• Leeds Beckett University Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • University of York Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Regent’s University London Featured Masters Courses
King’s College London Featured Masters Courses
Coventry University Featured Masters Courses
University of Kent Featured Masters Courses
University of Kent Featured Masters Courses
University of Kent Featured Masters Courses
"water" AND "engineering"…×
0 miles

Masters Degrees (Water Engineering)

  • "water" AND "engineering" ×
  • clear all
Showing 1 to 15 of 351
Order by 
This programme is designed for engineering graduates wishing to enhance their capabilities in urban water design, operation and management, or engineers working in the water industry looking to enhance their knowledge and skills in this area. Read more
This programme is designed for engineering graduates wishing to enhance their capabilities in urban water design, operation and management, or engineers working in the water industry looking to enhance their knowledge and skills in this area.

It draws upon the expertise of our Centre for Water Systems, which is internationally renowned for its research into water supply and distribution systems, waste water and urban drainage systems, integrated modelling, risk and uncertainty, whole-life costing, water efficiency, catchment-based management, spatial water management, and associated areas.

The programme is highly relevant to the needs of future water engineers and will provide you with knowledge and key skills in the broad area of urban water engineering and management, equipping you to solve modern day engineering problems.

Water engineering is of significant global interest and highly trained graduates are highly sought after. Graduates can expect to take on exciting roles in consultancies, water utilities, contractors, regulatory bodies, government agencies, and international organisations following successful completion of the programme.

Programme Structure

This programme is modular and flexible and consists of nine core engineering modules.

Core modules

The core modules can include; Hydroinformatics Tools; Software Modelling; Water Supply and Distribution Management; Water Management in Developing Countries; Water and Environmental Systems; Urban Drainage and Waste Water Management; Sustainable Engineering; Environmental Processes and Water Management Dissertation

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Teaching and assessment

The programme is delivered through a mix of lectures, seminars, tutorials, industrial presentations, case studies, industry visits, computer simulations, project work and a dissertation. It has particular value in developing transferable skills development including management skills, communication skills, computational techniques, data handling and analysis, problem solving, decision making and research methodology. Many of these skills will be addressed within an industrial and commercial context.

Read less
COURSE AIMS. The MSc course in Water Engineering has a strong research and development emphasis. It aims to provide an overall knowledge base, skills and competencies, which are required in water engineering, research activities and in related fields. Read more
COURSE AIMS
The MSc course in Water Engineering has a strong research and development emphasis. It aims to provide an overall knowledge base, skills and competencies, which are required in water engineering, research activities and in related fields. Students will develop expertise in advanced product development and research.

The course draws on the wide experience of academic staff at Brunel in Mechanical Engineering that ranges from the development of equipment and experiments for use in space, to research carried out in collaboration with hospitals, biomedical companies and research institutions.

As well as giving a solid scientific understanding, the course also addresses commercial, ethical, legal and regulatory requirements, aided by extensive industrial contacts. Students who successfully complete the course will have acquired skills that are essential to the modern biomedical and healthcare industry, together with the expertise required to enter into management, product innovation, development and research.

COURSE DETAILS:

See course web link below

Read less
This programme enables you to focus on developing your technical engineering skills, as well as your management skills. Read more
This programme enables you to focus on developing your technical engineering skills, as well as your management skills

This programme is designed for engineering graduates wishing to enhance their capabilities in urban water design, operation and management, or engineers working in the water industry looking to enhance their knowledge and skills in this area.

Alongside the core engineering modules, you will also study two management modules taught by the Business School which will help you develop transferable professional management skills that will enhance your study experience and improve your career prospects.

It draws upon the expertise of our Centre for Water Systems, which is internationally renowned for its research into water supply and distribution systems, waste water and urban drainage systems, integrated modelling, risk and uncertainty, whole-life costing, water efficiency, catchment-based management, spatial water management, and associated areas.

The programme is highly relevant to the needs of future water engineers and will provide you with knowledge and key skills in the broad area of urban water engineering and management, equipping you to solve modern day engineering problems.

Water engineering is of significant global interest and highly trained graduates are highly sought after. Graduates can expect to take on exciting roles in consultancies, water utilities, contractors, regulatory bodies, government agencies, and international organisations following successful completion of the programme.

Programme Structure

This programme is modular and flexible and consists of eight core engineering modules and one option module.

Core modules

The core modules can include; Hydroinformatics Tools; Software Modelling; Water Supply and Distribution Management; Water Management in Developing Countries; Water and Environmental Systems; Urban Drainage and Waste Water Management; Management Concepts and Water Management Dissertation

Optional modules

Some examples of the optional modules are Strategic Innovation Management and Strategy

The modules listed here provide examples of what you can expect to learn on this degree course based on recent academic teaching. The precise modules available to you in future years may vary depending on staff availability and research interests, new topics of study, timetabling and student demand

Teaching and assessment

The programme is delivered through a mix of lectures, seminars, tutorials, industrial presentations, case studies, industry visits, computer simulations, project work and a dissertation. It has particular value in developing transferable skills development including management skills, communication skills, computational techniques, data handling and analysis, problem solving, decision making and research methodology. Many of these skills will be addressed within an industrial and commercial context.

Read less
In recent years, there has been a growing world-wide concern about environmental water management issues, including concerns about coastal and estuarine water pollution, river flooding and urban drainage, wetland and mangrove management, and ecological aspects of lakes and reservoirs, to mention but a few. Read more
In recent years, there has been a growing world-wide concern about environmental water management issues, including concerns about coastal and estuarine water pollution, river flooding and urban drainage, wetland and mangrove management, and ecological aspects of lakes and reservoirs, to mention but a few. In addressing these and other environmental challenges, engineers and environmental managers are using sophisticated numerical models for predicting complex hydrodynamic, water quality and sediment transport processes. These models are increasingly complemented with decision support software systems and a wide range of related hydroinformatics software tools.

The MSc in Civil and Water Engineering will offer you the knowledge and expertise that you need for a career as a consulting water engineer within this specialist professional area of civil engineering. The course aims to complement a relevant undergraduate degree by introducing you to hydroinformatics, computational hydraulics and environmental hydraulics, including water quality indicators and sediment transport processes in coastal, estuarine and inland waters.

The MSc is aimed at graduates in Civil Engineering, Earth Sciences, Environmental Sciences and Bio-Sciences. Good mathematical skills are an advantage. The degree programme is also aimed at engineers/scientists working in relevant areas wishing to upgrade or refresh their qualifications.

Read less
In the Water Engineering Department an academic staff of 15 professors and researchers is coaching small groups of international students in courses, lab… Read more
In the Water Engineering Department an academic staff of 15 professors and researchers is coaching small groups of international students in courses, lab and field experiments as well as projects concerning every part of the water cycle.The heads of all water related faculties of the TU Berlin are working together to address major challenges for the growing population in arid and semiarid regions while enhancing the cooperation with the closest disciplines Urban Development and Energy Engineering.

Besides newest analytical and field equipment, various test stands enable the students to apply their theoretically acquired knowledge hands-on. Throughout their studies in Egypt and Germany our master students get trained to become tomorrow’s problem solving managers, engineers and researchers to cope with the challenges of the rapidly increasing water scarcity.

Read less
Looking after our water resources has never been more important or more challenging. The world needs engineering graduates who can tackle the problems of flooding, pollution and infrastructure design. Read more

About the course

Looking after our water resources has never been more important or more challenging. The world needs engineering graduates who can tackle the problems of flooding, pollution and infrastructure design. Our MSc aims to meet that demand.

Powered by the world-leading research of our own specialists, the course offers training in sustainable urban development, environmental management, and the chance to carry out research of your own. This is the basic structure:

The first semester gives you a grounding in the relevant engineering science: hydrology, hydraulics, hydrogeology and modelling methods. In the second semester, you’ll apply that knowledge to a series of topics, including: urban drainage, groundwater remediation and open channel flow.

About us

We are one of the largest and most active civil engineering departments in the UK. All our masters courses are informed by our own world-leading research and industry needs. The 2014 Research Excellence Framework (REF) puts us in the UK top four.

Our structures-based courses are accredited by The Institution of Civil Engineers, Institution of Structural Engineers, Chartered Institution of Highways and Transportation, and Institute of Highway Engineers as satisfying part 2 academic base requirements for a Chartered Engineer under UK-SPEC.

Your career

Our graduates work for top UK and international consultancies, contractors, regulators, universities and other private and public sector organisations.

Many of them join engineering consultancies, in roles such as Structural Engineer, Building Services Engineer and Sustainability Consultant. Some join architecture practices. Employers include Arup, Buro Happold, Capita Symonds, Roger Preston and Partners, Cundall and Foster and Partners.

Core modules

Engineering Hydrology; Advanced Hydraulics; Hydrogeology and Research Skills;
Surface Water Quality Processes; Computational Methods for Water Engineering.

Examples of optional modules

Flood Risk Management; SuDS and Green Infrastructure; Remediation of Groundwater Pollution; Design of Water Distribution and Sewer Networks; Coastal Engineering.

Teaching and assessment

Lectures, design tutorials, computational tutorials, lab work and industrial seminars.

Read less
Engineers are the key to the development of society and solving the problems the world currently faces. They have the power to make the world fundamentally different. Read more
Engineers are the key to the development of society and solving the problems the world currently faces. They have the power to make the world fundamentally different.

The Master of Advanced Engineering is the key transitional stage in your career, transforming you into a global leader. Gain a depth of knowledge, mastering the crucial skills to become a leading contributor in your field.

Customise your degree - the Master of Advanced Engineering offers flexibility to complete your Master degree in just one year, or you can choose a two year option.

This course is designed to extend your knowledge in your chosen specialisation area and advance your leadership and complex problem-solving skills in a cross cultural environment.

Understand, reflect critically upon and apply methods in at least one specialist engineering area to design solutions to complex, multifaceted engineering problems.

Common core units will develop crucial skills in areas such as data analysis and entrepreneurship, translating theory into engineering practice. In discipline core units you will identify, interpret and critically appraise current developments and technologies within your specialisation.

Enhancement units are designed to provide breadth and are taken from either another engineering specialisation or in complementary areas such as information technology and business.

In addition, the two year version of the program offers a range of technical electives that will deepen your understanding of a specific topic, and two, year- long engineering project units. You will work closely with an academic on a topic of your choice and immerse yourself in a multidisciplinary design project.

The Master of Advanced Engineering could also be your stepping stone to a research degree. All of this in highly interactive, expert led classes.

Visit the website http://www.study.monash/courses/find-a-course/2016/advanced-engineering-e6001?domestic=true

Overview

Please select a specialisation for more details:

Chemical engineering

Your qualification will be a Master of Advanced Chemical Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Chemical Engineering allows you to engage in the areas of study including advanced reaction engineering, process design and optimization, conversion of bioresources into fuel, materials and specialty chemicals, and nanostructured membranes for sustainable separations and energy production with an emphasis on the latest developments in the field. In this course, you will develop specialised knowledge and skills that are important to Chemical Engineers in industry and research. This course provides graduates with enhanced opportunities for advancement in their careers.

Civil engineering (Infrastructure systems)

Your qualification will be a Master of Advanced Civil Engineering (Infrastructure Systems)

The Master of Advanced Civil Engineering (Infrastructure Systems) will equip graduates to work with in the area of infrastructure engineering and management. It will provide the fundamental knowledge associated with interfacing both structural and geotechnical designs for infrastructure systems. The program is designed to equip you with advanced skills necessary for managing the challenges posed by ageing and leading designs of new complex infrastructure systems. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills, as well as to develop theoretical and applied knowledge in the area of infrastructure engineering and management.

Civil engineering (Transport)

Your qualification will be a Master of Advanced Civil Engineering (Transport)

Please note that this specialisation is available only in Clayton.

The Master of Advanced Civil Engineering (Transport) program deals with the fundamental knowledge associated with transport engineering and management, traffic engineering, intelligent transport systems and transport planning. The program in is a response to the growing need for engineers with broad awareness of the characteristics and significance of transport, including its technological, economic and social impact. At the same time, the program outlines the state-of-the-art of transport engineering, as it may be applied to the solution of real problems in the planning, design, management and operation of transport facilities. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills as well as to develop theoretical and applied knowledge in the area of transport engineering and management.

Civil engineering (Water)

Your qualification will be a Master of Advanced Civil Engineering (Water)

Please note that this specialisation is available only in Clayton.

The Master of Advanced Civil Engineering (Water) allows you to major in water resources engineering and management. This program deals with the fundamental knowledge associated with surface and ground water flow, stormwater management, water quality, flood forecasting and mitigation. The program is designed to equip you with advanced skills necessary for managing the challenges posed by changing climatic condition on water resource management. The course is suitable for new graduates, professionals and managers who are keen to upgrade their existing design and management skills as well as to develop theoretical and applied knowledge in the area of water resources engineering and management.

Electrical engineering

Your qualification will be a Master of Advanced Electrical Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Electrical Engineering will give you a broad introduction to advanced techniques in signal processing, communications, digital systems and electronics. The units have been chosen around the common theme of embedded systems: special purpose computing systems designed for specific applications. They are found just about everywhere including in consumer electronics, transportation systems, medical equipment and sensor networks. The course will mix theory and practice and will contain a significant amount of hands-on learning in laboratories and team-based design projects.

Energy and sustainability engineering

Your qualification will be a Master of Advanced Engineering (Energy and Sustainability)

Please note that this specialisation is available only in Malaysia.

The Master of Advanced Engineering (Energy and Sustainability) is designed for qualified engineers keen to deepen their knowledge in the energy and sustainability area. The course provides foundations in general engineering through engineering analysis and entrepreneurship units. Students can major in this program by examining energy and sustainability area from a multi-disciplinary perspective. Students can also choose elective units such as environment and air pollution control and smart grids to further enhance their knowledge in this area or undertake a minor research work to pursue a topic of interest related to this area.

Materials engineering

Your qualification will be a Master of Advanced Materials Engineering

Please note that this specialisation is available only in Clayton.

The Master of Advanced Materials Engineering encompasses practical aspects of the key classes of materials such as metals, polymers, biomaterials, nanomaterials and energy-related materials. This program particularly focuses on the most up-to-date aspects of the field, along with the utilisation of materials and their electronic, chemical and mechanical properties as underpinned by the microstructures that are revealed by modern characterisation techniques. This program is designed to prepare students to appreciate and exploit the central role of materials in addressing the present technical, economic and environmental problems involved in the design and construction of engineering structures, processes and devices. This course is ideally suited for new graduates as well as professional engineers who are eager to advance their applied knowledge in the area of Materials Engineering.

Mechanical engineering

Your qualification will be a Master of Advanced Mechanical Engineering

Please note that this specialisation is available only in Clayton.

Most modern engineering projects are multidisciplinary in nature and require a broad range of skills, proficiencies and perspectives to accomplish the task. The Master of Advanced Mechanical Engineering takes a systems approach to the design, monitoring and performance of complex mechanical engineering systems in the fields of renewable energy, aerospace, buildings, transportation, and biomedical devices. The systems approach also permeates the design of the course: four discipline-based core units are vertically integrated so that common problems are examined from different perspectives, culminating in a sustainable systems unit.

For more information visit the faculty website - http://www.study.monash/media/links/faculty-websites/engineering

Find out how to apply here - http://www.study.monash/courses/find-a-course/2016/advanced-engineering-e6001?domestic=true#making-the-application

Read less
This Master's degree is designed for students who wish to practice across a broad range environmental engineering and apply new sustainable risk management strategies for complex environmental problems. Read more
This Master's degree is designed for students who wish to practice across a broad range environmental engineering and apply new sustainable risk management strategies for complex environmental problems. Water, Waste and Environmental Engineering has been traditionally referred to as public health engineering in the United Kingdom. In this postgraduate course, the technical aspects of both natural and engineering environmental systems will be covered. There will be broad interdisciplinary subjects synthesizing knowledge from a wide spectrum of science and engineering, expanding the content of public health engineering, which in the UK has traditionally been responsible for developing the infrastructure for managing water and waste.

Students will develop engineering skills and be able to design, develop and apply concepts for water and waste as a resource based on environmental sensitivity and be competent in planning, modelling, design, construction, operations, maintenance and control of both engineered and natural water and earth resources.

Students who select this postgraduate programme will gain a skill set that will enable them to progress in the fields of:

- Environmental engineering
- Desalination and water reuse
- Water resources engineering
- Hydraulics and hydrology
- Environmental fluid hydraulics
- Environmental remediation
- Waste management
- Other specialities valued in both the private and public sectors.

The MSc in Water, Waste and Environmental Engineering will incorporate solid waste management, contaminated land treatment and the use of geographic information systems (GIS) with emphasis on management of the earth's resources.

The programme will explain the relationship between different earth resources including hydrosystems, both 'engineered' - hydro-power plants, water/wastewater treatment plants, sewers - and 'natural' - rivers, lakes, wetlands, irrigation districts, reservoirs etc., solid wastes, brownfield land, and geo-derived primary resources and their sustainable management.

The aims of the programme are:

- To show you how to design, implement and manage sustainable, risk-reduced eco-friendly solutions for reducing the environmental impact of exploitation of earth's resources in the context of environmental engineering-related issues facing global societies

- To provide you with the skills to further your careers in these areas

- To support you in understanding the innovative and pioneering approaches in this field and to be able to apply them to the solution of real-world problems in developing novel industrially-relevant solutions.

Visit the website http://www2.gre.ac.uk/study/courses/pg/enggen/wwee

What you'll study

Full time
- Year 1:
Students are required to study the following compulsory courses.

Environmental Engineering and Sustainability (15 credits)
Hydrosystems Engineering and Management (15 credits)
Individual Research Project for Civil and Environmental Engineering (60 credits)
Information Technologies for Environmental Engineering (15 credits)
Research, Planning and Communication (15 credits)
Waste Management and Remediation Technology (15 credits)
Desalination and Water Reuse (15 credits)
Water and Sanitation for Developing Countries (15 credits)
Water and Wastewater Engineering (15 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

Environmental Engineering and Sustainability (15 credits)
Information Technologies for Environmental Engineering (15 credits)
Waste Management and Remediation Technology (15 credits)
Desalination and Water Reuse (15 credits)

-Year 2:
Students are required to study the following compulsory courses.

Hydrosystems Engineering and Management (15 credits)
Individual Research Project for Civil and Environmental Engineering (60 credits)
Research, Planning and Communication (15 credits)
Water and Sanitation for Developing Countries (15 credits)
Water and Wastewater Engineering (15 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Teaching and learning

The number of contact hours (e.g. lectures, seminars and feedback on assignments) per module/course ranges from 50-75 hours for the one year full time programme or roughly equivalent to four hours per week per module. The expected self-study time is approximately 80-90 hours per module per year (roughly equivalent to four hours per week per module).

You will be taught by academics with a range of industrial and academia experience for each module.

Assessment

Project work, assignments and laboratory exercises in addition to substantial written examination of course materials will occur in most modules. The Environmental Engineering Research Project will require submission of a substantial final report/dissertation. Assessment of this module will involve participation in a poster and seminar presentation and a final oral examination.

Professional recognition

Accreditation will be sought from the Chartered Institution of Water and Environmental Management (CIWEM) and The Joint Board of Moderators (JBM) including the Institution of Civil Engineers, The Institution of Structural Engineers, the Chartered Institution of Highways and Transportation and Institute of Highway Engineers.

Career options

Postgraduate students from this programme will find such employment opportunities as engineers, scientist and technical managers in the private sector (engineering design firms, engineering consultancy, project management, risk management and waste management), in the public sector (environmental protection engineering, regulations and standards, local government) and in non-governmental sectors (NGOs, environmental advocacy) or may wish to pursue further qualifications such as a PhD within the Faculty of Engineering and Science at the University of Greenwich to become even more specialised. Employers of environmental engineers include engineering consultancies (such as AECOM, Atkins, Mott MacDonald Group, Hyder), government agencies (such as Environment Agency, Scottish Environment Protection Agency) and NGOs (such as Oxfam, Engineers without Boarders, Water Aid).

Careers and employability

FACULTY OF ENGINEERING & SCIENCE
We work with employers to ensure our degrees provide students with the skills and knowledge they need to succeed in the world of work. They also provide a range of work experience opportunities for undergraduates in areas such as civil engineering, manufacturing and business information technology.

Students also benefit from the services provided by the university’s Guidance and Employability Team, including ‘JobShop’, mentoring, volunteering and the student ambassador scheme.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
Take advantage of one of our 100 Master’s Scholarships to study Civil Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Civil Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Swansea University has an excellent reputation for civil engineering, the department is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

Key Features of MSc in Civil Engineering

The MSc Civil Engineering course aims to provide advanced training in civil engineering analysis and design, particularly in modelling and analysis techniques.

As a student on the MSc Civil Engineering course you will be provided with in-depth knowledge and exposure to conventional and innovative ideas and techniques to enable you to develop sound solutions to civil engineering problems.

Through the MSc Civil Engineering course, you will also be provided with practical computer experience through the use of computational techniques, using modern software, to provide a solution to a range of current practical civil engineering applications. This will enable you to apply the approach with confidence in an industrial context.

Civil Engineering at Swansea University is recognised as one of the top 200 departments in the world (QS World Subject Rankings).

As a student on the Master's course in Civil Engineering, you will find the course utilises the expertise of academic staff to provide high-quality postgraduate training.

Modules

Modules on the MSc Civil Engineering course typically include:

Water and Wastewater Infrastructure
Finite Element Computational Analysis
Advanced Structural Design
Fluid-Structure Interaction
Entrepreneurship for Engineers
Computational Plasticity
Numerical Methods for Partial Differential Equations
Computational Case Study
Reservoir Modelling and Simulation
Dynamics and Transient Analysis
Coastal Engineering
Coastal Processes and Engineering
Flood Risk Management

Accreditation

The MSc Civil Engineering course at Swansea University is accredited by the Joint Board of Moderators (JBM).

The Joint Board of Moderators (JBM) is composed of the Institution of Civil Engineers (ICE), the Institution of Structural Engineers (IStructE), the Chartered Institution of Highways and Transportation (CIHT), and the Institute of Highway Engineers (IHE).

This degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

See http://www.jbm.org.uk for further information.

This degree has been accredited by the JBM under licence from the UK regulator, the Engineering Council.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Hardware includes a 450 cpu Cluster, high-end graphics workstations and high-speed network links. Extensive software packages include both in-house developed and 'off-the-shelf' commercial.

Links with Industry

Strong interaction and cooperation is forged with the construction industry and relevant member institutions of the Joint Board of Moderators (JBM), particularly the Institution of Civil Engineers (ICE) and the Institution of Structural Engineers (IStructE).

These companies actively engaged with Civil Engineering at Swansea University: Atkins, Arup, Balfour Beatty Civil Engineering Ltd, Black and Veatch Ltd, City and Council of Swansea, Dean and Dyball, Halcrow UK, Hyder (Cardiff), Interserve Ltd, the Institution of Civil Engineers (ICE), Laing O’Rourke, Mott MacDonald Group Ltd, Veryard Opus.

Career Prospects

The civil engineering sector is one of the largest employers in the UK and demand is strong for civil engineering graduates. Thie MSc Civil Engineering course also equips you with the skills to be involved in other engineering projects and provides an excellent basis for a professional career in structural, municipal and allied engineering fields.

The MSc Civil Engineering is suitable for those who would like to prepare for an active and responsible career in civil engineering design and construction. Practising engineers will have the chance to improve their understanding of civil engineering by attending individual course modules.

Student Quotes

“I decided to study at the College of Engineering as it is a highly reputable engineering department.

My favourite memories of the course are the practical aspects and the lab work. Group projects have given me the opportunity to work in a team to overcome engineering-based problems. Studying at the College of Engineering has given me a good knowledge of engineering principles and has helped me to apply this to real life problems.

As part of my time here, I took part in the IAESTE programme. I worked with the Department of Civil Engineering at the University of Manipal, Southern India, on a development project involving an irrigation system.

My future plan is to get some experience in an engineering firm, and hopefully, this experience will allow me to work abroad for an NGO on further development projects."

Thomas Dunn, MSc Civil Engineering

Read less
Take advantage of one of our 100 Master’s Scholarships to study Chemical Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Chemical Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Key Features of MSc in Chemical Engineering

The MSc Chemical Engineering course is built upon the wide range of research in chemical engineering at Swansea University. This includes engineering applications of nanotechnology, bioengineering, biomedical engineering, cell and tissue engineering, chemical engineering, colloid science and engineering, desalination, pharmaceutical engineering, polymer engineering, rheology, separation processes, transport processes, and water and wastewater engineering.

The MSc Chemical Engineering research project provides an opportunity to work with a member of academic staff in one of the above, or related, area of research. The project may also involve collaboration with industry.

The taught component of the MSc Chemical Engineering course covers specific areas of advanced chemical engineering as well as the complex regulations that are found in the engineering workplace. It also provides an opportunity for the development of personal and transferable skills such as project planning, communication skills, and entrepreneurship.

As a student on the Master's course in Chemical Engineering, you will advance your technical knowledge, which can lead to further research or a career in chemical engineering.

Modules

Modules on the MSc Chemical Engineering course typically include:

Complex Fluids and Rheology
Entrepreneurship for Engineers
Colloid and Interface Science
Communication Skills for Research Engineers
Water and Wastewater Engineering
Membrane Technology
Environmental Analysis and Legislation
Optimisation
Desalination
Polymers: Properties and Design
Principles of Nanomedicine
Nanoscale Structures and Devices
Pollutant Transport by Groundwater Flows
MSc Research Practice
MSc Dissertation - Chemical Engineering

Accreditation

The MSc Chemical Engineering at Swansea University is accredited by the Institution of Chemical Engineers (IChemE).

The MSc Chemical Engineering degree is accredited as meeting the requirements for Further Learning for a Chartered Engineer (CEng) for candidates who have already acquired an Accredited CEng (Partial) BEng(Hons) or an Accredited IEng (Full) BEng/BSc (Hons) undergraduate first degree.

Accreditation is a mark of assurance that the degree meets the standards set by the Engineering Council in the UK Standard for Professional Engineering Competence (UK-SPEC). An accredited degree will provide you with some or all of the underpinning knowledge, understanding and skills for eventual registration as an Incorporated (IEng) or Chartered Engineer (CEng). Some employers recruit preferentially from accredited degrees, and an accredited degree is likely to be recognised by other countries that are signatories to international accords.

Links with Industry

One of the major strengths of Chemical Engineering at Swansea University is the close and extensive involvement with local, national and international engineering companies. The companies include:

Acordis
Astra Zeneca
Avecia
BP Chemicals
Bulmers
Dow Corning
GlaxoSmithKline
Nestle
Murco
Phillips 66
Unilever
Valero

Swansea staff have research links with local, national, and international companies. An industrial advisory board, consisting of eight industrialists from a range of chemical engineering backgrounds, ensure our courses maintain their industrial relevance.

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Careers

The demand for Chemical Engineering graduates remains excellent with the highest starting salaries out of all engineering disciplines.

Chemical engineers find employment in a variety of public and private sector industries, applying the principles of chemical engineering to health, energy, food, the environment, medicine, petrochemicals and pharmaceuticals.

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

The REF assesses the quality of research in the UK Higher Education sector, assuring us of the standards we strive for.

World-Leading Research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Read less
The Water Technology programme is a two year programme with a joint degree. The programme is offered jointly by Wageningen University, University Twente and University of Groningen with education being provided at the Technological Top Institute for Water technology (TTIW Wetsus), in Leeuwarden. Read more

MSc Water Technology

The Water Technology programme is a two year programme with a joint degree. The programme is offered jointly by Wageningen University, University Twente and University of Groningen with education being provided at the Technological Top Institute for Water technology (TTIW Wetsus), in Leeuwarden

Programme summary

There are a lot of new and existing global problems related to the availability and quality of water for personal, agricultural and industrial use. And these problems require sustainable solutions with a minimal impact on the environment. Water technology has unfortunately not been a focal point of most academic research and education programmes, despite its enormous importance to society. Instead, the expertise of various research groups is usually concentrated on other processes and in some cases, only later dedicated to water treatment in spin-off projects. New technologies will be necessary to develop new concepts for the treatment of waste water. And also for the production of clean water from alternative sources like salt (sea) water, waste water or humid air in order to minimise the use of precious groundwater. These challenges require academically trained experts who can think out-of-the-box and help to find practical solutions in the near future. A dedicated joint Master Water Technology programme has been created to train and educate these experts.

The MSc Water Technology is situated in Leeuwarden, the capital of water technology, and is offered jointly by three Dutch universities: Wageningen University, the University of Twente and the University of Groningen. A combined technological approach, based on state-of-the-art universities in science and technology, will search for solutions to several developments within business and society; with a worldwide impact on the demand for and use of water. One dedicated Master programme with joint degree allows for flexibility and can be adapted to the changing needs of the labour market. Wageningen University offers a strong focus on environmental sciences, the University of Twente on science and technology, and the University of Groningen on fundamental sciences. Students will be educated in the multidisciplinary laboratory of the technological top institute for water technology called Wetsus.

The MSc Water Technology programme specifically targets students interested in beta science and technology. The programme offers a unique combination of scientific insights and technological applications from the field of Biotechnology and Chemical Engineering. This combined approach for problem solving within the global framework of water problems is an asset to the programme. The programme is a valuable addition for postgraduate students with a completed bachelor degree in Environmental Engineering, Chemical Engineering and Biotechnology; or in related fields with a strong knowledge of mathematics, physics, chemistry and/or biology, and with affinity of water processes. Students are challenged with examples and case studies of real (research) problems that they might encounter as water professionals.

Students apply for the MSc Water Technology programme at Wageningen University, but will be registered at the other two universities as well. They will have access to the facilities of all three universities. Upon the successful completion of the programme, students receive one joint degree MSc Water Technology issued by all participating universities.

Specialisations

There are no official specialisations within the programme Water Technology. Students specialise themselves by doing a thesis within one of the research fields. Some examples are: Priority compounds, Virus Control, Applied water physics, Desalination, Concentrates, Biofouling, Aquatic worms, Advanced waste water treatment, Algae, Separation at source, Resource recovery, Membrane processes and operation for wastewater treatment and reuse and Sensoring.

Your future career

This study domain is becoming more and more relevant due to the urgent need for new technologies to meet global water problems. Water technology for public drinking water production and sewage water treatment is a very large market. Furthermore, the largest use of fresh water is for irrigation purposes. The industrial water supply and industrial waste water treatment also represent a significant market. There is no question that businesses involved in water technology will grow tremendously. Besides this, human capital is a basic condition to guarantee the success and continuity of the development of sustainable technologies. In many EU countries, the lack of talented technological professionals is becoming an increasingly limiting factor. The programme prepares students for a professional position in the broad area of water technology. Graduates have good national and international career prospects in business and research.

Student Stefanie Stubbé.
"Wetsus gave me the opportunity to get personalized education: teachers that take the time for you and fellow students that challenge and collaborate with you at the same time. Water technology is going to be huge in the future; I already experienced that at several companies when I searched for an internship. Although it is sometimes hard work and far away from the "city-life" in the Netherlands; I've never regretted my choice to start this Master!"

Related programmes:
MSc Biotechnology
MSc Environmental Sciences

Read less
Take advantage of one of our 100 Master’s Scholarships to study Chemical Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Chemical Engineering at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

From authoring definitive text books on chemical engineering to finding solutions to the world's water shortages, Swansea University has a proud tradition of delivering pioneering innovative process engineering solutions. As we have a wide range of research in chemical engineering, Swansea University provides an excellent base for your research as an MSc by Research student in Chemical Engineering.

Key Features of MSc by Research in Chemical Engineering

There is a wide range of research in chemical engineering at Swansea University. This includes:

Membrane separation
Biochemical engineering
Biomanufacturing
Engineering applications of nanotechnology
Bioengineering, biomedical engineering
Cell and tissue engineering
Colloid science and engineering
Desalination
Pharmaceutical engineering
Polymer engineering
Rheology
Separation processes
Transport processes
Water and wastewater engineering

The MSc by Research in Chemical Engineering at Swansea University provides an opportunity to work with a member of academic staff in one of the above, or related, area of research.

The MSc by Research in Chemical Engineering typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Links with industry

One of the major strengths of Chemical Engineering at Swansea University is the close and extensive involvement with local, national and international engineering companies. The companies include:

Acordis
Astra Zeneca
Avecia
BP Chemicals
Bulmers
Dow Corning
GlaxoSmithKline
Nestle
Murco
Phillips 66
Unilever
Valero

Facilities

Our new home at the innovative Bay Campus provides some of the best university facilities in the UK, in an outstanding location.

Swansea University has resources specific to Chemical Engineering.

Research

Research in Chemical Engineering at Swansea is located within the Systems and Process Engineering Research Centre which has a number of focused research groups including the Centre for Water Advanced Technologies and Environmental Research (CWATER), the Centre for Complex Fluids Processing and the Multidisciplinary Nanotechnology Centre.

The Centre for Water Advanced Technologies and Environmental Research (CWATER) is an internationally leading centre of excellence for the development of advanced technologies in water treatment. The Centre benefits from world-leading expertise in the areas of desalination and membrane technologies for water treatment.

The Centre for Complex Fluids Processing is internationally recognised for its leading and innovative research on the processing of complex fluids which is a major feature of modern industry. Such fluids are extremely diverse in origin and composition - ranging, for example, from fermentation broths and food products to inks and mineral slurries. However, underlying this diversity are certain properties that must be understood if the processing is to be effective and efficient. These include flow behaviour in process equipment, how the components of the fluid determine its overall properties and how individual components may be selectively separated.

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

Read less
The Master of Engineering Studies in Geotechnical Engineering programme aims to further educate graduate students in the discipline of geotechnical engineering so as to enhance their contribution to engineering practice. Read more

Invest in your future

The Master of Engineering Studies in Geotechnical Engineering programme aims to further educate graduate students in the discipline of geotechnical engineering so as to enhance their contribution to engineering practice.

Graduates will be able to take leading roles in planning, evaluating, designing, constructing, maintaining, and managing the geotechnical infrastructure.

The programme alsos provide valuable background expertise for those wishing to enter into asset management or to begin to pursue a career in research and development.

The Master of Engineering Studies in Geotechnical Engineering programme aims to build on the geotechnical content of the BE (Civil) degree and develop graduates with enhanced ability to contribute to geotechnical engineering practice.

New Zealand is a stimulating country in which to practise geotechnical engineering with its young and varied geology, seismic activity and diverse rainfall patterns. Many unique problems occur here as a result and these present challenges for innovative and novel solutions.

The programme has been designed with courses relevant to the New Zealand geotechnical environment, to fill the needs of the country.

There is a large demand for geotechnical engineers in the local workplace, as well as a worldwide shortage of geotechnical professionals.

Programme Structure

Taught (120 points)
The Geotechnical Engineering specialisation is offered as a taught masters (eight courses).

Electives

Elective enrolments may depend on your prior study and professional experience, but ultimately, choosing the appropriate courses and topics can allow you to concentrate on and develop strengths in your energy field of choice.

Our broad list of electives include courses in:
• Design of Earthquake Resistant Foundations
• Earthquake Engineering
• Rock Mechanics and Excavation Engineering
• Soil Behaviour
• Geotechnical Earthquake Engineering
• Engineering Geological Mapping
• Geological Hazards
• Advanced Engineering Geology
• Hydrogeology
• Studies in Civil Engineering
• Foundation Engineering
• Slope Engineering
• Engineering Geology
• Ground Improvements and Geosynthetics Engineering
• Geotechnical Modelling
• Advanced Mathematical Modelling
• Surface Water Quality Modelling
• Risk, LCA and Sustainability

Next generation research at the Faculty of Engineering

The Faculty of Engineering is dedicated to providing you with all the facilities, flexibility and support needed for you to develop the skills needed for the workforce. We boast research themes and programmes that provoke interdisciplinary projects, bringing together expertise from our five departments, other faculties, and industry partners and research organisations. Collaborative study is strongly encouraged – postgraduates in particular have the benefit of experiencing cohorts with diverse academic and industry backgrounds.

You will gain access to world-renowned experts who actively demonstrate the positive impacts research have on society. High-performance equipment and labs beyond industry standards are at your fingertips. Our facilities extend beyond study hours – we take pride in our involvement in student events and associations across the University, and are dedicated to providing you with academic, personal and career advice. We encourage you to take advantage of our resources, and use them to expand the possibilities of your research and career path.

Read less
Take advantage of one of our 100 Master’s Scholarships to study Desalination and Water Re-use at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Read more
Take advantage of one of our 100 Master’s Scholarships to study Desalination and Water Re-use at Swansea University, the Times Good University Guide’s Welsh University of the Year 2017. Postgraduate loans are also available to English and Welsh domiciled students. For more information on fees and funding please visit our website.

Swansea University is a world-leader in the area of desalination for water treatment.

Key Features of Desalination and Water Re-use Programme

Pressure is increasing on our limited water resources. With more people requiring clean water, effective solutions need to come from reusing water in the most efficient way.

The Centre for Water Advanced Technologies and Environmental Research (CWATER) is an internationally leading centre of excellence for the development of advanced technologies in water treatment.

The Centre benefits from world-leading expertise in the area of desalination for water treatment.

The Centre for Water Advanced Technologies and Environmental Research (CWATER) research areas, broadly speaking, fit into one of three categories:

- Drinking water treatment: improved methods of portable water treatment, with a view to meeting tightening regulations at cheaper capital and operating costs.
- Waste-water treatment: technologies for the efficient removal of environmentally harmful materials and thus reduced emissions per output of discharge.
- Process-water treatment: methods for the treatment of process streams enabling the recycling of water and valuable chemical intermediates.

The MSc by Research Desalination and Water Re-use has a wide range of subject choices including:

- Modelling membrane processes
- Membrane and process characterisation
- Hazardous substances
- Ozonation and Advanced Oxidation Processes (AOPs)
- Pilot scale studies

MSc by Research in Desalination and Water Re-us typically lasts one year full-time, two to three years part-time. This is an individual research project written up in a thesis of 30,000 words.

Facilities

The new home of the Desalination and Water Re-use programme is at the innovative Bay Campus which provides some of the best university facilities in the UK, in an outstanding location.

The Desalination and Water Re-use programme also benefits from the facilities at the Centre for Water Advanced Technologies and Environmental Research (CWATER) at Swansea University.

Links with industry

One of the major strengths of Desalination and Water Re-use at Swansea University is the close and extensive involvement with local, national and international engineering companies. The Desalination and Water Re-use programme has links with the following companies:

Acordis
Astra Zeneca
Avecia
BP Chemicals
Bulmers
Dow Corning
GlaxoSmithKline
Nestle
Murco
Phillips 66
Unilever
Valero

Research

The Research Excellence Framework (REF) 2014 ranks Engineering at Swansea as 10th in the UK for the combined score in research quality across the Engineering disciplines.

World-leading research

The REF shows that 94% of research produced by our academic staff is of World-Leading (4*) or Internationally Excellent (3*) quality. This has increased from 73% in the 2008 RAE.

Research pioneered at the College of Engineering harnesses the expertise of academic staff within the department. This ground-breaking multidisciplinary research informs our world-class teaching with several of our staff leaders in their fields.

Highlights of the Engineering results according to the General Engineering Unit of Assessment:

Research Environment at Swansea ranked 2nd in the UK
Research Impact ranked 10th in the UK
Research Power (3*/4* Equivalent staff) ranked 10th in the UK

Read less
Solving global water problems requires a multidisciplinary approach of knowledge and skills. That is why the Wetsus Insitute and three Dutch universities offer a joint degree in Water Technology. Read more
Solving global water problems requires a multidisciplinary approach of knowledge and skills. That is why the Wetsus Insitute and three Dutch universities offer a joint degree in Water Technology.

The master Water Technology is a two year programme offered jointly by Wageningen University, University Twente and University of Groningen with all education being provided at the Technological Top Institute for Water technology (TTIW Wetsus), in Leeuwarden.

In the field of water technology, breakthrough technological developments are required. Not only to enable the export ambitions of the water sector but also to solve global threats and challenges in society.

The main added value of the course lies in the multidisciplinary study of biotechnology and separation technology. Such a combined technological approach may offer a solution to global developments, within business and society, and have a worldwide impact on the demand for and use of water.

This program will qualify you as the expert who is able to participate in resolving world-wide water issues. It enables students to complement their Bachelor of Sciences diploma with scientific knowledge and capabilities that they need for a successful career in the dynamic international setting of business and research.

Why in Groningen?

- a multidisciplinary research program: cooperation with three Dutch universities and a Technological Top Insitute
- Water Technology is an area of expertise in which the Netherlands has gained an international reputation
- Commercial parties are involved in Wetsus and help to define and guide the research program

Job perspectives

The study domain is becoming more and more relevant due to the urgent need for new technologies to meet the global water problems. Water technology for public drinking water production and sewer water treatment is a very large market. Further, the largest use of fresh water is for irrigation purposes.

The industrial water supply and industrial waste water treatment also represent a significant market. There is no question that business involved in water technology will grow tremendously. Besides this human capital is a basic condition to guarantee the success and continuity of the development of sustainable technologies and a European know-how economy in water technology. In many EU countries the lack of talented technological professionals is becoming an increasingly limiting factor. The program prepares students for a professional position in the broad area of water technology. Graduates have good national and international career prospects in business and research.

Job examples

- Consultant or manager at a development project
- Designer of purification processes
- R&D department of companies, e.g. Arcadis or Philips
- PhD, starting a scientific career

Collaboration, Integration, and Top Level Research

As a student Water Technology you will be in the center of the multidisciplinary laboratory of Wetsus, in which 80% of the research will be carried out. Wetsus is situated in Leeuwarden, the Netherlands. By inviting all the researchers to one location, maximal cooperation and creativity is generated. The researchers are seconded by the participating EU-universities at Wetsus, but the universities carry scientific responsibility of the projects.

In this way, an enormous intellectual and creative power will be focused on water technology and at the same time knowledge capacity will be build up by all the participating universities.

The Netherlands is Europe's leading country in water process technology. The Dutch government focuses in her innovation policy on water and has appointed Leeuwarden as the focal point for water technology development. This results in a supportive government policy in the form of enabling subsidies for water research and innovation. Around the Wetsus research and education facilities, a high-tech water campus is realised to concentrate know how, entrepreneurship, talent and venture capital. This attracts starting companies as well as research centers of large companies.

Wetsus is part of the Dutch Innovation Program on Water Technology. The innovation program aims for the development of sustainable water treatment technology with a strong focus on export. Wetsus, operating as as Technological Top Institute, takes care of the pre-competitive technology development within this program. Wetsus focuses on the research and development of entirely new concepts and on breakthrough improvements of existing technology.

In both cases, an entirely new approach has been chosen whereby the basic principle is always the integration of various knowledge disciplines. In addition to collaboration between industry and universities, there is also unique scientific collaboration within Wetsus. Many scientific chairs cooperate in the program. Leading researchers from various universities and other research institutes can physically work side-by-side in the Wetsus laboratory. This unique collaboration brings synergy and new creativity to the search for new sustainable water treatment technology.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X