• Xi’an Jiaotong-Liverpool University Featured Masters Courses
  • Swansea University Featured Masters Courses
  • University of Edinburgh Featured Masters Courses
  • Imperial College London Featured Masters Courses
  • Regent’s University London Featured Masters Courses
  • Leeds Beckett University Featured Masters Courses
  • University of York Featured Masters Courses
London Metropolitan University Featured Masters Courses
University of Southampton Featured Masters Courses
University of Leeds Featured Masters Courses
Coventry University Featured Masters Courses
Coventry University Featured Masters Courses
"waste"×
0 miles

Masters Degrees (Waste)

  • "waste" ×
  • clear all
Showing 1 to 15 of 259
Order by 
The course provides a critical approach to theories, techniques and methods in sustainable waste management. It is designed for practising waste management professionals who want to enhance their knowledge and understanding and for students intending to embark on a career in the industry. Read more
The course provides a critical approach to theories, techniques and methods in sustainable waste management. It is designed for practising waste management professionals who want to enhance their knowledge and understanding and for students intending to embark on a career in the industry. Subjects covered include: environmental management systems, policy regulation and leadership, waste as a resource, practical aspects of waste management and advanced waste treatment technologies.

INDUSTRY LINKS

The course is fully accredited by the CIWM (Chartered Institution of Wastes Management) which is the major body dealing with waste management issues in the United Kingdom.

LEARNING ENVIRONMENT AND ASSESSMENT

Teaching will be through lectures, case studies, seminars and site visits, supported by materials developed by external experts. The Dissertation allows for a student-centred study, developing a high level of research skills appropriate to their strengths. Various methods will enhance students' thinking skills, including case studies allowing application of knowledge to real-life scenarios.

A combination of coursework and on-line exercises. The coursework types include technical reports, case studies essays, presentations, group work, on-line forum activity and academic posters.

FURTHER INFORMATION

MSc Waste and Resource Management provides a critical approach to theories, techniques and methods in sustainable waste management and provides students with a learning environment in which they will develop their capacity for independent study, their ability to collaborate with others in team settings, and their capacity for critical thought and reflection. The broad areas covered include: environmental management systems, policy regulation and leadership, waste as a resource, practical aspects of waste management and advanced waste treatment technologies.

Read less
Developed in consultation with waste industry and environmental management professional bodies, this course represents current and future requirements of these organisations. Read more
Developed in consultation with waste industry and environmental management professional bodies, this course represents current and future requirements of these organisations. It provides management skills needed in the industry, which continues to develop as a major area of economic importance.

It is designed for professionals requiring current knowledge of sustainable waste management and those seeking a career in the industry. The underlying ethos is that sustainable waste management requires scientific and managerial expertise as it changes focus from the safe, least-cost disposal of unwanted materials to their best use as a resource, and their optimal management in the long term.

MSc Waste and Resource Management provides a critical approach to theories, techniques and methods in sustainable waste management and provides students with a learning environment in which they will develop their capacity for independent study, their ability to collaborate with others in team settings, and their capacity for critical thought and reflection. The broad areas covered include: environmental management systems, policy regulation and leadership, waste as a resource, practical aspects of waste management and advanced waste treatment technologies.

The course is currently accredited by the Chartered Institution of Wastes Management (CIWM).

A combination of coursework and examinations. The coursework types include technical reports, case studies essays and student-centred work. Examinations will be held on campus.

Teaching will be through lectures, case studies, seminars and site visits, supported by materials developed by external experts. The Dissertation allows for a student-centred study, developing a high level of research skills appropriate to their strengths. Various methods will enhance students' thinking skills, including case studies allowing application of knowledge to real-life scenarios.

Careers are developed throughout waste/environmental management industries. Recent employers include consultancy firms, local government, NGOs, landfill site operators and the Environment Agency. This strong employment record underlines the School’s philosophy in delivering programmes of a high quality.

As part of this course there is the opprtunity to study waste mangement as part of an overseas field trip. Destinations have included Kenya, Poland, Canada and Oman.

Read less
This Master's degree is designed for students who wish to practice across a broad range environmental engineering and apply new sustainable risk management strategies for complex environmental problems. Read more
This Master's degree is designed for students who wish to practice across a broad range environmental engineering and apply new sustainable risk management strategies for complex environmental problems. Water, Waste and Environmental Engineering has been traditionally referred to as public health engineering in the United Kingdom. In this postgraduate course, the technical aspects of both natural and engineering environmental systems will be covered. There will be broad interdisciplinary subjects synthesizing knowledge from a wide spectrum of science and engineering, expanding the content of public health engineering, which in the UK has traditionally been responsible for developing the infrastructure for managing water and waste.

Students will develop engineering skills and be able to design, develop and apply concepts for water and waste as a resource based on environmental sensitivity and be competent in planning, modelling, design, construction, operations, maintenance and control of both engineered and natural water and earth resources.

Students who select this postgraduate programme will gain a skill set that will enable them to progress in the fields of:

- Environmental engineering
- Desalination and water reuse
- Water resources engineering
- Hydraulics and hydrology
- Environmental fluid hydraulics
- Environmental remediation
- Waste management
- Other specialities valued in both the private and public sectors.

The MSc in Water, Waste and Environmental Engineering will incorporate solid waste management, contaminated land treatment and the use of geographic information systems (GIS) with emphasis on management of the earth's resources.

The programme will explain the relationship between different earth resources including hydrosystems, both 'engineered' - hydro-power plants, water/wastewater treatment plants, sewers - and 'natural' - rivers, lakes, wetlands, irrigation districts, reservoirs etc., solid wastes, brownfield land, and geo-derived primary resources and their sustainable management.

The aims of the programme are:

- To show you how to design, implement and manage sustainable, risk-reduced eco-friendly solutions for reducing the environmental impact of exploitation of earth's resources in the context of environmental engineering-related issues facing global societies

- To provide you with the skills to further your careers in these areas

- To support you in understanding the innovative and pioneering approaches in this field and to be able to apply them to the solution of real-world problems in developing novel industrially-relevant solutions.

Visit the website http://www2.gre.ac.uk/study/courses/pg/enggen/wwee

What you'll study

Full time
- Year 1:
Students are required to study the following compulsory courses.

Environmental Engineering and Sustainability (15 credits)
Hydrosystems Engineering and Management (15 credits)
Individual Research Project for Civil and Environmental Engineering (60 credits)
Information Technologies for Environmental Engineering (15 credits)
Research, Planning and Communication (15 credits)
Waste Management and Remediation Technology (15 credits)
Desalination and Water Reuse (15 credits)
Water and Sanitation for Developing Countries (15 credits)
Water and Wastewater Engineering (15 credits)

Part time
- Year 1:
Students are required to study the following compulsory courses.

Environmental Engineering and Sustainability (15 credits)
Information Technologies for Environmental Engineering (15 credits)
Waste Management and Remediation Technology (15 credits)
Desalination and Water Reuse (15 credits)

-Year 2:
Students are required to study the following compulsory courses.

Hydrosystems Engineering and Management (15 credits)
Individual Research Project for Civil and Environmental Engineering (60 credits)
Research, Planning and Communication (15 credits)
Water and Sanitation for Developing Countries (15 credits)
Water and Wastewater Engineering (15 credits)

Fees and finance

Your time at university should be enjoyable and rewarding, and it is important that it is not spoilt by unnecessary financial worries. We recommend that you spend time planning your finances, both before coming to university and while you are here. We can offer advice on living costs and budgeting, as well as on awards, allowances and loans.

Teaching and learning

The number of contact hours (e.g. lectures, seminars and feedback on assignments) per module/course ranges from 50-75 hours for the one year full time programme or roughly equivalent to four hours per week per module. The expected self-study time is approximately 80-90 hours per module per year (roughly equivalent to four hours per week per module).

You will be taught by academics with a range of industrial and academia experience for each module.

Assessment

Project work, assignments and laboratory exercises in addition to substantial written examination of course materials will occur in most modules. The Environmental Engineering Research Project will require submission of a substantial final report/dissertation. Assessment of this module will involve participation in a poster and seminar presentation and a final oral examination.

Professional recognition

Accreditation will be sought from the Chartered Institution of Water and Environmental Management (CIWEM) and The Joint Board of Moderators (JBM) including the Institution of Civil Engineers, The Institution of Structural Engineers, the Chartered Institution of Highways and Transportation and Institute of Highway Engineers.

Career options

Postgraduate students from this programme will find such employment opportunities as engineers, scientist and technical managers in the private sector (engineering design firms, engineering consultancy, project management, risk management and waste management), in the public sector (environmental protection engineering, regulations and standards, local government) and in non-governmental sectors (NGOs, environmental advocacy) or may wish to pursue further qualifications such as a PhD within the Faculty of Engineering and Science at the University of Greenwich to become even more specialised. Employers of environmental engineers include engineering consultancies (such as AECOM, Atkins, Mott MacDonald Group, Hyder), government agencies (such as Environment Agency, Scottish Environment Protection Agency) and NGOs (such as Oxfam, Engineers without Boarders, Water Aid).

Careers and employability

FACULTY OF ENGINEERING & SCIENCE
We work with employers to ensure our degrees provide students with the skills and knowledge they need to succeed in the world of work. They also provide a range of work experience opportunities for undergraduates in areas such as civil engineering, manufacturing and business information technology.

Students also benefit from the services provided by the university’s Guidance and Employability Team, including ‘JobShop’, mentoring, volunteering and the student ambassador scheme.

Find out how to apply here - http://www2.gre.ac.uk/study/apply

Read less
This programme is ideal for engineers and scientists who want to improve the delivery of water and sanitation services in low- and middle-income countries. Read more
This programme is ideal for engineers and scientists who want to improve the delivery of water and sanitation services in low- and middle-income countries. You will develop knowledge, expertise and skills in many aspects of inclusive and sustainable public health infrastructure and services.

The programme is based in the School of Civil and Building Engineering’s Water, Engineering and Development Centre (WEDC), one of the world’s leading education and research institutes of its kind.

Modules are taught by experts in a broad range of disciplines who have considerable experience of working in low- and middle- income countries. Classes include a mix of nationalities and past experiences, providing both a stimulating learning experience and a valuable future network.

Externally accredited, WEDC programmes are well-established, and held in high regard by practitioners and employers from both the emergency and development sectors.

Key Facts

- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.

- An outstanding place to study. The School of Civil and Building Engineering is ranked in the UK top 10 in the Guardian Good University Guide

- Excellent graduate prospects. Many of our graduates are employed by relief and development agencies.

- Professionally accredited. The Chartered Institution of Water and Environmental Management (CIWEM) have accredited this programme. Students registered for this programme are eligible for free student membership of CIWEM. The Joint Board of Moderators (JBM) has also accredited all WEDC MSc degrees as meeting requirements for Further Learning.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-waste/

Programme modules

Core modules:
- Water and Waste Engineering Principles
The aims of this module are for the student to understand the range of suitable technologies for water supply and engineering management of liquid and solid wastes in low- and middle-income countries.

- Management of Water and Sanitation
The aim of this module is to introduce the principles, concepts and key issues of managing sustainable water and environmental sanitation services for low-income consumers in developing countries.

- Water Utilities Management
The aim of this module is to better enable participants to plan for and manage urban water and sanitation services in developing countries.

- Data Collection, Analysis and Research
The aims of this module are to introduce the principles and approaches for doing research and studies on infrastructure and services in low- and middle-income countries and to prepare students to undertake the research dissertation module.

- Group Project
The aims of this module are for the student to work within a group to understand the necessary inter-relationships between different components of their programme of study; to consolidate and integrate material contained in earlier taught modules; and to learn how to work as part of a team.

- Research Dissertation
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to their degree.

Optional Modules (choose 3):
- Water Source Development
The aim of this module is for the student to understand the occurrence, location, exploration, exploitation and pollution of groundwater and surface water sources.

- Wastewater Treatment
The aims of this module are for the student to understand the various stages, and unit operation and process options, for treatment of wastewaters, particularly in low- and middle-income countries; and to understand the principles for planning and design of wastewater treatment facilities, particularly in low- and middle-income countries.

- Integrated Water Resources Management
The aim of this module is for participants to understand the concepts used in integrated planning and management of water resources in low and middle-income countries.

- Solid Waste Management
The aim of this module is to introduce participants with available and possible options in solid waste management for low and middle income countries. To make participants familiar with the key issues for low income countries.

- Water Distribution and Drainage Systems
The aim of this module is for the student to understand the most important aspects of how to design, construct and maintain piped water distribution, drainage and sewerage systems.

- Short Project
The aim of this module is for participants to be able to undertake extended study of a subject of their own choosing which is related to their Postgraduate Programme to enable them to conduct an independent review and analysis to understand state of art issues or a topic.

Facilities

All masters students have access to our excellent laboratory facilities which include equipment for field sampling and analysis of water and wastewater, and some of the largest hydraulics equipment in the UK. There are three dedicated water laboratory staff available to help you use our equipment who are specialists in pollutant analysis, hydraulics and running continuous trials.

Practical training includes:
- Hand-pump maintenance using the largest single site collection of hand-pumps;
- latrine slab construction;
- flow measurements; and
- water quality sampling and analysis.

Field visits are made to relevant UK facilities.

WEDC has a unique sector Resource Centre with a dedicated and skilled information officer. Over 19,000 items can be searched on a customized database allowing ready access to this collection of books, series, country files, student projects, videos, journals, maps, and manufacturers' catalogues.

The Resource Centre also provides a dedicated quiet study space for WEDC students. Many items including all WEDC publications and over 2500 papers presented at 37 WEDC International Conferences are available in the open access sector knowledge base.

How you will learn

The programme comprises both compulsory core modules and optional modules which may be selected. A group case study module draws together material from across the programme and develops team working skills. The individual research project and dissertation (frequently linked to specific needs of an agency) of between 75 and 150 pages in length concludes the programme. To support your learning you will have access to our comprehensive facilities including laboratories, hand-pumps, and a dedicated Resource Centre.

- Assessment
For most modules, students are assessed by one item of coursework (two items for foundation modules) and an in-class test. The Group Project module is assessed on the basis of written documents and spoken presentations, including an individual component for the module mark. The individual Research Dissertation is assessed on the basis of a written dissertation, and this module includes an oral when a student discusses their submitted dissertation with their supervisor and a second member of academic staff.

Careers and further study

Many WEDC students and alumni work for international NGOs (MSF, Oxfam, SCF, GOAL, WaterAid, etc.) and agencies (such as UNICEF), or National Governments. Graduate job titles include Sanitation Technical Manager, Water and Sanitation Consultant, Project Manager, Environmental Engineering Consultant and Civil Engineering Specialist.

Scholarships / Bursaries

Bursaries are available for self-funding international students.
The University also offers over 100 scholarships each year to new self-financing full-time international students who are permanently resident in a county outside the European Union. These Scholarships are to the value of 25% of the programme tuition fee and that value will be credited to the student’s tuition fee account. You can apply for one of these scholarships once you have received an offer for a place on this programme.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-waste/

Read less
This Distance Learning programme is ideal for engineers and scientists who want to improve the delivery of water and environmental services in low- and middle-income countries. Read more
This Distance Learning programme is ideal for engineers and scientists who want to improve the delivery of water and environmental services in low- and middle-income countries. You will develop knowledge, expertise and skills in many aspects of inclusive and sustainable public health infrastructure and services.

Modules are taught by experts in a broad range of disciplines who have considerable experience of working in low- and middle- income countries. Classes include a mix of nationalities and past experiences, providing both a stimulating learning experience and a valuable future network.

Externally accredited, WEDC programmes are well-established, and held in high regard by practitioners and employers from both the emergency and development sectors.

Key Facts

- Research-led teaching from international experts. 75% of the School’s research was rated as world-leading or internationally excellent in the latest Government Research Excellence Framework.

- An outstanding place to study. The School of Civil and Building Engineering is ranked in the UK top 10 in the Guardian Good University Guide.

- A well respected programme. Many of our participants are employed by relief and development agencies.

- Professionally accredited. The Chartered Institution of Water and Environmental Management (CIWEM) have accredited this programme. Students registered for this programme are eligible for free student membership of CIWEM. The Joint Board of Moderators (JBM) has also accredited all WEDC MSc degrees as meeting requirements for Further Learning.

See the website http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-waste-dl/

Programme modules

Core modules:
- Management of Water and Sanitation
The aim of this module is to introduce the principles, concepts and key issues of managing sustainable water and environmental sanitation services for low-income consumers in developing countries.

- Water and Environmental Sanitation
The aim of this module are for the student to understand the range of suitable technologies for water supply and engineering management of liquid and solid wastes in low- and middle-income countries.

- Data Collection, Analysis and Research
The aims of this module are to introduce the principles and approaches for doing research and studies on infrastructure and services in low- and middle-income countries and to prepare students to undertake the research dissertation module.

- Case Study
The aims of this module are to give participants a basic understanding of a complete project cycle for infrastructure and services; and to consolidate and integrate material contained in earlier modules.

- Research Dissertation
The aim of this module is to provide the student with experience of the process and methodology of research by defining and studying (on an individual basis) a complex problem in a specialised area relating to their degree.

Optional Modules (choose 4):
- Wastewater Treatment
The aims of this module are for the student to understand the various stages, and unit operation and process options, for treatment of wastewaters, particularly in low- and middle-income countries; and to understand the principles for planning and design of wastewater treatment facilities, particularly in low- and middle-income countries.

- Urban Infrastructure
The aim of this module is for the student to understand the key issues in the planning and conceptual design of infrastructure improvements for low income urban communities.

- Water for Low-Income Communities
The aim of this module is for the student to understand important aspects of the design, construction, operation and maintenance of small water supplies for low-income communities.

- Integrated Water Resources Management
The aim of this module is for participants to understand the concepts used in integrated planning and management of water resources in low and middle-income countries.

- Solid Waste Management
The aim of this module is to introduce participants with available and possible options in solid waste management for low and middle income countries. To make participants familiar with the key issues for low income countries.

- Low-Cost Sanitation
The aim of this module is to increase the student's knowledge of all aspects of low-cost human excreta disposal.

- Water Utilities Management
The aim of this module is to better enable participants to plan for and manage urban water and sanitation services in developing countries.

Facilities

Distance Learning students study from home but are welcome to visit the Loughborough campus. They can make remote use of the University Library’s electronic search facilities. They can also remotely access the WEDC ‘Knowledge Base’, which has links to many sources of useful and relevant information.

Facilities on campus include our laboratory which houses equipment for field sampling and analysis of water and wastewater, and some of the largest hydraulics equipment in the UK. Although Distance Learners will not normally have access to this equipment they can ask the advice of laboratory staff if they are carrying out fieldwork as part of their dissertation.

How you will learn

Distance Learning students study from home but are welcome to visit the Loughborough campus. They can make remote use of the University Library’s electronic search facilities. They can also remotely access the WEDC ‘Knowledge Base’, which has links to many sources of useful and relevant information.

The programme comprises both compulsory core modules, and optional modules which may be selected. The Case Study module draws together material from across the programme. A research dissertation between 75 and 150 pages long on a chosen topic relevant to interests or career development concludes the programme. Many of the Distance Learning modules have web-based discussion forums, where Distance Learners can choose to interact with each other and Module Tutors.

The method of delivery for the learning materials is mainly portable and paper-based, to suit students who are living or working in areas of the world with poor internet connectivity, or those who travel frequently. We also arrange some webinars which are recorded for students who are unable to participate.

During the programme students build up an excellent library of well-produced bound module notes, additional resources and relevant text books. In addition to the printed version we are developing and planning to provide e-reader versions of some module notes to enhance portability.

- Assessment
For most modules, students are assessed by two written assessments (three items for core modules). The Case Study module relates to a given scenario for which the student has to produce pre-feasibility and feasibility reports. The individual research dissertation module is assessed on the basis of a written dissertation and an oral when a student discusses their submitted dissertation with their supervisor and a second member of staff. For students who cannot visit the UK this oral takes place over Skype.

Careers and further study

NGOs (MSF, Oxfam, SCF, GOAL, WaterAid, etc.) and agencies (such as UNICEF), or National Governments. Distance Learning students already working in these sectors find their new skills to be directly relevant and readily applicable to their jobs.
Graduate job titles include Sanitation Technical Manager, Water and Sanitation Consultant, Project Manager, Technical Adviser, Environmental Engineering Consultant and Civil Engineering Specialist

Scholarships

On occasion we offer specific full-fee and partial-fee scholarships for distance learning applicants.

Why choose civil engineering at Loughborough?

As one of four Royal Academy of Engineering designated Centres of Excellence in Sustainable Building Design, the School of Civil and Building Engineering is one of the largest of its type in the UK and holds together a thriving community of over 60 academic staff, 40 technical and clerical support staff and over 240 active researchers that include Fellows, Associates, Assistants, Engineers and Doctoral Students.

Our world-class teaching and research are integrated to support the technical and commercial needs of both industry and society. A key part of our ethos is our extensive links with industry resulting in our graduates being extremely sought after by industry and commerce world-wide,

- Postgraduate programmes
The School offers a focussed suite of post graduate programmes aligned to meet the needs of industry and fully accredited by the relevant professional institutions. Consequently, our record of graduate employment is second to none. Our programmes also have a long track record of delivering high quality, research-led education. Indeed, some of our programmes have been responding to the needs of industry and producing high quality graduates for over 40 years.

Currently, our suite of Masters programmes seeks to draw upon our cutting edge research and broad base knowledge of within the areas of contemporary construction management, project management, infrastructure management, building engineering, building modelling, building energy demand and waste and water engineering. The programmes are designed to respond to contemporary issues in the field such as sustainable construction, low carbon building, low energy services, project complexity, socio-technical systems and socio-economic concerns.

- Research
Drawing from our excellent record in attracting research funds (currently standing at over £19M), the focal point of the School is innovative, industry-relevant research. This continues to nurture and refresh our long history of working closely with industrial partners on novel collaborative research and informs our ongoing innovative teaching and extensive enterprise activities. This is further complemented by our outstanding record of doctoral supervision which has provided, on average, a PhD graduate from the School every two weeks.

- Career Prospects
Independent surveys continue to show that industry has the highest regard for our graduates. Over 90% were in employment and/or further study six months after graduating. Recent independent surveys of major employers have also consistently rated the School at the top nationally for civil engineering and construction graduates.

Find out how to apply here http://www.lboro.ac.uk/study/postgraduate/programmes/departments/civil/water-waste-dl/

Read less
This MSc Award in Waste Management focuses on a range of issues and problems encountered by the waste industry in both the private and public sectors. Read more
This MSc Award in Waste Management focuses on a range of issues and problems encountered by the waste industry in both the private and public sectors.

There is a strong emphasis on links to both environmental science and environmental management throughout the course.

The Award is broadly divided into two main areas of interest.

Firstly, core modules deal primarily with the sustainable management of waste materials and some of the technologies available to successfully treat the different materials, and products or emission streams of such technological solutions.

Secondly, core and core option modules introduce a range of the more generic study and personal development skills that a project manager in waste might be expected to demonstrate.

Furthermore the programme aims to introduce students to the appropriate methods of sampling, analysis and data handling needed to monitor processes and associated environmental impacts.

There is a strong applied and technological perspective to the course, which is designed to equip students for careers in the waste, pollution control and clean-up industries.

There is also an opportunity to enhance employability through the experience of postgraduate learning in the workplace, which may be taken as a core option module for students already in relevant employment.

Read less
Accredited by the Chartered Institution of Wastes Management, the programme prepares you for a career in the growing environmental and clean technologies sector, where there is increasing global demand for skilled graduates. Read more
Accredited by the Chartered Institution of Wastes Management, the programme prepares you for a career in the growing environmental and clean technologies sector, where there is increasing global demand for skilled graduates.

About the programme

The global market in environmental goods and services is currently worth about £3 trillion. Global investment attracted by ‘green technologies’ for electrical power generation recently exceeded that for coal and natural gas. This area is being actively promoted in the UK and Scottish context for economic development.

The programme develops core skills in environmental management, coupled with an understanding of technologies that enhance the
sustainable use of natural resources and minimise the environmental impact of economic activities, exploiting value from industrial process by-products and waste materials.

Our research-active academics are experienced in projects monitoring and assessing environmental impacts, developing innovative treatment technologies and working with industry and business. We have also been involved in support for and development of environmental policy and regulation in the UK, the EU and internationally.

Your learning

The Postgraduate Diploma comprises six taught modules. All MSc candidates undertake a research project/dissertation in Trimester 3.
Subjects include:
• Environmental Systems
• Sustainable Environmental Management
• Concepts and Tools in Environmental Technology
• Pollution Control
• Waste Management Techniques
• Process Principles for Clean Technologies

MSc

You will also undertake a Waste Masters dissertation.

Our Careers Adviser says

Graduates build careers across all industrial sectors and within both public and private sectors dealing with environment, pollution
control, waste management, regulation and enforcement in the emerging technologies to improve environmental performance. This includes process based operations as well as management, audit and impact assessment.

Professional recognition

Once enrolled, students can apply to the Chartered Institution of Wastes Management (CIWM) to become a Student Member. When the programme is completed students can apply to CIWM to become a Graduate Member and use the designatory letters Grad MCIWM.

Note: To obtain the MSc, students will usually take 9 months to gain the Postgraduate Diploma and then normally an additional 3 months of study to gain the MSc, from the date of commencement of the project.

February entry may be possible – applicants should consult with the Admissions Officer.

First-class facilities

Get the hands on experience you need to succeed. We have excellent specialist facilities which support our research students and staff. These include an advanced chemical analysis lab: with state-of-theart chemical analysis for isotopic and elemental analysis at trace concentrations using ICPMS/OES and the identification of organic compounds using LCMS; and the Spatial and Pattern Analysis (SPAR) lab: providing high specification workstations, geographical information system (GIS) software, geochemical and image processing facilities to support data management in science research.

Read less
This course will explore methods of managing wastes alongside the conversion of wastes to energy and the role of energy from waste in the UK, in terms of the technology and the biochemistry and/or chemistry of fuels. Read more
This course will explore methods of managing wastes alongside the conversion of wastes to energy and the role of energy from waste in the UK, in terms of the technology and the biochemistry and/or chemistry of fuels. As such this course is targeted at engineering and physical science graduates due to the nature of the modules. Students completing this course will gain a broad appreciation of the technical, economic and environmental challenges that face the energy from waste industry. It is anticipated that students completing this course will be employed by waste management companies, energy companies and the engineering sector dealing with waste, in both technical and engineering consultancy along with management roles across the sector.

Read less
Broaden your understanding of environmental issues in the context of your own background and qualifications. Gain a deeper understanding of environmental legislation and regulation and the inter-disciplinary nature of the environmental issues. Read more
Broaden your understanding of environmental issues in the context of your own background and qualifications. Gain a deeper understanding of environmental legislation and regulation and the inter-disciplinary nature of the environmental issues.

This course has several different available start dates and study methods - please view the relevant web-page for more information:
JANUARY 2017 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P02922-1PTAB-1617/Energy_&_Environmental_Management_(Waste)_January_Pt?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2018 (Part Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P02922-1PTAB-1718/Energy_&_Environmental_Management_(Waste)_(Part-time)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

JANUARY 2018 (Full Time) - http://www.gcu.ac.uk/ebe/study/courses/details/index.php/P02921-1FTAB-1718/Energy_&_Environmental_Management_(Waste)?utm_source=ZZZZ&utm_medium=web&utm_campaign=courselisting

Programme Description

The programme is designed to give a deeper understanding of the inter-relationships between the environment and topics such as energy technology, environmental law, business strategies, policy and other areas. It focuses on environmental auditing, assessment and management procedures, as required by industrial and commercial bodies. Thus the programme emphasises the application of environmental knowledge, but pressures on the wider global environment are also studied. Furthermore, in order that students can better understand these applications, the basic principles of the various disciplines are also covered. The programme has a standard modular structure and a wide variety of teaching and assessment procedures are used.

Why Choose This Programme?

With increasing environmental legislation and regulation, commercial and industrial organisations, local authorities and public bodies, all require some environmental input to their activities. The environment offers opportunities to those who understand the issues involved and have a vision broad enough to grasp their inter-disciplinary nature. Thus, the programme offers students the challenge to broaden their understanding of environmental issues in the context of their previous backgrounds and qualifications.

Assessment

A combination of coursework, exams and projects.

Professional Accreditation

The programme is accredited by the CIWEM, CIBSE and the Energy Institute (EI). Memberships of these institutions are free for students from accredited programmes. Membership of a professional institution is important for securing employment. The programme is recognised by the Engineering Council as suitable further learning for BEng (Hons) degree graduates from an accredited degree to meet the academic requirement for CEng registration.

Career Opportunities

Graduates of this programme can expect to find work as environmental specialists within, or related to, their previous qualifications. Graduates have gone on to work for employers including Local Authorities, regulators such as Scottish Environmental Protection Agency (SEPA), and lecturing and research and consultancy for private companies.

Read less
This degree course will provide students with the relevant skills, knowledge and understanding in nuclear sciences (nuclear physics and radiochemistry), geosciences (including geochemistry, geophysics and hydrogeology) and materials science, to prepare graduates for a career in nuclear decommissioning, waste management and remediation. Read more
This degree course will provide students with the relevant skills, knowledge and understanding in nuclear sciences (nuclear physics and radiochemistry), geosciences (including geochemistry, geophysics and hydrogeology) and materials science, to prepare graduates for a career in nuclear decommissioning, waste management and remediation.

The University of Birmingham has a long and established track record of research and education in the nuclear sector, including reactor technology, metallurgy and materials, decommissioning and waste management, dating back to the earliest days of the nuclear industry. The University runs one of the longest-standing Masters level courses in the nuclear sector (over 50 years), in the Physics and Technology of Nuclear Reactors (PTNR). The University has extensive links to the nuclear industry and regulators both within the UK and internationally, including National Nuclear Labs, Japan Atomic Energy Agency, Idaho National Labs, NAGRA, British Energy, AMEC, Serco, HSE (NII), Atkins, Babcock Marine, Westinghouse, UKAEA, EDF, E.ON and RWE NPower.

About the School of Physics and Astronomy

We are one of the largest physics departments in the country with a high profile for research both in the UK and internationally, covering a wide range of topics offering exciting challenges at the leading edge of physics and astronomy. Our student satisfaction rating of 96% in 2016 demonstrates the quality of our teaching.
The School of Physics and Astronomy’s performance in the Research Excellence Framework (REF), the system for assessing the quality of research in the UK higher education institutions, has highlighted that 90% of research outputs in the School were rated as world-leading or internationally excellent.
Our research portfolio is wide-ranging, and covers three principal themes: Particle and Nuclear Physics; Quantum Matter and Nanoscale Science; and Astronomy and Experimental Gravity. We have over 120 academic and research staff together with 120 graduate students with around 50 technical and clerical support staff. Our annual research income is over £8 million and more than 250 research publications are produced each year.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
The portfolio within our Water programme has recently been reviewed. This is to ensure that our courses are attractive to prospective students and to make sure that the courses titles and student learning outcomes are relevant to future employers. Read more
The portfolio within our Water programme has recently been reviewed. This is to ensure that our courses are attractive to prospective students and to make sure that the courses titles and student learning outcomes are relevant to future employers. As a result of the review we are launching new course titles, reorganising and renaming some courses and withdrawing others.

As part of this review, the decision has been taken to remove Waste and Resource Management from our portfolio for 2017/18 registration. We are confident that we can offer a suitable and exciting replacement and believe that the Environmental Engineering MSc is most closely aligned to this course. Below are the available MSc’s in our Water programme:

Community Water & Sanitation
Environment Water Management

Alternatively if you would like to discuss your options further please email

Read less
This masters degree course is for students with science-based backgrounds, such as undergraduate degrees in Geosciences, Chemistry, Physics and Engineering, who are interested in a career in the Nuclear industry. Read more
This masters degree course is for students with science-based backgrounds, such as undergraduate degrees in Geosciences, Chemistry, Physics and Engineering, who are interested in a career in the Nuclear industry.

The course covers a wide range of the skills required to work in the nuclear industry and is co-taught with the academic staff from the Schools of Physics and Chemistry.

The University of Birmingham has a long and established track record of research and education in the nuclear sector, including reactor technology, metallurgy and materials, decommissioning and waste management, dating back to the earliest days of the nuclear industry. The University runs one of the longest-standing Masters level courses in the nuclear sector (over 50 years), in the Physics and Technology of Nuclear Reactors (PTNR). The University has extensive links to the nuclear industry and regulators both within the UK and internationally, including National Nuclear Labs, Japan Atomic Energy Agency, Idaho National Labs, NAGRA, British Energy, AMEC, Serco, HSE (NII), Atkins, Babcock Marine, Westinghouse, UKAEA, EDF, E.ON and RWE NPower.

About the School of Geography, Earth and Environmental Sciences

The School of Geography, Earth and Environmental Sciences has a renowned history for international excellence in research and teaching.
Our postgraduate programmes are shaped by research that addresses global grand challenges across the fields of geography, planning, earth sciences, environmental science, occupational health and safety, and environmental and public health. With policy- and practice-focused teaching, all our programmes have high employability outcomes.
We offer excellent facilities for postgraduate study including extensive map and archive facilities, earth imaging laboratory, stable-isotope laboratory (SILLA), environmental library, fully digital drawing office, and state-of-the-art laboratories for environmental chemistry, sedimentology, ecology, groundwater and palaeobiology. Our diverse range of programmes will provide you with a thorough understanding of the discipline, high-quality training and skills development, and access to our expert staff and extensive facilities.
Our graduates go on to forge careers in areas that matter – from environmental consultancies and the hydrocarbon industries, to urban planning, policy roles in NGOs and government regulatory services – and make a real contribution to global challenges. Many graduates also go on to study for PhDs.

Funding and Scholarships

There are many ways to finance your postgraduate study at the University of Birmingham. To see what funding and scholarships are available, please visit: http://www.birmingham.ac.uk/pgfunding

Open Days

Explore postgraduate study at Birmingham at our on-campus open days.
Register to attend at: http://www.birmingham.ac.uk/pgopendays

Virtual Open Days

If you can’t make it to one of our on-campus open days, our virtual open days run regularly throughout the year. For more information, please visit: http://www.pg.bham.ac.uk

Read less
This MSc course addresses scientific, technological and legislative aspects of the diagnosis (analysis and assessment) and management (remediation and restoration) of important environmental issues concerned with contaminated land, water quality, air pollution and waste. Read more
This MSc course addresses scientific, technological and legislative aspects of the diagnosis (analysis and assessment) and management (remediation and restoration) of important environmental issues concerned with contaminated land, water quality, air pollution and waste.

It has been designed with industry advice to enable good science and engineering graduates begin and advance successful careers in the environmental sector, and pursue postgraduate scientific research. The MSc is delivered in first-class teaching and research facilities by a dedicated team of internationally renowned environmental scientists, and presents considerable interaction with environmental consultancies and engineers, industry, local and regulatory authorities, and research institutes.

During 2007-2011, the course was supported by 6 NERC studentships, the most awarded annually to an environmental MSc. Students on the course have won the most EMpower research projects funded by companies within the nuclear industry, and since 2008, a Prize for Best Performance Overall has been awarded annually by Arup, a global environmental engineering and consultancy company.

See the website https://www.royalholloway.ac.uk/earthsciences/coursefinder/mscenvironmentaldiagnosismanagement.aspx

Why choose this course?

- The quality of teaching and learning on the course is enhanced considerably by significant professional networking and interaction with leading experts from environmental consultants and engineers, industry, local and regulatory authorities, and universities and research institutes; who present seminars, host study visits, co-supervise research projects, and act as an advisory panel.

- Graduates of the course are skilled and knowledgeable scientists with excellent employment prospects within the environmental sector, particularly as environmental consultants and engineers, in local and regulatory authorities, industry, charitable trusts, and research institutes and universities.

- In the 2008 Research Assessment Exercise (RAE), the Department’s research was ranked equal 6th in the UK with 70% rated as world-leading or internationally excellent in terms of originality, significance and rigour.

Course content and structure

You will study seven taught modules, three case studies and complete an Independent Research Project:

- Communication & Co-operation Skills
Provides practical training in written and verbal communication media; project, team and time management; role playing in environmental impact assessment; careers advice and a mock job interview.

- Environmental Inorganic Analysis
A practical laboratory and field-work based introduction to quality assured sampling strategies, preparation processes and analytical methods for heavy metals in soils, surface waters, and vegetation.

- Diagnostic & Management Tools
Provides practical computer-based training in statistical analysis of environmental data, geographical information systems, and environmental risk assessment.

- Environmental Organic Chemistry Pathways Toxicology
Comprises physical and chemical properties, transport, fate and distribution, and toxicology of organic compounds in the environment.

- Contaminated Land Case Study
A practical laboratory and field-work based human health risk assessment of pollutant linkages at a former gravel extraction and landfill site. It comprises desk-top study, site investigation and sampling, laboratory analysis, data interpretation, quantitative risk assessment, and remediation options.

- Water Quality: Diagnosis & Management
A practical laboratory and field-work based introduction to aquatic science, hydrogeology, treatment of water and wastewater, and chemical, biological and physical monitoring of water quality. Includes a study visit to a global manufacturer of pesticides and herbicides.

- River Thames Basin Case Study
A combination of fieldwork, laboratory work and desk-top study to diagnose water quality in chemical and ecological terms, to identify industrial and agricultural pollutant linkages, and to determine environmental, ecological and health impacts.

- Air Pollution: Monitoring, Impacts & Management
Covers: sources, sinks, dispersion, conversion, monitoring, impacts and management of air pollutants with study visits to a local authority and a government research institute.

- Royal Holloway Campus Air Quality Case Study
Involves a consultancy company-style investigation of ambient and indoor air quality within the confines of RHUL campus; and combines desk-top research with practical fieldwork and laboratory analysis.

- Waste Management & Utilisation
Considers municipal, industrial and radioactive waste management options, with study visits to a landfill site, a waste incinerator, composting facility, recycling centre and nuclear power station.

- Independent Research Project
Consists of a four-month, independent scientific investigation, usually in collaboration with environmental consultants and engineers, local and regulatory authorities, industry, research institutes, and universities. Projects may comprise a desk-top study or practical laboratory and field investigation, they may be funded, and often lead to employment or to PhD research. Final results are presented at the Research Project Symposium to an audience from within the environmental sector

On completion of the course graduates will have acquired the experience, knowledge, and critical understanding to enable them to:

- Conduct themselves as professional environmental research scientists, consultants, and managers, convey in a professional manner, scientific, technical and managerial information, and manage projects and resources efficiently

- Apply quality assured sampling strategies, preparation procedures and analytical systems to quantify health risks posed by inorganic and organic pollutant linkages in soils, waters and air

- Apply statistical analysis, geographical information systems, and environmental impact and risk assessment to the interpretation of environmental data

- Appreciate the importance and impacts of hydro-geological, and bio- and physico-chemical processes on the treatment of water and wastewater, and on the quality of groundwater and aquatic ecosystems

- Appreciate the emissions, dispersion, conversion, and monitoring of natural and man-made gaseous and particulate air pollutants, their impacts on climate change, human health and vegetation, and management on local, regional and global scales

- Appreciate the prevention, re-use, recycling, recovery, disposal and utilisation of municipal and industrial waste and the management of nuclear waste within the constraints of national and international legislation

- Manage an independent environmental science research project, often with professional collaboration, and of significant value to their career development.

Assessment

- Written examinations test understanding of the principles and concepts taught in the modules and case studies, and the ability to integrate and apply them to environmental diagnosis and management.

- Assessment of module work and practical computing, laboratory and fieldwork evaluates critical understanding of the environmental science taught, and mastery of producing quality assured data, and its analysis, interpretation, presentation and reporting.

- Assessment also reflects the ability to work independently and in teams, and to learn during study visits.

- Assessment of research projects is based on the ability to manage and report on an original piece of independent scientific work.

- All assessed work has significant confidential written and verbal feedback.

Employability & career opportunities

94% of the graduates of the MSc from 2008 to 2013 either successfully secured first-destination employment as international environmental consultants and engineers, in industry, local and regulatory authorities and charitable trusts, or are conducting postgraduate research within international research institutes and universities.

How to apply

Applications for entry to all our full-time postgraduate degrees can be made online https://www.royalholloway.ac.uk/studyhere/postgraduate/applying/howtoapply.aspx .

Read less
Run in partnership with fellow members of the Nuclear Technology Education Consortium (NTEC), Birmingham, Leeds, London and Manchester, the course gives you access to more than 90 per cent of the UK’s academic expertise in nuclear waste immobilisation, decommissioning and clean-up. Read more

About the course

Run in partnership with fellow members of the Nuclear Technology Education Consortium (NTEC), Birmingham, Leeds, London and Manchester, the course gives you access to more than 90 per cent of the UK’s academic expertise in nuclear waste immobilisation, decommissioning and clean-up.

You’ll be based in the department’s world-leading NucleUS Immobilisation Science Laboratory, and will take eight modules on the nuclear fuel cycle. Topics include reactor materials and nuclear waste management with each module including one week at one of our partner universities.

A welcoming department

A friendly, forward-thinking community, our students and staff are on hand to welcome you to the department and ensure you settle into student life.

Your project supervisor will support you throughout your course. Plus you’ll have access to our extensive network of alumni, offering industry insight and valuable career advice to support your own career pathway.

Your career

Prospective employers recognise the value of our courses, and know that our students can apply their knowledge to industry. Our graduates work for organisations including Airbus, Rolls-Royce, the National Nuclear Laboratory and Saint-Gobain. Roles include materials development engineer, reactor engineer and research manager. They also work in academia in the UK and abroad.

90 per cent of our graduates are employed or in further study 6 months after graduating, with an average starting salary of £27,000, the highest being £50,000.

Equipment and facilities

We have invested in extensive, world-class equipment and facilities to provide a stimulating learning environment. Our laboratories are equipped to a high standard, with specialist facilities for each area of research.

Materials processing

Tools and production facilities for materials processing, fabrication and testing, including wet chemical processing for ceramics and polymers, rapid solidification and water atomisation for nanoscale metallic materials, and extensive facilities for deposition of functional and structural coatings.

Radioactive nuclear waste and disposal

Our £3million advanced nuclear materials research facility provides a high-quality environment for research on radioactive waste and disposal. Our unique thermomechanical compression and arbitrary strain path equipment is used for simulation of hot deformation.

Characterisation

You’ll have access to newly refurbished array of microscopy and analysis equipment, x-ray facilities, and surface analysis techniques covering state-of-the-art XPS and SIMS. There are also laboratories for cell and tissue culture, and facilities for measuring electrical, magnetic and mechanical properties.

The Kroto Research Institute and the Nanoscience and Technology Centre enhance our capabilities in materials fabrication and characterisation, and we have a computer cluster for modelling from the atomistic through nano and mesoscopic to the macroscopic.

Stimulating learning environment

An interdisciplinary research-led department; our network of world leading academics at the cutting edge of their research inform our courses providing a stimulating, dynamic environment in which to study.

Teaching and assessment

Working alongside students and staff from across the globe, you’ll tackle real-world projects, and attend lectures, seminars and laboratory classes delivered by academic and industry experts.

You’ll be assessed by formal examinations, coursework assignments and a dissertation.

Sample modules

Processing, Storage and Disposal of Nuclear Waste; Nuclear Fuel Cycle; Reactor Physics and Criticality; Risk Management.

Read less
January, May or September. The time is ripe to develop low carbon alternatives to petroleum-based products both in terms of what society wants and what economics demand. Read more

Start dates

January, May or September

Overview

The time is ripe to develop low carbon alternatives to petroleum-based products both in terms of what society wants and what economics demand. This makes it’s an exciting time to be part of the rapidly developing Biotech Industries. However, biorefining is a highly technical field and the successful growth of the industry is resulting in a lack of sufficient staff with the technical knowledge necessary to support its expansion. This course has been designed in consultation with existing UK industries to address this skills shortage. Since this programme is aimed at people who are already working, training is via distance learning and we hope to complement these with workshops.

Taught by experts at both Aberystwyth University (AU) and Bangor University (BU) through AU, the Industrial Biotechnology course offers you a highly vocational option.

The MSc comprises five core modules and four complementary modules which have been selected to allow students to study the main components of the biorenewable pipeline, from raw materials through extraction and processing to products; and to carry out your own work-based research. They are:

Core Modules

Biorenewable Feedstocks - each January

Students will learn about dedicated crops, agricultural waste and food waste streams and look at how to match feedstock to end-use. The module will examine: the scale of the challenge facing land-based crop production in the 21st century; the role of emerging technologies to meet these needs sustainably; and practical and economic considerations to scaling up production.

Biorefining Technologies - each January

This module will equip students with a detailed fundamental and practical knowledge of biorefining including pre-processing, processing and product isolation. It will teach them to evaluate the relative limitations and merits of different extraction, microbial biotechnology & fermentation technologies

Biobased Product Development - each September

This module will focus on potential end-products from bio-refineries including the relevant performance tests and the available processing/manufacturing technologies; both current and emerging technologies will be discussed. The module will also pay attention to the product innovation chain including commercial elements, life-cycle analysis and regulatory considerations.

Waste Stream Valorisation - each May

This module explores the potential to valorise a range of waste streams and will include case studies of exemplary waste streams as well as from students’ own chosen areas of interest.

Drivers of the Bioeconomy - each September

This module examines the societal drivers that shape the bio-economy and looks at what makes production viable. The need for energy efficient will be highlighted, along with vertically integrated production pipelines.

Research Methodologies and Advances in Bioscience

This module provides a framework for developing your research skills in the context of your own research question. You will be paired you up with a supervisor whose research field is in your area of interest and your supervisor will then guide you as you develop your ideas.

Work-based Dissertation

You may start your dissertation in any semester but should only be taken when Research Methodology and Advances in Biosciences has been completed and will involve a work-plan developed with your ATP tutor, academic supervisor and employer (if relevant). Working at a rate of 10-15 hrs per week we would expect the dissertation to take a year to complete.

Complementary Modules

Carbon Footprinting and Life Cycle Assessment - each January

(BU) This module will provide a theoretical and critical analysis of the practice and application of Carbon Footprinting (CF) and Life Cycle Assessment (LCA) as key tools in assessing the environmental impact of agricultural systems.

Genetics and Genomics - each May

(AU) This module focuses on the challenges facing land based production and the role of emerging technologies to meet these challenges sustainably.

Anaerobic Digestion - each May

(BU) This module covers not only the technological aspects of AD, but also the opportunities and consequences of different feed-stocks, the alternative uses of the produced energy and digestates.

Climate Change - each September

(BU) After an introduction to the science and effects of greenhouse gases in the atmosphere, the module will assess historical climate change and will look at current predictions of future change. Methods by which agriculture and industry could adapt to the consequences of – and mitigate its effect on – climate change will be discussed.

Each distance learning module runs for 12 to 14 weeks. Students can start with whichever module they like and take as many or as few as they are able to over the five years of registration.

To achieve a PGCert, students must complete three taught core modules
To achieve a PGDiploma students must complete any six taught modules
To achieve an MSc, students must complete four core modules, two complementary modules and a work-based dissertation.

Read less

Show 10 15 30 per page


Share this page:

Cookie Policy    X