water and environmental engineering
-Skills that will enable students to explore, critically assess and evaluate problems and produce systematic and coherent solutions integrating core engineering science with practical applications both independently and within a team structure
-An understanding of how this knowledge can be articulated around sustainable development practices
-A sound base for enhanced communication skills both oral and written
-A pathway that will prepare graduates for successful careers in the field including, where appropriate, progression to Chartered Engineer status

PROGRAMME LEARNING OUTCOMES

The programme provides opportunities for students to develop and demonstrate knowledge and understanding, skills, qualities and other attributes in the following areas.

Knowledge and understanding
-The fundamental principles underpinning the key topics covered in the subject area
-Investigation and research techniques which provide a sound base for critical evaluation, selection and use of a wide range of scientific, technical and management processes relevant to the field
-The multidisciplinary nature of the subject area and its underlying principles and the importance of developing integrated approaches to solving complex problems
-The importance of identifying emerging trends to existing knowledge structures and theoretical frameworks and propose new alternative application and methodological approaches relevant to the student’ s research interests
-Management, organisation and communication skills including problem definition, project and experimental design, time management, decision making processes, independent and team work, knowledge transfer via written and oral presentations

Intellectual/cognitive skills
-An integrated and multidisciplinary approach to solving complex problems using professional judgment taking into consideration the engineering, economic, social and environmental impacts
-The ability to critically evaluate outcomes and accurately assess and report on own/others work with justification and relate them to existing knowledge structures and methodologies
-The ability to formulate, conduct and write-up a systematic and coherent research programme topic demonstrating in-depth knowledge and high level of problem solving skills

Professional practical skills
-Critical review of the scientific literature for effective justification and support of results and decisions
Acquisition of the necessary skills to collect as well as generate data via laboratory experiments or computer-based programmes
-Critical analysis of results/recommendations and their presentation in a concise and logical manner
-Preparation of technical reports and presentation of work to an informed audience
-Awareness of difficulties and ethical issues likely to arise in professional practice and an ability to formulate solutions in dialogue with peers, industry professionals, institutional professionals and others

Key/transferable skills
-Critical analysis, evaluation and synthesis of complex information and data
-Communication and knowledge transfer through oral presentations and written reports
-Selection and use of appropriate advanced research methods
-Integrated and multidisciplinary approach to problem solving
-Time and resource management
-Effective use of a range of communication and technology tools aimed at different audiences
-Effective learning and working, both independently and as a part of a team

GLOBAL OPPORTUNITIES

We often give our students the opportunity to acquire international experience during their degrees by taking advantage of our exchange agreements with overseas universities.

In addition to the hugely enjoyable and satisfying experience, time spent abroad adds a distinctive element to your CV.

Read less
The global challenge of environmental sustainability highlights the need for holistic design and management of complex environmental and technological systems. Read more
The global challenge of environmental sustainability highlights the need for holistic design and management of complex environmental and technological systems. This interdisciplinary Master's programme presents environmental issues and technologies within a systems engineering context. Graduates will understand interactions between the natural environment, people, processes and technologies to develop sustainable solutions.

Degree information

Students will develop an understanding of systems engineering and environmental engineering. Environmental engineering is a multidisciplinary branch of engineering concerned with devising, implementing and managing solutions to protect and restore the environment within an overall framework of sustainable development. Systems engineering is the branch of engineering concerned with the development and management of large complex systems.

Students undertake modules to the value of 180 credits. The programme consists of four core modules (60 credits), a collaborative environmental systems project (30 credits), two optional modules (30 credits) and an individual environmental systems dissertation (60 credits). A Postgraduate Diploma (120 credits) is offered.

Core modules
-Collaborative Environmental Systems Project
-Environmental Systems
-Systems Engineering and Management
-Systems Society and Sustainability
-Environmental Modelling

Optional modules - options may include the following:
-Urban Flooding and Drainage
-Coastal Engineering
-Water and Wastewater Treatment
-Natural Environmental Disasters
-The Control of Noise
-Industrial Symbiosis
-Environmental Masterplanning
-Energy Systems Modelling
-Smart Energy Systems
-Low Carbon Energy Supply System Design for Buildings and Neighbourhoods
-Energy Systems & Sustainability
-Politics of Climate Change
-Natural Environmental Disasters
-Engineering and International Development
-Waste and Resource Efficiency
-Project Management for Engineers

Dissertation/report
All MSc students undertake an independent research project addressing a problem of systems research, design or analysis, which culminates in a dissertation of 10,000.

Teaching and learning
The programme is delivered through lectures, seminars, tutorials, laboratory classes and projects. The individual and group projects in the synthesis element involve interaction with industrial partners, giving students real-life experience and contacts for the future. Assessment is through written examination, coursework, presentations, and group and individual projects.

Careers

Career paths for environmental systems engineers are diverse, expanding and challenging, with the pressures of increasing population, desire for improved standards of living and the need to protect the environmental systems. There are local UK and international opportunities in all areas of industry: in government planning and regulation, with regional and municipal authorities, consultants and contracting engineers, research and development organisations, and in education and technology transfer. Example of recent career destinations include Ford, KPMG, EDF Energy, Brookfield Multiplex, and the Thames Tideway Tunnel Project.

Top career destinations for this degree:
-Environmental Specialist, BHP Billiton
-Project Engineer, Alberta WaterSMART
-Project Manager, Veolia Environmental Services
-MSc Business Management, Imperial College Business School, Imperial College
-PhD Environmental Research, Imperial College London

Employability
The discipline of environmental systems engineering is growing rapidly with international demand for multi-skilled, solutions-focussed professionals who can take an integrated approach to complex problems.

Why study this degree at UCL?

The discipline of environmental systems engineering is growing rapidly with an international demand for multi-skilled professionals who can take an integrated approach to solving complex environmental problems (e.g. urban water systems, technologies to minimise industrial pollution). Environmental engineers work closely with a range of other environmental professionals, and the community.

Skills may be used to:
-Design, construct and operate urban water systems.
-Develop and implement cleaner production technologies to minimise industrial pollution.
-Recycle waste materials into new products and generate energy.
-Evaluate and minimise the environmental impact of engineering projects.
-Develop and implement sound environmental management strategies and procedures.

UCL Civil, Environmental & Geomatic Engineering is an energetic and exciting environment in which to explore environmental systems engineering. Students have the advantages of studying in a multi-faculty institution with a long tradition of excellence in teaching and research, situated at the heart of one of the world's greatest cities.

Read less
We have a broad range of civil engineering water resource research. Our expertise ranges from climate modelling to developing practical responses to global change challenges. Read more
We have a broad range of civil engineering water resource research. Our expertise ranges from climate modelling to developing practical responses to global change challenges. Our research has global consequences and our academics are leaders in their field.

Our School of Civil Engineering and Geosciences has a successful research group that focuses on water resources. Our mission is to foster, promote and conduct research of international quality. This means that we attract high quality graduates and researchers and train them to international standards.

Our research themes include:
-Catchment hydrology and sustainable management
-Flood risk and coastal management
-Climate change impacts and adaptation

We supervise MPhil and PhD students in the following areas:
-Flow and transport processes in surface and subsurface systems. This includes river mechanics and contaminant and sediment transport
-Planning and control of hydraulic networks
-Sustainable management of the water environment, including urban, rural agricultural and forestry environments
-Climate change impact assessment, including flood risk
-Environmental hazard assessment and mitigation, including landslide hazard
-Integrated surface and groundwater pollution controls
-Integrated assessment of coupled natural, technological and human systems

Our research has access to facilities and centres within the Newcastle Institute for Sustainability:
-Water Resource Systems Research Laboratory
-Centre for Earth Systems Engineering Research (CESER)
-Centre for Land Use and Water Resources Research (CLUWRR)

Delivery

We offer the MPhil and PhD on a full time and part time basis. You will have formal training in research skills and methods. Discipline-specific training is available if you need it. You may be able to undertake paid laboratory demonstrating to gain teaching experience.

Read less
This Masters (MSc) and PG diploma postgraduate degree course in Structural Engineering and Practice is offered to civil engineering and mechanical engineering related graduates wishing to study structural engineering within a civil engineering context. Read more
This Masters (MSc) and PG diploma postgraduate degree course in Structural Engineering and Practice is offered to civil engineering and mechanical engineering related graduates wishing to study structural engineering within a civil engineering context. This programme offers the opportunity to widen knowledge in the area of Structural Engineering by including structural engineering practice, wind engineering, structural behaviour (both static and seismic), geotechnical engineering and industrial research topics.

This opens up a wide range of career opportunities, as many of the techniques are applicable both within and outside the civil engineering design and construction industry.

This programme provides a solid basis for a career in structural engineering. Comprising lectures, seminars, tutorials, workshops, coursework, group project work and site visits, the development of personal, interpersonal and project management skills, and provides a fundamental understanding of the social, economic, resource management and legal frameworks within which civil engineering projects take place.

About the School of Civil Engineering

Civil Engineering is the key to many of the issues affecting our lives today. Civil Engineers solve problems, design, build and maintain our living and working spaces. You might design a new stadium, work on a local by-pass or railway line, assess a damaged structure, provide immediate and safe drinking water to a refugee camp, or manage a multi-million pound construction project.
We tackle the problems faced by society today: we aim to develop the knowledge and tools to build the communities of the future. Many of our projects have already had a significant impact on society; the impact of others will be felt by generations to come.
The performance of Civil Engineering in the Research Excellence Framework (REF), the system for assessing the quality of research in UK higher education institutions, has shown that the majority of its research was rated as internationally excellent.
We work closely with industry, charities and research councils to encourage innovative thinking which has an impact on our lives. As a result we are proud of our heritage of internationally-recognised, multidisciplinary research in a stimulating research environment.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X